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Abstract 

International Diabetes Federation (IDF) reports that diabetes is a rapidly growing illness. About 

463 million adults between 20-79 years have diabetes. There are also millions of undiagnosed 

patients. It is estimated that there will be about 578 million diabetics by 2030 [1]. Diabetes reasons 

different eye diseases. Diabetic retinopathy (DR) is one of them and is also one of the most 

common vision loss or blindness worldwide. DR progresses slowly and has few indicators in the 

early stages. It makes the diagnosis of DR a problematic task. Automated systems promise to 

support the diagnosis of DR. Many deep learning-based models have been developed for DR 

classification. This study aims to support ophthalmologists in the diagnosis process and increase 

the diagnosis performance of DR through a hybrid model. A publicly available Messidor-2 dataset 

was used in this study, comprised of retinal images. In the proposed model, images were pre-

processed, and a deep learning model, namely, InceptionV3, was used in feature extraction, where 

a transfer learning approach is applied. Next, the number of features in obtained feature vectors 

was decreased with feature selection by Simulated Annealing. Lastly, the best representation 

features were used in the XGBoost model. The XGBoost algorithm gives an accuracy of 92.55% 

in a binary classification task. This study shows that a pre-trained ConvNet with a metaheuristic 

algorithm for feature selection gives a satisfactory result in the diagnosis of DR.  
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1. INTRODUCTION 

 

There are about 422 million diabetic people worldwide. The prevalence of diabetes has increased steadily 

over the last few years. Diabetes causes many health complications such as kidney failure, nerve damage, 

leg amputation, heart attacks, risk of fetal death, or vision loss. Diabetic retinopathy (DR) is known as 

diabetic eye disease, which is a common diabetes complication. Nearly one out of every three diabetic 

patients develops DR. DR is one of the leading causes of visual impairment or blindness worldwide. The 

retina is affected in DR. Blood vessels of the retina are injured and become blocked or leaky. Some unusual 

blood vessels can develop from the retina. These vessels can be the reason for retina scarring or bleeding. 

At the severe stage of illness, vision loss or blindness occurs [2, 3].  

 

It is crucial to detect the DR before it progresses. Early diagnosing DR can prevent blindness. Diabetes 

patients should be monitored and checked regularly by ophthalmologists. There is a need for credible 

diagnosis technology to help ophthalmologists examine fundus images. Many successful tasks are carried 

out in medicine with artificial intelligence. One of these tasks is the diagnosis oDR. Artificial intelligence-

based methods can overcome limitations in DR treatment, especially in low-income countries. Deep 

learning is a class of machine learning methods in artificial intelligence. Deep learning models have many 
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hidden layers and intend to specify the salient features in data, unlike traditional neural network (NN) based 

models [4-6]. 

 

The most applied deep learning models on image datasets are Convolutional Neural Networks (CNNs). 

Deep CNNs are similar to classic feed-forward NNs. Parameters of the network are adjusted using 

backpropagation. CNNs differ from the feed-forward networks in four properties: shared weights, local 

receptive fields, pooling operation, and different layers’ aggregation. Deep CNNs start with convolutional 

layers and ends with fully connected layers. CNNs were originated from the visual cortex of the brain and 

have superior performance on several tasks, such as image recognition, natural language understanding, 

speech recognition, automatic video classification systems, or self-driving cars [7].  

 

Heuristics and metaheuristics are approximation methods. These methods can solve NP (nondeterministic 

polynomial) challenging problems in an acceptable time and promise reasonable solutions. Heuristic 

algorithms are more task-dependent than metaheuristic algorithms. Metaheuristic algorithms offer a robust 

solution that combines two search schemas: exploitation and exploration. The exploration searches for the 

best solution areas. On the other hand, exploitation is responsible for finding new searching regions. 

Metaheuristics as generic algorithms can be applied to many optimization problems [8, 9]. 

 

This study proposed a hybrid deep learning-metaheuristic model for automated diagnosis of DR. A deep 

learning model, InceptionV3, is used in feature extraction from fundus images. Simulated Annealing is 

applied in the feature selection process. Overall, the proposed model aims to support ophthalmologists in 

DR evaluating process. 

