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Abstract—Since web technologies are getting more advanced 

with longer codes, the number of vulnerabilities has increased 

considerably. Cross-site scripting (XSS) attacks are one of the 

most common attacks that use vulnerabilities in web applications. 

There are three types of cross-site scripting attacks namely, 

reflected, stored, and DOM-based attacks. Reflected XSS attacks 

are the most common type that is usually implemented by 

injecting a malicious code into the URL and then sending the 

URL to the targeted system by using phishing methods, which is 

a significant threat for recent web applications. Our motivation is 

the lack of a high-performance detection method of reflected XSS 

attacks with high accuracy. In this paper, we propose a hybrid 

machine learning model to detect vulnerabilities related to 

reflected XSS attacks for a given URL of a website. Our model 

uses a scanner to discover vulnerabilities in a web site and 

convolutional neural networks to predict the most common 

vulnerabilities that may be used for reflected XSS attacks, which 

makes the proposed model hybrid. We analyzed the model 

experimentally. Analyses results show that the proposed model is 

able to detect vulnerable attack surfaces with 99 % accuracy. 

Index Terms—Deep Learning, Detection, Reflected XSS, N-

gram, Vulnerability, XSS Scanner. 

I. INTRODUCTION

ECENTLY, THE number of web applications have

increased dramatically with the rapid proliferation of the

Internet. More and more applications, even complex ones, are 

converted into web applications. A lot of new ideas are also 

implemented using web technologies. People with different 

levels of expertise are working to develop web applications 
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that case has created many additional vulnerabilities. This 

circumstance takes attentions of adversaries therefore web 

application security has become more significant than ever. 

Analyses also show that 32% of the web applications have 

extremely poor security levels, and 23% of web applications 

have poor security levels [1]. Even websites that seem secure 

may have vulnerabilities. For instance, an XSS security flaw 

was discovered in the UK Parliament website (Gupta, 2014) 

[2]. 

One of the most common types of web application attacks is 

cross-site scripting attacks. According to OWASP, crosssite 

scripting attacks are the 7th most common type of web 

application security risk [3]. In cross-site scripting attacks, an 

adversary may inject malicious code into some parts of the 

web application. The vulnerable parts of the website are also 

parts that involve user input. The malicious code is usually a 

JavaScript script that steals information of other users. The 

vulnerable parts of web applications allow attackers to exploit 

the website by using session hijacking, misinformation, 

defacing web site, inserting hostile content, phishing attacks, 

taking over user’s browser, pop-up-flooding, steal personal 

information and access to business data [4]. 

Cross-site scripting attacks can be categorized into three 

types. Reflected cross-site scripting attacks, stored cross-site 

scripting attacks, and DOM-based cross-site scripting attacks 

as shown in Figure 1. In this paper, our focus is on reflected 

cross-site scripting attacks, which are also called nonpersistent 

XSS attacks. These attacks are the most common XSS attack 

type. It can be implemented by injecting malicious code into 

the URL of the website, or in a form element of the website 

where user input is taken. Either way, when the victim opens 

the website, a malicious script is run. 

The initial step of a reflected cross-site scripting attack is to 

find vulnerabilities in the targeted system. The vulnerabilities 

usually reside in the parts where user input is taken. It can be 

the URL of the website, or an HTML form. The attacker 

injects the malicious code in these areas. For example, in the 

case of the URL, the attacker sends URL containing malicious 

code using phishing methods. When the victim opens the 

URL, the victim’s browser will start executing the malicious 

code. 

Stored cross-site scripting attacks, which are also called 

persistent XSS attacks, are implemented by adding a malicious 

code snippet into the database of a website. When a user 

enters that page, the malicious code is executed in the user’s 

browser. On the other hand, DOM-based XSS attacks use 
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vulnerabilities found in web browsers. 

 

 

 
Fig. 1. Types of XSS Attacks 

 

In this paper, we propose a hybrid model, two-step solution, 

implemented as a tool. In the first step, vulnerable parts of a 

web application or a web site is analyzed to discover potential 

vulnerabilities that allow reflected-XSS attacks. Specifically, 

the tool crawls the website for potentially vulnerable areas. In 

the next step, potential reflected-XSS attacks are detected. 

Particularly, the payloads that managed to successfully attack 

are run through the deep learning model that is trained with 

payloads beforehand. The deep learning method tries to guess 

the dangerous payloads. In the payload file, there are 

thousands of payloads. 

To the best of our knowledge, the proposed model is a 

unique two-step hybrid solution that detect potential reflected 

XSS attacks with 99% of accuracy. The proposed model is 

adaptive to newly found web vulnerabilities that provides 

better accuracy than existing solutions. Experimental analyses 

verify that our model provides high accuracy with adaptive 

nature. 

