
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 3, July 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Abstract—Since web technologies are getting more advanced

with longer codes, the number of vulnerabilities has increased

considerably. Cross-site scripting (XSS) attacks are one of the

most common attacks that use vulnerabilities in web applications.

There are three types of cross-site scripting attacks namely,

reflected, stored, and DOM-based attacks. Reflected XSS attacks

are the most common type that is usually implemented by

injecting a malicious code into the URL and then sending the

URL to the targeted system by using phishing methods, which is

a significant threat for recent web applications. Our motivation is

the lack of a high-performance detection method of reflected XSS

attacks with high accuracy. In this paper, we propose a hybrid

machine learning model to detect vulnerabilities related to

reflected XSS attacks for a given URL of a website. Our model

uses a scanner to discover vulnerabilities in a web site and

convolutional neural networks to predict the most common

vulnerabilities that may be used for reflected XSS attacks, which

makes the proposed model hybrid. We analyzed the model

experimentally. Analyses results show that the proposed model is

able to detect vulnerable attack surfaces with 99 % accuracy.

Index Terms—Deep Learning, Detection, Reflected XSS, N-

gram, Vulnerability, XSS Scanner.

I. INTRODUCTION

ECENTLY, THE number of web applications have

increased dramatically with the rapid proliferation of the

Internet. More and more applications, even complex ones, are

converted into web applications. A lot of new ideas are also

implemented using web technologies. People with different

levels of expertise are working to develop web applications

BERAAT BUZ, is with Department of Computer Engineering of Istanbul

Technical University, Istanbul, Turkey, (e-mail: buz16@itu.edu.tr).

https://orcid.org/0000-0002-9455-1537

BERKE GÜLÇİÇEK, is with Department of Computer Engineering of

Istanbul Technical University, Istanbul, Turkey, (e-mail:

gulcicek16@itu.edu.tr).

https://orcid.org/0000-0002-2282-5404

ŞERİF BAHTİYAR, is with Department of Computer Engineering of

Istanbul Technical University, Istanbul, Turkey, (e-mail:

bahtiyars@itu.edu.tr).

https://orcid.org/0000-0003-0314-2621

*Corresponding Author

Manuscript received April 25, 2021; accepted July 27, 2021.

DOI: 10.17694/bajece.927417

that case has created many additional vulnerabilities. This

circumstance takes attentions of adversaries therefore web

application security has become more significant than ever.

Analyses also show that 32% of the web applications have

extremely poor security levels, and 23% of web applications

have poor security levels [1]. Even websites that seem secure

may have vulnerabilities. For instance, an XSS security flaw

was discovered in the UK Parliament website (Gupta, 2014)

[2].

One of the most common types of web application attacks is

cross-site scripting attacks. According to OWASP, crosssite

scripting attacks are the 7th most common type of web

application security risk [3]. In cross-site scripting attacks, an

adversary may inject malicious code into some parts of the

web application. The vulnerable parts of the website are also

parts that involve user input. The malicious code is usually a

JavaScript script that steals information of other users. The

vulnerable parts of web applications allow attackers to exploit

the website by using session hijacking, misinformation,

defacing web site, inserting hostile content, phishing attacks,

taking over user’s browser, pop-up-flooding, steal personal

information and access to business data [4].

Cross-site scripting attacks can be categorized into three

types. Reflected cross-site scripting attacks, stored cross-site

scripting attacks, and DOM-based cross-site scripting attacks

as shown in Figure 1. In this paper, our focus is on reflected

cross-site scripting attacks, which are also called nonpersistent

XSS attacks. These attacks are the most common XSS attack

type. It can be implemented by injecting malicious code into

the URL of the website, or in a form element of the website

where user input is taken. Either way, when the victim opens

the website, a malicious script is run.

The initial step of a reflected cross-site scripting attack is to

find vulnerabilities in the targeted system. The vulnerabilities

usually reside in the parts where user input is taken. It can be

the URL of the website, or an HTML form. The attacker

injects the malicious code in these areas. For example, in the

case of the URL, the attacker sends URL containing malicious

code using phishing methods. When the victim opens the

URL, the victim’s browser will start executing the malicious

code.