 

The paper is presented in six sections: Section 2 gives an overview of the related studies, Section 3 gives 

dataset information, and explains the proposed model. Section 4 outlines the details of the methods. Results 

and discussion are given in Section 5. Lastly, future work and conclusions are given in the last section. 

 

2. LITERATURE REVIEW 

 

Early studies in the diagnosis DR were based on feature extraction manually, such as Paranjpe and Kakatkar 

[10] applied contrast enhancement, top-hat transformation, and morphological filtering methods in blood 

vessel detection. Hard exudates were detected with image processing methods. Authors extracted texture 

features using grey level co-occurrence matrices (GLCMs) to classify DR. Harini, and Sheela [11] applied 

Fuzzy C-Means clustering and some image processing operations (morphological) to extract features from 

exudates, blood vessels, and microaneurysms which are used as inputs for Support Vector Machines. 

Punithavathi and Kumar [12] detected the area of microaneurysms through image transformation, top hat 

transformation, and Otsu’s thresholding. The authors also calculated statistical texture properties like mean 

and entropy. Extreme Learning Machine was used in classification. Colomer et al. [13] locally computed 

(by dividing images in patches) granulometric profiles and local binary patterns to extract morphological 

and texture information from retinal images. Extracted features were fed Support Vector Machines, 

Random Forests, and Gaussian Processes classifiers. 

 

CNN-based models, which have performed well in DR classification tasks, automatically extract features 

from retinal images. Training deep CNNs from scratch requires large datasets. So, transfer learning is 

especially suitable in DR classification tasks, where the number of retinal images is low. 

 

Johari et al. [14] used AlexNet architecture and the Messidor dataset. The authors made a binary 

classification: normal images vs. exudates images. Takahashi et al. [15] trained a randomly initialized 

GoogLeNet model with a private dataset. Some authors used multiple networks in diagnosis DR. Such as 

Choi et al. [16] used AlexNet and VGG19 architectures. Zhang et al [17] used DenseNet169 & 201, and 

ResNet50 for feature extraction. Bodapati et al. [18] proposed a blended feature extraction model. Authors 

fused features from VGG16 and Xception. On the other hand, several studies have introduced new 

architectures [4], such as Pratt et al. [19] developed a new network with CNN architecture.  
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Besides deep learning-based feature extraction, feature selection is also essential in image classification 

tasks. There are many feature selection techniques to find the optimal subset of features from a given data 

in the literature. Some points are essential in deciding on a feature selection technique, such as contribution 

to the classifier’s performance, reducing overfitting, or minimizing training time [20-23]. Metaheuristics 

have the potential to perform well in the feature selection process. Such as Canayaz [24] proposed a model 

that diagnoses COVID-19 from X-ray images. The author used deep learning models in feature extraction 

and applied two metaheuristic algorithms in feature selection. According to the results, BPSO decreased 

the number of features and increased classification performance. 

 

In this study, features from retinal images are extracted by InceptionV3, and binary classification (non-

referable DR: NRDR against referable DR: RDR) is made. To compare the proposed model’s result with 

other studies in the literature, we summarized the studies that use the same testing dataset (Messidor-2), 

extracted features using the InceptionV3, and made a binary classification.  

 

Voets et al. [25] used InceptionV3 for feature extraction. The authors applied ensemble learning to perform 

a binary classification (NRDR-RDR). A publicly available EyePACS dataset is used in training. The 

proposed model gives an AUC of 85.3% on Messidor-2. Li et al. [26] trained the last layers of Inception 

V3 networks and used a dataset from Chinese Hospitals, including 19,233 retinal images in training. Their 

model gives an accuracy of 93.49% on Messidor-2 in RDR diagnosis. Toledo-Cortés et al. [27] used 

InceptionV3 to diagnose RDR. The authors proposed a deep learning Gaussian Process (GP) model trained 

on the EyePACS dataset. A GP regressor gives an AUC of 87.87% on Messidor-2. Gurcan et al. [28] 

obtained feature representations from retina images using InceptionV3 pre-trained weights. The authors 

used Messidor-2 in training and testing. XGBoost was used as a classifier with an accuracy of 91.40% on 

Messidor-2. 

