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Abstract − In this paper, a new blocked tandem queueing model is given and analysed. The arrival 

process to this queueing model is Poisson with parameter 𝜆. There is one service unit at the first stage 

of the system, and the service time of this unit is exponentially distributed with 𝜇1 parameter. There 

are two parallel service units at the second stage, and the service time of these service units are 

exponentially distributed with parameters 𝜇2 and 𝜇3. No queue is allowed at the first stage of the 

system. Upon completing service at the first stage, a customer proceeds to the second stage if at least 

one of the service units at the second stage is available. If both service units at the second stage are 

busy, the customer blocks the service unit at the first stage, which results in loss. The most important 

measure of performance of this queueing system is the loss probability 𝜋𝑙𝑜𝑠𝑠. First of all, the state 

probabilities of the system are obtained and then using these probabilities, the steady-state distribution 

of the system is obtained. Transition probabilities of the system are calculated by using steady-state 

probabilities, and finally an equation is obtained for 𝜋𝑙𝑜𝑠𝑠 in terms of transition probabilities. 

Furthermore, another measure of performance, the mean number of customers, is obtained in terms of 

transition probabilities. Since the Equation for 𝜋𝑙𝑜𝑠𝑠 is very complex, a numerical method is used to 

calculate the minimum 𝜋𝑙𝑜𝑠𝑠 probabilities. After numerical optimal 𝜋𝑙𝑜𝑠𝑠 calculations, a simulation of 

the queueing system is done, and it is seen that the obtained numerical 𝜋𝑙𝑜𝑠𝑠 values tend to simulation 

results.   
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1. Introduction 

Stochastic queueing models are widely used in production lines, telecommunication technologies and 

computer sciences. In recent years, the studies mostly focused on queueing networks. A queueing network is 

simply a combination of several queueing systems. Bertsimas studied on performance analyse of queueing 

networks via Robust optimization [1]. A semi-open queueing network with a Markovian arrival process having 

a finite number of nodes is considered in a study [2]. A study on evaluating the performance of general 

queueing networks in manufacturing systems is given in [3]. Dudina et al. considered a multi-service retrial 

queueing system with Markovian arrival flow to model a call centre [4]. For the first time, Hunt [5] defined 

the customer’s blocking effects in a queue sequence. Various performance measures, namely the average 

number of customers in the queueing system, the proportion of customers entering the queueing system, 

average waiting time, and a blocked series queue, have been obtained in the study [6]. Basharin et al. show 
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how properties of Markovian Arrival Processes can be derived from the general theory of Markov processes 

with a homogeneous second component [7]. In another study [8], a two-station tandem queue with blocking is 

considered, and an accurate solution with correct stationary distribution is given. A stochastic queueing model, 

consisting of two heterogeneous service channels and having no waiting room, is considered [9]. In that study, 

Sağlam et al. calculated the expected number of customers and loss probability, an optimal ordering of service 

channels is given and minimizing parameters of the queueing system are found. In another related study [10], 

a queueing model with two sequential stations is constructed. In this model, there is a single service at each 

station, and no queue is allowed at the second station. The state probabilities and loss probability of this model 

are obtained. Furthermore, the model is simulated. In a recent study [2], a semi-open queueing network having 

a finite number of nodes is considered, and the stationary behaviour of queueing states is analysed. 

In this paper, a new blocked tandem queueing system is constructed and analysed. The model we have 

analysed is a modified version of the model studied in [9]. The arrival process to this new queueing system is 

Poisson. There is one service unit at the first stage of the system, and the service time of this unit is 

exponentially distributed. There are two parallel service units at the second stage, and the service time of these 

service units are exponentially distributed. No queue is allowed at the first stage of the system. Upon 

completing service at the first stage, a customer proceeds to the second stage if at least one of the service units 

at the second stage is available. If both service units at the second stage are busy, the customer blocks the 

service unit at the first stage; hence, loss occurs. The most important measure of performance of this queueing 

system is the loss probability. 