Stored cross-site scripting attacks, which are also called

persistent XSS attacks, are implemented by adding a malicious

code snippet into the database of a website. When a user

enters that page, the malicious code is executed in the user’s

browser. On the other hand, DOM-based XSS attacks use

A Hybrid Machine Learning Model to Detect

Reflected XSS Attack

Beraat Buz, Berke Gülçiçek, and Şerif Bahtiyar*

R

235

http://dergipark.gov.tr/bajece
mailto:buz16@itu.edu.tr
mailto:gulcicek16@itu.edu.tr
mailto:bahtiyars@itu.edu.tr

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 3, July 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

vulnerabilities found in web browsers.

Fig. 1. Types of XSS Attacks

In this paper, we propose a hybrid model, two-step solution,

implemented as a tool. In the first step, vulnerable parts of a

web application or a web site is analyzed to discover potential

vulnerabilities that allow reflected-XSS attacks. Specifically,

the tool crawls the website for potentially vulnerable areas. In

the next step, potential reflected-XSS attacks are detected.

Particularly, the payloads that managed to successfully attack

are run through the deep learning model that is trained with

payloads beforehand. The deep learning method tries to guess

the dangerous payloads. In the payload file, there are

thousands of payloads.

To the best of our knowledge, the proposed model is a

unique two-step hybrid solution that detect potential reflected

XSS attacks with 99% of accuracy. The proposed model is

adaptive to newly found web vulnerabilities that provides

better accuracy than existing solutions. Experimental analyses

verify that our model provides high accuracy with adaptive

nature.

The rest of the paper is organized as follows. Section II is

about XSS attacks and machine learning algorithms. In the

next section the proposed hybrid model to detect reflected-

XSS attacks is presented. We analyze the proposed model in

Section IV. The last section is devoted to conclusion.

II. CROSS-SITE SCRIPTING ATTACKS AND MACHINE

LEARNING

There are many researches about XSS attacks and their

prevention methods. For instance, Sarmah, Bhattacharyyaa,

and Kalita explain the type of XSS attacks, which have

occurred for two decades [5]. In the research, both client side

and server-side XSS attacks detection approaches are

analyzed, including static analysis, dynamic analysis, and

hybrid analysis mechanisms. On the other hand, Liu et. al.

explains what makes XSS attacks dangerous by explaining of

XSS attacks [6] with static and dynamic analysis methods to

detect the vulnerabilities in the system.

Cookies and cookie theft, as well as analysis of tools are

significant about XSS attacks detection researches [7]. Types

of XSS attacks and in which conditions they arise, how are

cookies used, what type of cookies are used, how they can be

stolen, which detection tools are common, and how the

detection tools work are explained in [7]. However, there is

always a detection accuracy of XSS attacks with these tools.

Galan et al. discuss a scanner used to detect vulnerabilities

about stored XSS in a website [8]. In the architecture, the

Webpage parser agent is the first to be launched. Script

injector agent is the next agent, and it takes the attack point

repository created by the previous agent as input. Finally, a

verification agent, which may not be run until the injector

agent, has created a list to launch attacks. Li and Wei create a

model for a more efficient automatic XSS detection tool by

using SVM algorithm, which is used to determine whether

parameters submitted by users are malicious or not in case of

XSS attacks [9]. Also, they use DQN algorithm for

reinforcement learning for bypassing the rule-based WAF

system.

From another point of view, Syaifuddin et al. explain how

to prevent XSS attacks with a honeypot [10]. In this approach,

when the program detects anomalies on the URL request

packet, the honeypot records its log and the URL request.

Then, according to the log file, they implement a snort rule.

A dynamic detection technique for XSS attacks is explained

with dynamic detection algorithm that contains five steps,

namely crawler, feature construct, attacks simulation, results

in detection, and report generation [11]. Authors summarize

common detection methods that include dynamic analysis

based on black-box testing, static analysis based on white box

testing, and fuzzing test. They compare three typical XSS

attack detection tools which are XSS-ME, Wapiti and Punk.

Habibi and Surantha briefly explain XSS attack detection

methods, which are created by using Support Vector Machine

(SVM), K-Nearest Neighbour (KNN), and Naive Bayes (NB)

techniques with N-gram method which is a method for

detecting similarities between two sentences [12]. Dong et al.

explore possible XSS vulnerabilities in HTML5 [13]. They

introduce a XSS attack detection tool that produces a large

number of test emails by configuring each checkpoint of a test

email with an attack vector derived from their repository and

then connects to the SMTP server in the detection process.