 

3. CASE STUDY 

 

3.1. Dataset 

 

A publicly available Messidor-2 dataset [29-31] was used in this study. This dataset includes 1748 fundus 

images in JPG and PNG formats. The images are taken from patients with five grade levels: no, mild, 

moderate, severe, and proliferative DR. Seven images were excluded from the analysis. NRDR against 

RDR classification is made. This categorization is one of the most preferred distinctions in literature. The 

NRDR class comprises no DR and mild DR images. RDR class comprises moderate, severe, and 

proliferative DR images. There are 455 images in RDR and 1286 images in NRDR classes. Seven images 

were excluded from the study because of poor image quality.  

 

3.2. Proposed Model 

 

The proposed model has four steps. The dataset is comprised of different-sized images. The pixel values of 

each image should be scaled before feeding images as input to a deep learning model. So firstly, retinal 

images are pre-processed. Then, processed images are fed into a deep CNN network, and abstract features 

are obtained using the transfer learning approach. Extracted features are summarized by applying the Global 

Average Pooling operation. A metaheuristic algorithm is applied to reduce the number of features while 

obtaining the best potential features. Lastly, extracted and selected features are classified with an ensemble 

method which is a decision tree-based algorithm. The details of the methods are explained in the following 

section. The proposed model is presented in Figure 1.  
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Figure 1. The proposed model 

 

4. METHODS 

 

This study comprises four processes: pre-processing, feature extraction, feature selection, and 

classification. Details of processes are explained in the following sections. 

 

4.1. Pre-processing 

 

The Messidor-2 dataset has fundus images in different sizes. So, images are resized to a resolution of 1200 

(width) × 960 (height). The pixel value of each image is rescaled from the range of [0-255] to the range of 

[0-1] in red, green, and blue (RGB) channels by dividing pixel values 255 in the whole dataset. This 

operation is referred to as normalization, preferred in deep neural network model training. Then, pre-

processed images are fed into the following process, feature extraction. 

 

4.2. Feature Extraction 

 

Deep learning models require much data to successfully learn the latent patterns of data. In some problems, 

it isn’t easy to collect large datasets and label them, such as medical tasks. Limited data and costly labeling 

processes bring difficulties in developing well-performing deep learning models for medical tasks. The 

transfer learning approach helps to solve problems with an insufficient number of training data. Besides, in 

transfer learning, training and testing data are not necessarily independent and identically distributed [32]. 

A pre-trained network can be used as a starting point to learn a problem in a different domain.  

 

There are deep learning models that are made available with pre-trained weights. These pre-trained models 

can be used for various tasks such as feature extraction, fine-tuning, or prediction. Fine-tuning a network 

is generally much easier and faster than training a network from scratch, which initializes network weights 

randomly. Learned features can be transferred to new problems using a small number of data.   

 

The authors used InceptionV3 [33] pre-trained weights on ImageNet in feature extraction from fundus 

images. InceptionV3 is one of the most preferred models in image classification tasks. InceptionV3 has a 

depth of 159 layers and 23,851,784 parameters. The model uses building blocks that include convolution 

layers, inception modules, pooling, concatenation, batch norm, and fully connected layers. Inception 

modules help decrease computational expense and increase the network’s depth by using stacked 1×1 

convolutions. It uses multiple kernel filter sizes within the CNN and orders them to run on the same level 

[34]. The InceptionV3 model clusters similar sparse nodes into a dense structure. This operation increases 

the width and depth of the model and reduces computational expense [35]. 