2. The Stochastic Queueing Model 

The queueing model we considered in this study has Poisson arrival flow with parameter 𝜆. At the first station, 

there is a single service unit that has exponentially distributed service time with parameter 𝜇1 and no queue is 

allowed at this phase. The second station of the system consists of two parallel service units, and they also 

have exponentially distributed service times with parameters 𝜇2 and 𝜇3 respectively. As well as the first station, 

no queue is allowed at the second station. Upon receiving service at the first station, a customer proceeds to 

the second station of the queueing system. If both service units at the second station are empty, the customer 

enters the first service unit with probability 𝛼1 or second service unit with probability 𝛼2 = 1 − 𝛼1. If only 

one of the service units at the second station is available, the customer proceeds to this server. On the other 

hand, if both servers at the second station are busy, the customer waits at the first station until any of the service 

units of the second station is available; hence the customer blocks the first station. This queueing model is 

mathematically stated as follows: At any given time 𝑡, let 𝜉1(𝑡) random variable be the number of customers 

in service unit of the first station,  𝜉2(𝑡) and 𝜉3(𝑡) random variables be the number of customers in the services 

of the second station. Then the 3-dimensional continuous-time Markov chain of the model is stated as 

{𝜉1(𝑡), 𝜉2(𝑡), 𝜉3(𝑡); 𝑡 ≥ 0 } and the state probabilities of the Markov chain is 𝑝𝑛1,𝑛2,𝑛3
 where 𝑛1 ∈ {0,1}, 𝑛2 ∈

{0,1}, 𝑛3 ∈ {0,1}. Finally, the state space of the defined Markov chain is ℑ =

{(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), (𝑏, 1,1)}. 

2.1.  The Transition Probabilities of the Queueing System 

First, we need to find the state probabilities of the system to obtain transition probabilities.  Then Kolmogorov 

differential equations are acquired using state probabilities, and by using Kolmogorov equations, the stationary 

distribution of the chain is obtained. Finally, the transition probabilities are found with the help of stationary 

distribution. The probability at any given time 𝑡, in which there are 𝑛1 customers in the first service unit, 𝑛2 

customers in the second, and 𝑛3 customers in the third, is defined as  

𝑃(𝜉1(𝑡) = 𝑛1, 𝜉2(𝑡) = 𝑛2, 𝜉3(𝑡) = 𝑛3) = 𝑝𝑛1𝑛2𝑛3
(𝑡) 

For ∆𝑡 → 0, the state probabilities of the Markov chain {𝜉1(𝑡), 𝜉2(𝑡), 𝜉3(𝑡); 𝑡 ≥ 0 } are obtained as below: 
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𝑝000(𝑡 + ℎ) = 𝑝000(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ)) + 𝑝010(𝑡)(𝜇2ℎ + 𝑜(ℎ)) 

+𝑝001(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                             (2.1) 

𝑝010(𝑡 + ℎ) = 𝑝010(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ)) 

+𝑝011(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑝100(𝑡)𝛼1(𝜇1ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                            (2.2) 

𝑝001(𝑡 + ℎ) = 𝑝001(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝011(𝑡)(𝜇2ℎ + 𝑜(ℎ)) + 𝑝100(𝑡)𝛼2(𝜇1ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                            (2.3) 

𝑝011(𝑡 + ℎ) = 𝑝011(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

                    +𝑝110(𝑡)(𝜇1ℎ + 𝑜(ℎ)) + 𝑝101(𝑡)(𝜇1ℎ + 𝑜(ℎ)) + 𝑝𝑏11(𝑡)(𝜇2ℎ + 𝑜(ℎ)) 

+𝑝𝑏11(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                               (2.4) 

𝑝100(𝑡 + ℎ) = 𝑝100(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ)) + 𝑝000(𝑡)(𝜆ℎ + 𝑜(ℎ)) 

+𝑝110(𝑡)(𝜇2ℎ + 𝑜(ℎ)) + 𝑝101(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                 (2.5) 

𝑝110(𝑡 + ℎ) = 𝑝110(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ)) 

+𝑝111(𝑡)(𝜇3 + 𝑜(ℎ)) + 𝑝010(𝑡)(𝜆ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                      (2.6) 

𝑝101(𝑡 + ℎ) = 𝑝101(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝111(𝑡)(𝜇2 + 𝑜(ℎ)) + 𝑝001(𝑡)(𝜆ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                     (2.7) 

𝑝111(𝑡 + ℎ) = 𝑝111(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝011(𝑡)(𝜆ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                                 (2.8) 

𝑝𝑏11(𝑡 + ℎ) = 𝑝𝑏11(𝑡)(1 − 𝜇2ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝111(𝑡)(𝜇1 + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                                (2.9) 

under the assumption of limit distribution by using state probabilities, we have the stationary state probabilities 

as following: 

0 = −𝜆𝑝000 + 𝜇2𝑝010 + 𝜇3𝑝001 (2.10) 