The tool automatically sends test emails to target mailboxes

after they have been checked and approved by SMTP. When

these test emails are successfully opened in target mailboxes,

they may quickly evaluate if the attack vectors on each

checkpoint have been filtered.

Li et al. represent their XSS attack detection approach based

on the attention mechanism of Long Short-Term Memory

(LSTM) recurrent neural network [14]. The proposed XSS

attack detection model is based on LSTM. In addition, recall

and precision are weighted harmonic means, and the F1 metric

is a weighted harmonic mean of these two metrics [15].

These researches provide some solutions to detect XSS

attacks. However, they barely satisfy increasing number of

vulnerabilities about XSS attacks with high accuracy that

depends on precision and recall. In the light of all this

information, we propose a hybrid detection model that is more

accurate according to two parameters, namely precision and

recall. Vulnerabilities about reflected XSS have been a huge

threat for societies that use web applications and web sites.

236

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 3, July 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

III. A HYBRID MODEL TO DETECT REFLECTED-XSS ATTACKS

We have proposed a hybrid model that has two important

features. The first one is a scanner of potential vulnerabilities

that allow reflected XSS attacks and the other one is a

detection mechanism for XSS attacks. We also implemented

the model as a tool called XSS-Guard.

XSS-Guard takes an URL of a website in the first step about

reflected XSS. This URL may be on a web server or on a local

server. There are two options to scan the website, with a

crawler or without a crawler. In the crawler mode, the tool

searches all usable links that are not used before. Then, these

links are scanned to find vulnerabilities related to reflected

XSS attacks.

Fig. 2. The algorithm of the scanner

When the website is ready, and there are suitable places for

reflected XSS attacks, the tool starts to attack with static

reflected XSS payloads. Our payload dataset contains 8000

lines of script codes. These scripts are found from various

sources. If a script run on targeted system, this means that

there is at least one vulnerability that allows reflected XSS

attacks. Vulnerabilities about this script are added to the

vulnerability list of the scanner. Figure 2 shows the algorithm

of this process.

In the detection mechanism, we have used a convolutional

neural network (CNN) that is usually used for image

classification, medical image analysis, and natural language

processing. CNN provides an effective approach to prevent

reflected XSS attacks. We have used a built-in Keras to

determine if the script is reflected XSS attack data or benign

data.

The proposed model starts by reading the dataset from a csv

file where payloads and labels are stored. Then, each payload

is converted to an ASCII value array and the array is resized.

Next, we convert the data in the form that it is suitable to be

processed by CNN. Moreover, we split the dataset as train

payloads, train labels, test payloads, and test labels.

We use sequential approach in our model. At the beginning,

we have three convolution layers (2D) and three max pooling

layers. To flatten data in matrix form, we use a flatten layer.

Next, the model is finished with four dense layers. We

compile the proposed model with Adam optimizer. We tested

many optimizers and we found out that Adam optimizer

provides better results in our approach.

In our model, the batch size is 128 and the number of

epochs is 10. After we fit the model, we move on to the test-

set phase. We accept values greater than 0.5 as attack data,

and values less than 0.5 as benign data. Finally, we calculate

the accuracy, the precision and the recall values.

Our dataset contains approximately 13000 data with

different payloads that are used in the scanner. This dataset

has two columns. The first column is script data and the

second column is label data in which ”0” means XSS attack

data, and ”1” means benign script data.

• < inputtype = imagesrc = 1onerror = alert(1) >

• < htmlontouchstart = alert(1) >

• < xonmouseover = alert(1) >

• %3Cxonxxx = alert(1)

In the list above, you can see a few example payloads from

the dataset. Each XSS attack payload is a JavaScript that tries

to pop an alert. In this way, we check the success of the attack

if the payload successfully popped an alert in the website. This

makes easy to automate the testing process.

The script may be inside of different HTML tags, such as

img, html, body, form, and etc. It may also be in different

HTML events, such as onmouseover, ondrag, and etc.

Attackers can use such tricks to get the browser to execute the

code, therefore we take into account these tricks. The script

may also be encoded to escape simple sanitation techniques.