 

The pre-processed images are fed into the InceptionV3, which has ten mixed (concatenate) layers through 

the model. Features are extracted from the mixed-3 layer, which is one of the initial layers of the 

InceptionV3. Pre-trained weights of InceptionV3 on ImageNet are used. In deep CNNs, spatial hierarchies 

of features are learned. Deeper layers encode high-level features (abstract features) such as a human nose, 

while initial layers work like edge detectors and detect simple shapes, lines, and edges from the data. Since 



697  Omer Faruk GURCAN, Ugur ATICI, Omer Faruk BEYCA/ GU J Sci, 36(2): 693-703 (2023) 

 
 

pre-trained weights are used, features obtained from the mixed-3 layer give more valuable information than 

a deeper layer.  

After feature extraction, 3,251,712 (73 × 58 × 768) features are obtained from each fundus image. That 

means 768 feature maps in 73 × 58 are obtained from each image. These features are summarized by the 

Global Average Pooling (GAP) operation. The GAP is a downsampling operation that downsamples an 

entire feature map into a single value by averaging the values. It summarizes the features in an image 

aggressively. The GAP application on extracted features gives 768 (1 × 1 × 768) features for each fundus 

image. The obtained features from the GAP operation are sent to feature selection and classification 

processes. The 73 × 58 values in each feature map are averaged and obtained 768 values are flattened in 

the subsequent processes.  

4.3. Feature Selection 

 

Simulated Annealing (SA) is one of the popular heuristic methods widely used to solve combinatorial 

optimization problems. The advantage of this approach is that it does not stick to the local optimum [36]. 

Random numbers with a uniform distribution between 0 and 1 were generated for the initial solution (𝑆). If 

the randomly generated number is greater than 0.5, the relevant feature is included in the solution. The 

objective function value (SObj) of the initial solution is calculated using the k-Nearest Neighbor (kNN) 

Classifier. Neighbor solution (𝑁) is created similar to the initial solution. The objective function value 

(NObj) of the neighboring solution is calculated. If the neighbor solution objective function 𝑁𝑂𝐵𝐽 is better 

than the solution objective function value (ΔOBJ=NObj-SObj, ΔOBj<0), the solution is replaced by the 

neighbor solution (S = N). If the neighbor solution does not improve the objective function’s value, the 

solution is not changed with a probability of e(-∆Obj/T) and the next iteration is passed. The annealing 

temperature is calculated using the geometric ratio. The annealing temperature (T = T * Cr) is updated by 

multiplying the annealing (𝑇) with the cooling coefficient (Cr = 0.999) at each iteration. The iteration 

process is continued until T=Tend [37]. The pseudo-code of the feature selection process is given in Table 

1.  

 

Table 1. Pseudo-Code of feature selection with simulated annealing 

1. Set parameters features (i), T, Cr, Tend 

2. Generate Initial Solution  

d← Dimension of features 

Repeat     

if rand(1,i) > 0.5 select feature 

Until i=d 

3. Calculate Obj by using kNN 

4. Repeat 

Generate Neighbor Solution  

Repeat     

if rand(1,i) > 0.5 select features(i) 

Until i=d 

Calculate  NObj by using kNN 

Calculate ΔOBJ ← NObj-SObj 

if  ΔOBJ<0 then S←N 

if  ΔC<0 or e-ΔC/T>rand(0,1)  then  

S←N 

T←T*Cr 

Until T=Tend  

5. Output S 

 

kNN classifier is applied in calculating the fitness value of SA. The classification methods generally seek 

boundaries that are linear or non-linear to separate data optimal way. These boundaries are then applied in 

predicting the classes of new instances. kNN algorithm has a different technique by using geographic 

neighborhood information of an instance to predict the instance’s class. kNN for a classification task 
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predicts a new instance using the number of k closest instances from the training dataset. The closeness is 

calculated using a distance metric, like Minkowski and Euclidian. Deciding on metrics relayed to 

characteristics of problems [38]. 

 

In the most widely preferred application of kNN, uniform weights are used in weighting neighborhoods, 

where the classifier assigns a query point into a class using the majority vote of nearest neighbors. In some 

cases, weighting the neighbors according to their contribution is better. A frequently used weighting is 

assigning weights in direct proportion to the inverse of the distance from the related query point. 