0 = −(𝜆 + 𝜇2)𝑝010 + 𝜇3𝑝011 + 𝛼1𝜇1𝑝100 (2.11) 

0 = −(𝜆 + 𝜇3)𝑝001 + 𝜇2𝑝011 + 𝛼2𝜇1𝑝100 (2.12) 

0 = −(𝜆 + 𝜇2 + 𝜇3)𝑝011 + 𝜇1𝑝110 + 𝜇1𝑝101 + 𝜇2𝑝𝑏11 + 𝜇3𝑝𝑏11 (2.13) 

0 = −𝜇1𝑝100 + 𝜆𝑝000 + 𝑝110𝜇2 + 𝑝101𝜇3 (2.14) 

0 = −(𝜇1 + 𝜇2)𝑝110 + 𝜇3𝑝111 + 𝜆𝑝010 (2.15) 

0 = −(𝜇1 + 𝜇3)𝑝101 + 𝜇2𝑝111 + 𝜆𝑝001 (2.16) 

0 = −(𝜇1 + 𝜇2 + 𝜇3)𝑝111 + 𝜆𝑝011 (2.17) 

0 = −(𝜇2 + 𝜇3)𝑝𝑏11 + 𝜇1𝑝111 (2.18) 

Now, we calculate the transition probabilities of the queueing system by using stationary state 

probabilities. Using Equation (2.17), we have 
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𝑝111 = (
𝜆

𝜇1 + 𝜇2 + 𝜇3
) 𝑝011 (2.19) 

Equations (2.18) and (2.19) lead us to: 

𝑝𝑏11 = (
𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) 𝑝011 (2.20) 

With the same solution manner, all transition probabilities are obtained in terms of  𝑝011: 

𝑝001 = [
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4] 𝑝011 (2.21) 

𝑝010 = [
𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4] 𝑝011 (2.22) 

𝑝000 = [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4)] 𝑝011 (2.23) 

𝑝101 = [
𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4] 𝑝011 (2.24) 

𝑝100 = Δ4. 𝑝011 (2.25) 

𝑝110 = [
𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)] 𝑝011 (2.26) 

where, 

∆1= 1 − 𝛼1

𝜇2

𝜆 + 𝜇2
(1 +

𝜆

𝜇1 + 𝜇2
) − 𝛼2

𝜇3

𝜆 + 𝜇3
(1 +

𝜆

𝜇1 + 𝜇3
) 

∆2=
𝜇3

𝜆 + 𝜇2
+ (

𝜇3

𝜇1 + 𝜇2
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜆

𝜇1 + 𝜇2
∙

𝜇3

𝜆 + 𝜇2
) 

∆3=
𝜇2

𝜆 + 𝜇3
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
) 

and 

∆4=
𝜇2∆2 + 𝜇3∆3

𝜇1∆1
 

Hence, the sum of all these probabilities is 1, i.e., 

𝑝000 + 𝑝001 + 𝑝010 + 𝑝100 + 𝑝011 + 𝑝101 + 𝑝110 + 𝑝111 + 𝑝𝑏11 = 1 (2.27) 

Substituting all obtained transition probabilities in Equation (2.27), we have 

𝑝011 [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

+ (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇
3

𝜆 + 𝜇
2

+ 𝛼1

𝜇
1

𝜆 + 𝜇
2

Δ4) + Δ4 + 1 

+ (
𝜇2

𝜇1 + 𝜇3

∙
𝜆

𝜇1 + 𝜇2 + 𝜇3

+
𝜆

𝜇1 + 𝜇3

∙
𝜇2

𝜆 + 𝜇3

+ 𝛼2

𝜆

𝜇1 + 𝜇3

∙
𝜇1

𝜆 + 𝜇3

Δ4) 
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+ (
𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

+ (
𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)] 

= 1 

Note that the last Equation is only in terms of 𝑝011. Hereby, the transition probability  𝑝011 is obtained in 

terms of system parameters precisely as: 

𝑝011 = [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

The last thing to do is to rewrite all transition probabilities in terms of system parameters: 

𝑝001 = [
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4] ∙ [

𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
𝛥4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
𝛥4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

 

𝑝010 = [
𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4] ∙ [

𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 
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+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

  

𝑝000 = [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4)] 

 ∙ [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

 

𝑝101 = (
𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 ∙ [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

 



97 

 

Journal of New Theory 35 (2021) 91-102 / Analysis and Simulation of a Two-Stage Blocked Tandem Queueing System 