After the training with CNN, N-gram model is used to

detect XSS attacks as shown in Figure 3. N-gram algorithm is

237

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 3, July 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

used to find the repetition rate in a consecutive sequence. The

variable expressed with n represents the value by which the

repetition is controlled. The gram corresponds to the weight of

this repeated value in the array. N-gram model requires a

payload dataset therefore we have used all XSS attacks scripts

and get the high-frequency words. Specifically, we use 9-

grams and 10-grams which means that words have only 9 or

10 characters. Since these words may contain benign words

like the ”javascript” word, we have passed these high-

frequency words through the model. Finally, restricted words

are obtained.

After completing the scanning step, the model moves to the

detection step. Initially, the created scripts are tested with

CNN model. Then, the restricted words are used to determine

benign actions or XSS attacks. Finally, XSS-Guard creates a

report about the results.

IV. ANALYSIS OF PROPOSED MODEL

We create a reflected XSS attack detection tool, called

XSS-Guard, on Ubuntu 20.04 LTS Operating system by using

python3. The foremost requirements are Keras, Selenium,

PyQt5, and OpenCV.

Fig. 3. The algorithm of the detection mechanism

We tested the proposed model with the tool on Web for

Pentester from pentesterlab.com. We used a docker version

from Github. This website is basically a website designed to

be vulnerable against attacks with the purpose to test and

practice applications. We used XSS-Guard with one of

examples on the website. Our tool is used to attack the URL

with around 500 payloads and managed to find 26 of these

payloads successfully, which means the website is vulnerable

to reflected-XSS attacks as shown in Figure 4.

Fig. 4. Some results of XSS-Guard

We have used the following four metrics to specify the

detection step of the proposed model with CNN.

 True Positive (TP): The number of attack instances

identified as attacks.

 True Negative (TN): The number of instances of

non-attacks known as non-attacks.

 False Negative (FN): The number of cases of attack

defined as non-attacks.

 False Positive (FP): The number of cases of non-

attacks classified as attacks.

We created a confusion matrix with TP, TN, FP, FN. We

analyze the detection performance metrics that use the

confusion matrix with the classification model. Performance

metrics calculated using the confusion matrix are:

Accuracy: The estimated correct classifications are divided

by the total number of classifications as follows.

 (1)

Precision: Determine how accurate is when a positive

estimate is obtained from the classification. This is divided by

the number of correctly predicted positive instances by the

total number of positive predictions, as true or false as

follows.

 (2)

Recall: It is also known as Sensitivity or True Positive Rate

(TPR). Recall is the number of positive predictions divided by

the number of positive classified values in the test data

calculated as follows.

238

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 3, July 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

 (3)

These three metrics are used to observe the success of the

neural network that is used for the detection mechanism and

how the n-gram model boosts it.

Fig. 5. The accuracy model

We used Adam optimizer to compile the model. Although

RMSprop optimizer and Stochastic Gradient Descent

optimizer also achieve high accuracy, Adam optimizer

provides best performance in our cases. In the experiments, we

have 10 epoch sizes and 128 batch sizes to fit the model. In

the following figures, visualizations of model accuracy and

model loss are shown. These models are created by using

CNN without N-gram model.

The accuracy of the proposed model with experimental

evaluation is shown in Figure 5. Experimental results show

that after the first epoch, the value of accuracy on the training

dataset increase considerably. Additionally, the accuracy for

both datasets rise till the end of epochs.

We show the experimental results of the loss model in

Figure 6. It can be observed that the behavior of loss is the

same as the behavior of accuracy. Differently from the

accuracy, the loss decreases with the similar behavior. The

performance of the loss model for both train and validation

datasets are parallel. The performance results for the three

metrics are given on Table I related to the validation dataset.

These results show that XSS-Guad detects XSS attacks with

high performance.

TABLE I

PERFORMANCE RESULTS WITHOUT N-GRAM

Performance Measures Values

Accuracy 0.9890430971512053

Precision 0.9852546916890008

Recall 0.9945872801082544

Fig. 6. The loss model

In addition to CNN, we used N-gram model to restrict some

words since scripts may be hidden inside many non-sense

characters. The performance results with N-gram model is

shown in Table II. The performance results show that using

Ngram helps to increase the performance of accuracy.

Actually, if these payloads are found as benign in our model,

we can control these restricted words to label them as XSS

attacks. Some of these restricted words we found by using N-

gram and passing through the model are as follows:

• ypress = ””

• nstart = ””

• solute;””

• useout = ””

• ofocus ><

TABLE II

PERFORMANCE RESULTS WITH N-GRAM

Performance Measures Values
Accuracy 0.9901387874360847
Precision 0.9872397582269979

Recall 0.9945872801082544

In order to validate the performance of the hybrid model,

we have used K Fold Cross Validation. We chose K to be 5.