The rest of the paper is organized as follows. Section II is 

about XSS attacks and machine learning algorithms. In the 

next section the proposed hybrid model to detect reflected-

XSS attacks is presented. We analyze the proposed model in 

Section IV. The last section is devoted to conclusion. 

 

II. CROSS-SITE SCRIPTING ATTACKS AND MACHINE 

LEARNING 

There are many researches about XSS attacks and their 

prevention methods. For instance, Sarmah, Bhattacharyyaa, 

and Kalita explain the type of XSS attacks, which have 

occurred for two decades [5]. In the research, both client side 

and server-side XSS attacks detection approaches are 

analyzed, including static analysis, dynamic analysis, and 

hybrid analysis mechanisms. On the other hand, Liu et. al. 

explains what makes XSS attacks dangerous by explaining of 

XSS attacks [6] with static and dynamic analysis methods to 

detect the vulnerabilities in the system. 

Cookies and cookie theft, as well as analysis of tools are 

significant about XSS attacks detection researches [7]. Types 

of XSS attacks and in which conditions they arise, how are 

cookies used, what type of cookies are used, how they can be 

stolen, which detection tools are common, and how the 

detection tools work are explained in [7]. However, there is 

always a detection accuracy of XSS attacks with these tools. 

Galan et al. discuss a scanner used to detect vulnerabilities 

about stored XSS in a website [8]. In the architecture, the 

Webpage parser agent is the first to be launched. Script 

injector agent is the next agent, and it takes the attack point 

repository created by the previous agent as input. Finally, a 

verification agent, which may not be run until the injector 

agent, has created a list to launch attacks. Li and Wei create a 

model for a more efficient automatic XSS detection tool by 

using SVM algorithm, which is used to determine whether 

parameters submitted by users are malicious or not in case of 

XSS attacks [9]. Also, they use DQN algorithm for 

reinforcement learning for bypassing the rule-based WAF 

system. 

From another point of view, Syaifuddin et al. explain how 

to prevent XSS attacks with a honeypot [10]. In this approach, 

when the program detects anomalies on the URL request 

packet, the honeypot records its log and the URL request. 

Then, according to the log file, they implement a snort rule. 

A dynamic detection technique for XSS attacks is explained 

with dynamic detection algorithm that contains five steps, 

namely crawler, feature construct, attacks simulation, results 

in detection, and report generation [11]. Authors summarize 

common detection methods that include dynamic analysis 

based on black-box testing, static analysis based on white box 

testing, and fuzzing test. They compare three typical XSS 

attack detection tools which are XSS-ME, Wapiti and Punk. 

Habibi and Surantha briefly explain XSS attack detection 

methods, which are created by using Support Vector Machine 

(SVM), K-Nearest Neighbour (KNN), and Naive Bayes (NB) 

techniques with N-gram method which is a method for 

detecting similarities between two sentences [12]. Dong et al. 

explore possible XSS vulnerabilities in HTML5 [13]. They 

introduce a XSS attack detection tool that produces a large 

number of test emails by configuring each checkpoint of a test 

email with an attack vector derived from their repository and 

then connects to the SMTP server in the detection process. 

The tool automatically sends test emails to target mailboxes 

after they have been checked and approved by SMTP. When 

these test emails are successfully opened in target mailboxes, 

they may quickly evaluate if the attack vectors on each 

checkpoint have been filtered. 

Li et al. represent their XSS attack detection approach based 

on the attention mechanism of Long Short-Term Memory 

(LSTM) recurrent neural network [14]. The proposed XSS 

attack detection model is based on LSTM. In addition, recall 

and precision are weighted harmonic means, and the F1 metric 

is a weighted harmonic mean of these two metrics [15]. 

These researches provide some solutions to detect XSS 

attacks. However, they barely satisfy increasing number of 

vulnerabilities about XSS attacks with high accuracy that 

depends on precision and recall. In the light of all this 

information, we propose a hybrid detection model that is more 

accurate according to two parameters, namely precision and 

recall. Vulnerabilities about reflected XSS have been a huge 

threat for societies that use web applications and web sites. 
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III. A HYBRID MODEL TO DETECT REFLECTED-XSS ATTACKS 

We have proposed a hybrid model that has two important 

features. The first one is a scanner of potential vulnerabilities 

that allow reflected XSS attacks and the other one is a 

detection mechanism for XSS attacks. We also implemented 

the model as a tool called XSS-Guard. 

XSS-Guard takes an URL of a website in the first step about 

reflected XSS. This URL may be on a web server or on a local 

server. There are two options to scan the website, with a 

crawler or without a crawler. In the crawler mode, the tool 

searches all usable links that are not used before. Then, these 

links are scanned to find vulnerabilities related to reflected 

XSS attacks. 