𝑝100 = Δ4. [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

 

𝑝110 = [
𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)] 

 ∙ [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

2.2. The Loss Probability and The Mean Customer Number of the Queue 

The most important performance measure of the defined queueing model is the loss probability. In this 

queueing model, customer loss occurs only at the first station of the queue, as previously stated. In this context, 

the loss probability can be simply calculated as: 

𝜋𝑙𝑜𝑠𝑠 = 𝑝110 + 𝑝100 + 𝑝101 + 𝑝𝑏11 + 𝑝111 (2.28) 

Substituting the previously calculated probabilities 𝑝110,  𝑝100, 𝑝101, 𝑝𝑏11, and 𝑝111, which are the 

equations (2.26), (2.25), (2.24), (2.20), and (2.19), respectively, in Equation (2.28); we precisely have loss 

probability in terms of system parameters as below: 

𝜋𝑙𝑜𝑠𝑠 = [
𝜆

𝜇1 + 𝜇2 + 𝜇3
+ (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) 



98 

 

Journal of New Theory 35 (2021) 91-102 / Analysis and Simulation of a Two-Stage Blocked Tandem Queueing System 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) + Δ4 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4))] 𝑝011                                    (2.29) 

Furthermore, the mean number of customers in the system is obtained as: 

𝐸(𝑁) = ∑ ∑ ∑ (𝑛1 + 𝑛2 + 𝑛3)

𝑛3∈ℑ𝑛2∈ℑ𝑛1∈ℑ

𝑝𝑛1,𝑛2,𝑛3
  (2.30) 

where ℑ = {(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), (𝑏, 1,1)} is the state space of the 

defined Markov chain. Hence the mean number of customers in the system is calculated as follows: 

𝐸(𝑁) = 0. 𝑝000 + 1. (𝑝100 + 𝑝010 + 𝑝001) + 2. (𝑝110 + 𝑝101 + 𝑝011) + 3. (𝑝111 + 𝑝𝑏11) 

2.3. The Optimization of the Loss Probability 

In a blocked queueing system, one of the most notable performance measures is the loss probability. When a 

service is busy, a new incoming customer cannot enter the service and has two options: to leave the system 

without having service or wait until the service is available. In the system we are interested in, when a service 

is busy, the incoming customer leaves the queue system without being served, so that loss occurs. The 

probability of this loss is called the loss probability. In this section, we aim to minimize the loss probability 

𝜋𝑙𝑜𝑠𝑠, obtained in the previous section, and calculate the mean customer number in the queueing system. When 

the loss probability, given with the Equation (2.29), is examined; clearly, it is very complex and difficult to 

reach the minimum value of  𝜋𝑙𝑜𝑠𝑠 with the help of algebraic methods. Therefore, under two configurations of 

the queuing system, the loss probability is numerically calculated, and the minimum loss probability values of 

both configurations are determined. These two different configurations of the queuing system are based on 

customer arrival rate and the total service capacity of the system. In order to calculate the loss probability and 

mean number of customers, the arrival rate 𝜆 is chosen as constant. In this context, 𝑐 =  2𝜆 and 𝑐 =  𝜆 

configurations are established where 𝑐 = 𝜇1 + 𝜇2 + 𝜇3 is the total service capacity of the queueing system.  

First, the optimal service capacity of the 1𝑠𝑡 service unit is searched, and in the next step, the optimal 

service capacities of the 2nd and 3rd service units are determined for the changing 𝛼1 and 𝛼2 possibilities. The 

data obtained by applying this method are given in Table 1, 2, 3, and 4. According to the data obtained from 

the tables, minimum 𝜋𝑙𝑜𝑠𝑠 values for 𝑐 =  2𝜆 and 𝑐 =  𝜆 configurations are found. The results are also shown 

in Figure 1 and 2. 