Table III contains the accuracy results of 5 fold cross

validation in our dataset with or without N-gram algorithm.

These results also show that N-gram provides better accuracy

results for the proposed model.

TABLE III

CROSS VALIDATION RESULTS

Group Without N-gram With N-gram
1 Accuracy : 0.982191780821 Accuracy : 0.988645838609
2 Accuracy : 0.987671232876 Accuracy : 0.990244198456
3 Accuracy : 0.986301369863 Accuracy : 0.989195991534
4 Accuracy : 0.989497716894 Accuracy : 0.991157563924
5 Accuracy : 0.977168949771 Accuracy : 0.980293547470

239

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 3, July 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

After creating the model and the restricted words, we tested

the detection mechanism to prevent XSS attacks on the

founded XSS attack scripts by using XSS-Guard, the tool we

developed. We detected 25 XSS attacks scripts as XSS attacks

and one XSS attack script as benign. The results are shown in

Figure 7.

Fig. 7. An example results for reflected XSS attack detection

Overall analyses results show that classifications by using

N-gram provides better accuracy for detecting reflected

XSS attacks. Additionally, the proposed hybrid model, which

implemented on XSS-Guard helps to determine vulnerable

websites against reflected-XSS attacks with high accuracy.

Thus, the proposed hybrid model is expected to counter

reflected XSS attacks more accurately.

V. CONCLUSION

In this paper, we consider one of the most common and

significant web vulnerabilities that are used for cross-site

scripting attacks. Specifically, we take into account reflected-

XSS attacks and related vulnerabilities. We proposed a hybrid

model that provides more than 99% accuracy by using web

scanning and deep learning methods. The model extracts

vulnerabilities in a website and detects potential reflected XSS

attacks with deep learning methods. We created a tool, called

XSS-Guard, to test our model. The proposed model will help

to detect reflected XSS attacks in a more accurate way.

REFERENCES

[1] “Web Applications vulnerabilities and threats: statistics for 2019.”
[Online]. Available: https://www.ptsecurity.com/ww-en/analytics/ web-

vulnerabilities-2020/

[2] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks and
defense mechanisms: classification and state-of-the-art,” International

Journal of System Assurance Engineering and Management, vol. 8, no.

S1, pp. 512–530, Jan. 2017. [Online]. Available:
http://link.springer.com/10.1007/s13198-015-0376-0

[3] “OWASP Top Ten Web Application Security Risks | OWASP.”

[Online]. Available: https://owasp.org/www-project-top-ten/

[4] V. Nithya, S. L. Pandian, and C. Malarvizhi, “A Survey on Detection

and Prevention of Cross-Site Scripting Attack,” International Journal

of Security and Its Applications, vol. 9, no. 3, pp. 139–152, Mar. 2015.
[5] U. Sarmah, D. Bhattacharyya, and J. Kalita, “A survey of detection

methods for XSS attacks,” Journal of Network and Computer

Applications, vol. 118, pp. 113–143, Sep. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1084804518302042

[6] M. Liu, B. Zhang, W. Chen, and X. Zhang, “A Survey of Exploitation

and Detection Methods of XSS Vulnerabilities,” IEEE Access, vol. 7,
pp. 182004–182016, 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8935148/

[7] G. E. Rodr´ıguez, J. G. Torres, P. Flores, and D. E. Benavides,
“Crosssite scripting (XSS) attacks and mitigation: A survey,” Computer

Networks, vol. 166, p. 106960, Jan. 2020. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S1389128619311247
[8] E. Galan, A. Alcaide, A. Orfila, and J. Blasco, “A multi-agent scanner´

to detect stored-xss vulnerabilities,” in 2010 International Conference

for Internet Technology and Secured Transactions, 2010, pp. 1–6.

[9] L. Li and L. Wei, “Automatic XSS Detection and Automatic Anti-Anti-

Virus Payload Generation,” in 2019 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC).