 

4.4. Classification 

 

Tree boosting methods are very effective and widely applied in many machine learning challenges. 

XGBoost is short for “Extreme Gradient Boosting.” It is a scalable end-to-end tree boosting system [39]. It 

is a supervised learning machine learning system that can handle tabular or structured datasets in regression 

and classification tasks.  

 

XGBoost is developed based on a gradient boosting decision tree algorithm. Gradient boosting is a 

technique in which new models are generated that predict errors or residuals made by previous models and 

later added jointly to perform the final prediction. Its name comes from the gradient descent algorithm. 

When new models are added, the loss is minimized using a gradient descent algorithm [40].  

 

Similar to other boosting algorithms, there is a dependence between the training of each model and the 

models already trained in gradient boosting. The learning process aims to build the base models that are 

correlated in maximum with the negative gradient of loss function related to the whole ensemble. In other 

words, regression models in a sequence are calculated, in which each successive model makes a prediction 

of pseudo residuals of antecedent models given a differentiable loss function. This loss function is needed 

to calculate the negative gradient. The loss function is minimized during the aggregation of predictions. 

The gradient boosting models have generally had many simple models in response to other ensemble 

methods with less but more complex models. During the training, deciding on the number of iterations 

(models) is critical. Too many numbers can reason for overfitting, while very few numbers can reason for 

underfitting. Validation methods help to choose the correct number of iterations. Gradient boosting uses 

decision trees as base learners generally [41]. 

 

The key success factor of XGBoost is its scalability. The system operates more than ten times faster than 

available solutions on a machine and scales to the excessive number of examples in memory-limited or 

distributed settings. The property of scalability results from some innovations, including specific 

optimization techniques and systems. The proposed tree learning algorithm can handle sparse data with 

nodes’ default directions; the algorithm uses a weighted quantile sketch procedure that provides handling 

weights of instances in approximate tree learning. Parallel and distributed computing contribute to the 

learning speed and exploration process of the model. XGBoost benefits from the out-of-core computation. 

It uses a cache-aware structure that helps researchers process millions of instances on a desktop [38]. This 

study obtained features from feature extraction and feature selection processes classified with XGBoost. 

The algorithm made a binary classification of DR (NRDR vs. RDR).  

 

4.5. Experimental Setup 

 

For the experiments, the Messidor-2 dataset is randomly divided into training data (80%) and testing data 

(20%). The features are extracted from the mixed3 layer of the InceptionV3 network, which comprises ten 

mixed layers. The features are extracted from mixed10, mixed9, mixed8, etc. Because pre-trained weights 

are used in the study without layer-wise tuning, the initial layers are more valuable than later layers of 

InceptionV3. So in the experiments, features extracted from the mixed3 layer give the highest classification 

accuracy with XGBoost.  

 

In the feature selection step, the kNN classifier is used as the fitness function of SA algorithm. For the kNN 

algorithm, euclidean distance is used as a distance metric, and k-value (the number of neighbors) is 
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determined by grid search, and it is searched in the range of [2, 10]. A Uniform weight function is used 

where all points in each neighborhood are weighted equally. 5-fold cross-validation is made for kNN. The 

highest performance is obtained when the k-value of kNN equals 5.   

 

The number of iterations in SA is controlled by annealing temperature (T), cooling coefficient (Cr), and 

end temperature (Tend) parameters. For SA, a grid search is carried out for T in the values of 50, 100, and 

200. The parameters are chosen as follow: T=200; cr=0.999; Tend=1. Experimental results for various T 

values are given in Table 2. 

 

Table 2. Experimental results for various T values 

T Duration 

(seconds) 

Number of extracted 

features 

Accuracy performance with 

XGBoost (%) 

50 235 374 89.68  

100 639 379 90.54  

200 731 367 92.55  

 

In the classification step, grid search is carried out for XGBoost parameters as follows: learning rate in the 

range of [0.01, 0.1]; max depth in the range of [3, 9]; the number of estimators in the range of [100, 1500]. 