Table 1. Optimal service capacity selection of 1st service unit for 𝑐 =  2𝜆 system configuration and the 

corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 0.2 1.9 1.9 0.5 0.5 0.9090 1.0047 

2 0.8 1.6 1.6 0.5 0.5 0.7150 1.0712 

2 1.4 1.3 1.3 0.5 0.5 0.5955 1.2177 

2 2 1 1 0.5 0.5 0.5322 1.4677 

2 2.2424 0.8889 0.8889 0.5 0.5 0.5233 1.5958 

2 3 0.5 0.5 0.5 0.5 0.6013 2.1958 

2 3.6 0.2 0.2 0.5 0.5 0.8073 2.7342 
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Table 2. Selection of optimal service capacities of 2𝑛𝑑 and 3𝑟𝑑 service units for 𝑐 =  2𝜆 system 

configuration and the corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 2.2424 0.2 1.5575 0.5 0.5 0.5389 1.8454 

2 2.2424 0.8889 0.8889 0.5 0.5 0.5233 1.5958 

2 2.2424 1.7 0.0575 0.5 0.5 0.5474 1.9877 

 

 

Fig. 1. The obtained 𝜋𝑙𝑜𝑠𝑠 and 𝐸(𝑁) values for 𝑐 =  2𝜆  configuration 

As seen in Figure 1, under the condition 𝜇1 = 𝜇2  and 𝛼1 = 𝛼2, minimum 𝜋𝑙𝑜𝑠𝑠 = 0.523330711 is 

obtained for 𝑐 =  2𝜆 configuration. 

Table 3. Optimal service capacity selection of 1st service unit for 𝑐 =  𝜆 system configuration and the 

corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 0.2 0.9 0.9 0.5 0.5 0.9091 1.1110 

2 0.8 0.6 0.6 0.5 0.5 0.7316 1.6262 

2 1.07 0.465 0.465 0.5 0.5 0.7079 1.9639 

2 1.5 0.25 0.25 0.5 0.5 0.7785 2.5503 

2 1.9 0.05 0.05 0.5 0.5 0.9501 2.9422 

 

 

0.523330711

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Calculation steps (in Table 1)

Kaybolma Olasılığı Ortalama Müşteri SayısıLoss Probability Mean Customer Number 
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Table 4. Selection of optimal service capacities of 2nd and 3rd service units for 𝑐 =  𝜆 system configuration 

and the corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 1.07 0.1 0.83 0.5 0.5 0.7183 2.1628 

2 1.07 0.4 0.53 0.5 0.5 0.7082 1.9695 

2 1.07 0.465 0.465 0.5 0.5 0.7079 1.9639 

2 1.07 0.7 0.23 0.5 0.5 0.7120 2.0406 

2 1.07 0.9 0.03 0.5 0.5 0.7236 2.2625 

 

 

Fig. 2. The obtained 𝜋𝑙𝑜𝑠𝑠 and 𝐸(𝑁) values of 𝑐 = 𝜆 configuration for 𝛼1 = 𝛼2 

As shown in Figure 2, as in 𝑐 =  2𝜆 configuration, under the condition of 𝜇1 = 𝜇2  and 𝛼1 = 𝛼2, the 

minimum 𝜋𝑙𝑜𝑠𝑠 value of 𝑐 =  𝜆 configuration is reached, and this value is obtained as 𝜋𝑙𝑜𝑠𝑠 = 0.707998663. 

3. The Simulation of the Model 

In this section, the previously obtained loss probabilities are simulated for  𝑛 =  100, 𝑛 =  1000, and 𝑛 =

 10000 using Matlab R2010a program under the system configuration in which they are obtained. As shown 

in Table 5 and 6 below, previously obtained loss probability 𝜋𝑙𝑜𝑠𝑠values are found close to the simulation 

values. This shows that the formula of 𝜋𝑙𝑜𝑠𝑠, which is theoretically found with Equation (2.29), is obtained 

correctly. In Table 7 and 8, the simulation values are given separately for each of the loss probabilities obtained 

for 𝑐 =  𝜆 and 𝑐 =  2𝜆  configurations, respectively. As seen from these tables, the numerical loss possibilities 

obtained for each system configuration converge to the simulation results.  

Table 5. Comparison of the optimal 𝜋𝑙𝑜𝑠𝑠 value obtained for 𝑐 =  𝜆 configuration with simulation results 

 
Optimal numerical 

value 

Simulation value         

(𝑛 = 100) 

Simulation value  

(𝑛 = 1000) 

Simulation value 

(𝑛 = 10000) 

Simulation value 

(𝑛 = 1000000) 

𝜋𝑙𝑜𝑠𝑠 0.707999 0.70 0.704 0.690 0.6899 

 

0.707998663

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Calculation steps (in Table 4)

Kaybolma Olasılığı Ortalama Müşteri SayısıLoss Probability Mean Customer Number
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Table 6. Comparison of the optimal 𝜋𝑙𝑜𝑠𝑠 value obtained for 𝑐 =  𝜆 configuration with simulation results 