Guilin, China: IEEE, Oct. 2019, pp. 71–76. [Online]. Available:

https://ieeexplore.ieee.org/document/8945988/
[10] S. Syaifuddin, D. Risqiwati, and H. A. Sidharta, “Automation Snort

Rule for XSS Detection with Honeypot,” in 2018 5th International

Conference on Electrical Engineering, Computer Science and
Informatics (EECSI). Malang, Indonesia: IEEE, Oct. 2018, pp. 584–

588. [Online]. Available:

https://ieeexplore.ieee.org/document/8752961/
[11] X.-Y. Hou, X.-L. Zhao, M.-J. Wu, R. Ma, and Y.-P. Chen, “A Dynamic

Detection Technique for XSS Vulnerabilities,” in 2018 4th Annual

International Conference on Network and Information Systems for
Computers (ICNISC). Wuhan, China: IEEE, Apr. 2018, pp. 34–43.

[Online]. Available: https://ieeexplore.ieee.org/document/8842866/

[12] G. Habibi and N. Surantha, “XSS Attack Detection with Machine
Learning and n-Gram Methods,” in 2020 International Conference on

Information Management and Technology (ICIMTech). Bandung,

Indonesia: IEEE, Aug. 2020, pp. 516–520. [Online]. Available:
https://ieeexplore.ieee.org/document/9210946/

[13] G. Dong, Y. Zhang, X. Wang, P. Wang, and L. Liu, “Detecting cross site

scripting vulnerabilities introduced by HTML5,” in 2014 11th
International Joint Conference on Computer Science and Software

Engineering (JCSSE). Chon Buri: IEEE, May 2014, pp. 319–323.

[Online]. Available: https://ieeexplore.ieee.org/document/6841888/
[14] L. Lei, M. Chen, C. He, and D. Li, “XSS Detection Technology Based

on LSTM-Attention,” in 2020 5th International Conference on Control,

Robotics and Cybernetics (CRC). Wuhan, China: IEEE, Oct. 2020, pp.
175–180. [Online]. Available: https://ieeexplore.ieee.org/document/

9253484/

[15] D. M. W. Powers, “What the F-measure doesn’t measure: Features,
Flaws, Fallacies and Fixes,” arXiv:1503.06410 [cs, stat], Sep. 2019,

arXiv: 1503.06410. [Online]. Available:

http://arxiv.org/abs/1503.06410

BIOGRAPHIES

BERAAT BUZ was born in Istanbul,

Turkey in 1998. He is a student at

Istanbul Technical University,

Department of Computer Engineering.

He is working on artificial intelligence

and computer security.

BERKE GÜLÇİÇEK was born in Samsun,

Turkey in 1998. He is a student at Istanbul

Technical University, Department of

Computer Engineering. His research

240

http://dergipark.gov.tr/bajece
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
http://link.springer.com/10.1007/s13198-015-0376-0
http://link.springer.com/10.1007/s13198-015-0376-0
https://owasp.org/www-project-top-ten/
https://linkinghub.elsevier.com/retrieve/pii/S1084804518302042
https://ieeexplore.ieee.org/document/8935148/
https://linkinghub.elsevier.com/retrieve/pii/S1389128619311247
https://ieeexplore.ieee.org/document/8945988/
https://ieeexplore.ieee.org/document/8752961/
https://ieeexplore.ieee.org/document/8842866/
https://ieeexplore.ieee.org/document/9210946/
https://ieeexplore.ieee.org/document/6841888/
https://ieeexplore.ieee.org/document/9253484/
https://ieeexplore.ieee.org/document/9253484/
https://ieeexplore.ieee.org/document/9253484/
http://arxiv.org/abs/1503.06410

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 9, No. 3, July 2021

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

interests include computer security and machine learning.

ŞERİF BAHTİYAR is an associate professor

in the Department of Computer

Engineering at Istanbul Technical

University and he is the vice dean in the

Faculty of Computer and Informatics at

Istanbul Technical University. He received

his BS in Control and Computer

Engineering and MS in Computer

Engineering degrees both from Istanbul Technical University

respectively, and his PhD degree in Computer Engineering

from Boğaziçi University. Dr. Bahtiyar was with MasterCard,

TUBerlin in Germany, and National Research Institute of

Electronics and Cryptology.

 Dr. Bahtiyar is the founder and the director of Cyber

Security and Privacy Research Laboratory, SPF LAB, at

Istanbul Technical University. His current research interests

include cyber security and privacy, mobile systems, trust

modeling, and financial systems.

241

http://dergipark.gov.tr/bajece