The other parameters of XGBoost are set to default ones. The highest accuracy performance is achieved 

when the learning rate = 0.06, maximum depth = 3, and the number of estimators = 900.  

 

All models are built-in Python using Keras, Scikit-learn, and XGBoost Libraries. Experiments are 

conducted using NVIDIA GeForce RTX2070 8GB graphical process unit, 32 GB RAM, and AMD Ryzen 

7 3700X 3.6 GHz processor. 

 

5. RESULTS AND DISCUSSION 

 

In this study, features are extracted from one of the initial layers of the InceptionV3 network. Pre-trained 

weights on ImageNet are used. Global Average Pooling operation is applied on extracted features, and an 

abstract feature vector, which comprises 768 features, is obtained. SA Algorithm is applied as a feature 

selection method on abstract feature vector to decrease the number of features and find the best potential 

features. The obtained feature number is decreased from 768 to 367 with SA.  

 

Both feature vectors: extracted and selected, are classified with XGBoost, and results are compared in Table 

3. The confusion matrix of the binary classification task (nRDR vs RDR) is visualized in Figure 2. 

According to the confusion matrix, 273 out of 280 nRDR cases are classified correctly, and 50 out of 69 

RDR cases are classified correctly.  

 

 
Figure 2. Confusion matrix for XGBoost 
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Table 3. Analysis results of diagnosis RDR on Messidor2 

Methods 
Number of 

features 

Accuracy (%) of 

XGBoost 

Extracted Features from InceptionV3 768 91.40 

Selected Features with SA 367 92.55 

 

Table 4 presents the performance comparison of InceptionV3 based studies in diagnosing RDR using 

Messidor-2. The proposed model splits Messidor-2 into train and test sets, while the studies used in the 

comparison [25-27] used different and considerably more image data in training. Additionally, because 

fine-tuning is not made, which increases training times considerably, the current study is not computational 

expensive against the other studies that made fine-tuning. So the current study offers competitive results. 

 

Table 4. Performance comparison on Messidor-2 in binary classification (RDR vs. NRDR) 

Study Approach 
Training Data Accuracy 

(%) 
AUC (%) 

Voets et al. [25] InceptionV3 CNN EyePACS (45,717) Not given 85.30 

Li et al. [26] InceptionV3 CNN Custom (19,233) 93.49 99.05 

Toledo-Cortés et al. [27] InceptionV3 + GP Regressor EyePACS (56,827) Not given 87.87 

Gurcan et al. [28] InceptionV3 + XGBoost Messidor-2 91.40 93.55 

Proposed Model InceptionV3 + SA + 

XGBoost 

Messidor-2 92.55 94.32 

 

SA feature selection enabled increased accuracy level in NRDR-RDR classification by decreasing the 

number of features by about 52.2%. The accuracy score of 92.55% is a competitive result on the Messidor-

2 dataset. The proposed hybrid model offers some advantages: 

 

• The model applies very few pre-processing steps. 

• Training time is less, and the model doesn’t require a high computational power because of 

transferring pre-trained weights. 

• The proposed model gives a satisfactory performance with a limited number of images. 

• Metaheuristic algorithm decreased feature number significantly while increasing accuracy 

performance. 

 

6. CONCLUSIONS 

 

DR is one of the most common vision loss or blindness worldwide. Future projections reveal that diabetic 

patients will increase. Recently, automatic models based on deep learning performed well in many tasks. 

Our study’s primary aim is to help the diagnosis process of DR in low source settings: computational power, 

lack of retinal images, lack of experience, and the number of experts. For this purpose, a hybrid deep 

learning-metaheuristic model is proposed. A deep learning network, InceptionV3, is used in feature 

extraction, and the best potential features are selected with Simulated Annealing. XGBoost is used as a 

classifier. The hybrid model gives an accuracy of 92.55% in the binary classification task on the Messidor-

2 dataset. This result is competitive with other studies in the literature.  

 

For feature studies, other publicly available datasets can be used. The hybrid model can be extended by 

adding other networks and operations. Some other feature extraction methods can be applied, such as 

wavelet transform. 
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