 
Optimal 

numerical value 

Simulation value         

(𝑛 = 100) 

Simulation value 

(𝑛 = 1000) 

Simulation value 

(𝑛 = 10000) 

Simulation value 

(𝑛 = 1000000) 

𝜋𝑙𝑜𝑠𝑠 0.523330711 0.53 0.519 0.521 0.5158 

Table 7.  𝜋𝑙𝑜𝑠𝑠 values and simulation (𝑛 =  100000) results obtained for 𝑐 =  𝜆 configuration 

𝜇1 𝜇2 𝜇3 𝜋𝑙𝑜𝑠𝑠(Numerical) 𝜋𝑙𝑜𝑠𝑠(Simulation) 

0.2 0.9 0.9 0.9091 0.9084 

0.9 0.55 0.55 0.7176 0.7093 

1.07 0.465 0.465 0.7079 0.6899 

1.3 0.35 0.35 0.7279 0.6930 

1.8 0.1 0.1 0.9016 0.8440 

1.9 0.05 0.05 0.9501 0.9107 

Table 8.  𝜋𝑙𝑜𝑠𝑠 values and simulation (𝑛 =  100000) results obtained for 𝑐 =  2𝜆 configuration 

𝜇1 𝜇2 𝜇3 𝜋𝑙𝑜𝑠𝑠(Numerical) 𝜋𝑙𝑜𝑠𝑠(Simulation) 

0.2 1.9 1.9 0.9090 0.9095 

0.8 1.6 1.6 0.7150 0.7192 

1 1.5 1.5 0.6685 0.6654 

1.6 1.2 1.2 0.5681 0.5667 

1.8 1.1 1.1 0.5468 0.5421 

2 1 1 0.5322 0.5252 

2.2424 0.8889 0.8889 0.5233 0.5158 

2.4 0.8 0.8 0.5267 0.5197 

2.6 0.7 0.7 0.5388 0.5239 

2.8 0.6 0.6 0.5630 0.5387 

3 0.5 0.5 0.6013 0.5401 

4. Conclusion and Discussion 

In this study, a blocked stochastic queueing model consisting of parallel service units is given. In this queueing 

model, the customer arrivals are Poisson distributed with an average of 𝜆. In the first stage of the system, there 

is one service unit with an exponential service time with an average of 1 𝜇1⁄  and in the second stage, there are 

two service units with exponentially distributed service times, with averages of 1 𝜇2⁄   and 1 𝜇3⁄ , respectively. 

This queue model is not allowed to wait in front of the first stage service unit, so there is no queue in this 

system. An arriving customer is served if the service unit in the first stage is empty. Then, if the service units 

in the second stage are both empty, the customer continues to the first unit with the probability of 𝛼1, the 

second unit with a probability of 𝛼2 = 1 − 𝛼1 or if only one of the service units in the second stage is empty, 

completes its service in this unit and leaves the system. A third case is that if both service units in the second 

stage are full, the customer expects at least one of these service units to be empty by blocking the service unit 

in the 1st stage. Loss occurs when the customer continues to put into service at the 1st stage service unit or 
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when he/she blocks this service unit. One of the main problems in such a queueing model is to calculate this 

probability of loss and calculate what its optimal value will be. This given stochastic queueing model is 

mathematically defined by a three-dimensional continuous parameter Markov chain. Limit probabilities of this 

model are obtained by Kolmogorov difference and differential equations. Afterwards, transition probabilities 

and blocking probabilities are obtained by the elimination method. The loss probability of the system is found 

with the help of transition probabilities and blocking probability. In addition, the average number of customers 

in the system 𝐸(𝑁), which is one of the performance measures of the system, is calculated. Since the optimal 

value of 𝜋𝑙𝑜𝑠𝑠 cannot be calculated algebraically, optimal 𝜋𝑙𝑜𝑠𝑠 is numerically analysed under the condition 

𝜇1 + 𝜇2 + 𝜇3 = 𝑐 instead. As a result, the optimal 𝜋𝑙𝑜𝑠𝑠 value for 𝑐 =  𝜆 and 𝑐 =  2𝜆 is reached when 𝜇2 =

𝜇3 and 𝛼1 = 𝛼2. The model is simulated with MATLAB R2010 software. The simulation results are compared 

with the optimal 𝜋𝑙𝑜𝑠𝑠 values and the simulation results are found to be very close to the optimal 𝜋𝑙𝑜𝑠𝑠 values 

achieved in the study. 
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