 

 

 
Fig. 2. The algorithm of the scanner 

 

When the website is ready, and there are suitable places for 

reflected XSS attacks, the tool starts to attack with static 

reflected XSS payloads. Our payload dataset contains 8000 

lines of script codes. These scripts are found from various 

sources. If a script run on targeted system, this means that 

there is at least one vulnerability that allows reflected XSS 

attacks. Vulnerabilities about this script are added to the 

vulnerability list of the scanner. Figure 2 shows the algorithm 

of this process. 

In the detection mechanism, we have used a convolutional 

neural network (CNN) that is usually used for image 

classification, medical image analysis, and natural language 

processing. CNN provides an effective approach to prevent 

reflected XSS attacks. We have used a built-in Keras to 

determine if the script is reflected XSS attack data or benign 

data. 

The proposed model starts by reading the dataset from a csv 

file where payloads and labels are stored. Then, each payload 

is converted to an ASCII value array and the array is resized. 

Next, we convert the data in the form that it is suitable to be 

processed by CNN. Moreover, we split the dataset as train 

payloads, train labels, test payloads, and test labels. 

We use sequential approach in our model. At the beginning, 

we have three convolution layers (2D) and three max pooling 

layers. To flatten data in matrix form, we use a flatten layer. 

Next, the model is finished with four dense layers. We 

compile the proposed model with Adam optimizer. We tested 

many optimizers and we found out that Adam optimizer 

provides better results in our approach. 

In our model, the batch size is 128 and the number of 

epochs is 10. After we fit the model, we move on to the test-

set phase. We accept values greater than 0.5 as attack data, 

and values less than 0.5 as benign data. Finally, we calculate 

the accuracy, the precision and the recall values. 

Our dataset contains approximately 13000 data with 

different payloads that are used in the scanner. This dataset 

has two columns. The first column is script data and the 

second column is label data in which ”0” means XSS attack 

data, and ”1” means benign script data. 

• < inputtype = imagesrc = 1onerror = alert(1) > 

• < htmlontouchstart = alert(1) > 

• < xonmouseover = alert(1) > 

• %3Cxonxxx = alert(1) 

In the list above, you can see a few example payloads from 

the dataset. Each XSS attack payload is a JavaScript that tries 

to pop an alert. In this way, we check the success of the attack 

if the payload successfully popped an alert in the website. This 

makes easy to automate the testing process. 

The script may be inside of different HTML tags, such as 

img, html, body, form, and etc. It may also be in different 

HTML events, such as onmouseover, ondrag, and etc. 

Attackers can use such tricks to get the browser to execute the 

code, therefore we take into account these tricks. The script 

may also be encoded to escape simple sanitation techniques. 

After the training with CNN, N-gram model is used to 

detect XSS attacks as shown in Figure 3. N-gram algorithm is 
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used to find the repetition rate in a consecutive sequence. The 

variable expressed with n represents the value by which the 

repetition is controlled. The gram corresponds to the weight of 

this repeated value in the array. N-gram model requires a 

payload dataset therefore we have used all XSS attacks scripts 

and get the high-frequency words. Specifically, we use 9-

grams and 10-grams which means that words have only 9 or 

10 characters. Since these words may contain benign words 

like the ”javascript” word, we have passed these high-

frequency words through the model. Finally, restricted words 

are obtained. 

After completing the scanning step, the model moves to the 

detection step. Initially, the created scripts are tested with 

CNN model. Then, the restricted words are used to determine 

benign actions or XSS attacks. Finally, XSS-Guard creates a 

report about the results. 

IV. ANALYSIS OF PROPOSED MODEL 

We create a reflected XSS attack detection tool, called 

XSS-Guard, on Ubuntu 20.04 LTS Operating system by using 

python3. The foremost requirements are Keras, Selenium, 

PyQt5, and OpenCV. 

 

 

 
Fig. 3. The algorithm of the detection mechanism 

 

We tested the proposed model with the tool on Web for 

Pentester from pentesterlab.com. We used a docker version 

from Github. This website is basically a website designed to 

be vulnerable against attacks with the purpose to test and 

practice applications. We used XSS-Guard with one of 

examples on the website. Our tool is used to attack the URL 

with around 500 payloads and managed to find 26 of these 

payloads successfully, which means the website is vulnerable 

to reflected-XSS attacks as shown in Figure 4. 

 

 

 
Fig. 4. Some results of XSS-Guard 

 

We have used the following four metrics to specify the 

detection step of the proposed model with CNN. 

 True Positive (TP): The number of attack instances 

identified as attacks. 

 True Negative (TN): The number of instances of 

non-attacks known as non-attacks. 

 False Negative (FN): The number of cases of attack 

defined as non-attacks. 

 False Positive (FP): The number of cases of non-

attacks classified as attacks. 

We created a confusion matrix with TP, TN, FP, FN. We 

analyze the detection performance metrics that use the 

confusion matrix with the classification model. Performance 

metrics calculated using the confusion matrix are: 

Accuracy: The estimated correct classifications are divided 

by the total number of classifications as follows. 

 

                 (1) 

 

Precision: Determine how accurate is when a positive 

estimate is obtained from the classification. This is divided by 

the number of correctly predicted positive instances by the 

total number of positive predictions, as true or false as 

follows. 

 

                        (2) 

 

Recall: It is also known as Sensitivity or True Positive Rate 

(TPR). Recall is the number of positive predictions divided by 

the number of positive classified values in the test data 

calculated as follows. 
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                                   (3) 

 

These three metrics are used to observe the success of the 

neural network that is used for the detection mechanism and 

how the n-gram model boosts it. 

 

 

 
Fig. 5. The accuracy model 

 

We used Adam optimizer to compile the model. Although 

RMSprop optimizer and Stochastic Gradient Descent 

optimizer also achieve high accuracy, Adam optimizer 

provides best performance in our cases. In the experiments, we 

have 10 epoch sizes and 128 batch sizes to fit the model. In 

the following figures, visualizations of model accuracy and 

model loss are shown. These models are created by using 

CNN without N-gram model. 

The accuracy of the proposed model with experimental 

evaluation is shown in Figure 5. Experimental results show 

that after the first epoch, the value of accuracy on the training 

dataset increase considerably. Additionally, the accuracy for 

both datasets rise till the end of epochs. 

We show the experimental results of the loss model in 

Figure 6. It can be observed that the behavior of loss is the 

same as the behavior of accuracy. Differently from the 

accuracy, the loss decreases with the similar behavior. The 

performance of the loss model for both train and validation 

datasets are parallel. The performance results for the three 

metrics are given on Table I related to the validation dataset. 

These results show that XSS-Guad detects XSS attacks with 

high performance. 

 
TABLE I 

PERFORMANCE RESULTS WITHOUT N-GRAM 

Performance Measures Values 

Accuracy 0.9890430971512053 

Precision 0.9852546916890008 

Recall 0.9945872801082544 

 

 
Fig. 6. The loss model 

 

In addition to CNN, we used N-gram model to restrict some 

words since scripts may be hidden inside many non-sense 

characters. The performance results with N-gram model is 

shown in Table II. The performance results show that using 

Ngram helps to increase the performance of accuracy. 

Actually, if these payloads are found as benign in our model, 

we can control these restricted words to label them as XSS 

attacks. Some of these restricted words we found by using N-

gram and passing through the model are as follows: 

• ypress = ”” 

• nstart = ”” 

• solute;”” 

• useout = ”” 

• ofocus >< 

 
TABLE II 

PERFORMANCE RESULTS WITH N-GRAM 

Performance Measures Values 
Accuracy 0.9901387874360847 
Precision 0.9872397582269979 

Recall 0.9945872801082544 
 

In order to validate the performance of the hybrid model, 

we have used K Fold Cross Validation. We chose K to be 5. 

Table III contains the accuracy results of 5 fold cross 

validation in our dataset with or without N-gram algorithm. 

These results also show that N-gram provides better accuracy 

results for the proposed model. 

 
TABLE III 

CROSS VALIDATION RESULTS 

# Group Without N-gram With N-gram 
1 Accuracy : 0.982191780821 Accuracy : 0.988645838609 
2 Accuracy : 0.987671232876 Accuracy : 0.990244198456 
3 Accuracy : 0.986301369863 Accuracy : 0.989195991534 
4 Accuracy : 0.989497716894 Accuracy : 0.991157563924 
5 Accuracy : 0.977168949771 Accuracy : 0.980293547470 
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After creating the model and the restricted words, we tested 

the detection mechanism to prevent XSS attacks on the 

founded XSS attack scripts by using XSS-Guard, the tool we 

developed. We detected 25 XSS attacks scripts as XSS attacks 

and one XSS attack script as benign. The results are shown in 

Figure 7. 

 

 

 
Fig. 7. An example results for reflected XSS attack detection 

 

Overall analyses results show that classifications by using 

N-gram provides better accuracy for detecting reflected 

XSS attacks. Additionally, the proposed hybrid model, which 

implemented on XSS-Guard helps to determine vulnerable 

websites against reflected-XSS attacks with high accuracy. 

Thus, the proposed hybrid model is expected to counter 

reflected XSS attacks more accurately. 

V. CONCLUSION 

In this paper, we consider one of the most common and 

significant web vulnerabilities that are used for cross-site 

scripting attacks. Specifically, we take into account reflected-

XSS attacks and related vulnerabilities. We proposed a hybrid 

model that provides more than 99% accuracy by using web 

scanning and deep learning methods. The model extracts 

vulnerabilities in a website and detects potential reflected XSS 

attacks with deep learning methods. We created a tool, called 

XSS-Guard, to test our model. The proposed model will help 

to detect reflected XSS attacks in a more accurate way. 
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