# Identification of Agronomic Crops Grown in the Locality of Hinunangan, Southern Leyte, Philippines

#### Kassandra Natdem C. ISAAC<sup>1</sup>, Ulysses A. CAGASAN<sup>1\*</sup>

1Department of Agronomy, College of Agriculture and Food Science Visayas State University, Visca, Baybay City, Leyte, Philippines \*Corresponding Author: ulycagasan@vsu.edu.ph

#### Abstract

This study was conducted to: (1) identify and describe some of the existing agronomic crops planted in the locality of Barangay Manalog and Bangcas, in Hinunangan, Southern Leyte, Philippines, (2) determine the cropping systems adopted by the farmers in their farms; and (3) determine the crops that grown for commercial purposes in the Barangay Manalog and Bangcas, in Hinunangan, Southern Leyte. Data were gathered through a series of documentation using a pen, bond paper, camera, and additional data were taken from the office of the Department of Agriculture in the Municipality of Hinunangan, Southern Leyte. The data gathered were supported by the Department of Agriculture (DA) files. The survey revealed only three crops grown under lowland conditions—likewise, 15 upland agronomic crops grown primarily annually. Among the crops identified, only rice, corn, cassava, coconut, and pineapple were commercially produced in Barangay Manalog and Bangcas. With rice having the largest production area using mono-cropping practices and intercropping for upland crops, both perennial and annual crops.

Keywords: Agronomic crops, commercial and subsistence, lowland and upland production

Research article Received Date: 20 June 2021 Accepted Date: 9 September 2021

#### **INTRODUCTION**

Crop identification helps assess many important variables critical to proper management (Noble Research Institute, 2001). It allows farmers and agronomists to differentiate unwanted plants or weeds having similar appearance and growing in the same field from the crops [e.g., rice and *Echinochloa* weeds are morphologically similar but can be differentiated through the ligule and auricle structure of rice (FAO, 2021)]. Crops have different growth habits, growth requirements, growing season, adaptability, and management practices. Still, they can be classified or grouped based on: taxonomic classification (e.g., pulses belong to the Papilionoideae subfamily), range of cultivation (i.e., plantation crops), place of origin or distribution (i.e., temperate crops), commercial classification, and economic classification, among others (Singh, 2018). Thus, it is essential to identify and classify crops to know their uses and how to manipulate them (Noble Research Institute, 2001). The two Barangays Manalog and Bangcas, in Hinunangan, Southern Leyte was identified to be surveyed since this is one of the areas identified by the Department of Agriculture that produced crops sold in the market of Hinunangan. Southern Leyte.

This study aimed to identify and describe some of the existing agronomic crops planted in the locality of Barangay Manalog and Bangcas, determine the cropping systems adopted by the farmers, determine the crops that grown for commercial purposes in the Barangay Manalog and Bangcas, in Hinunangan, Southern Leyte, Philippines.

#### MATERIALS AND METHODS

A survey on agronomic crops was conducted at Hinunangan, Southern Leyte, on June 5-20, 2021. Two barangays (Manalog and Bangcas) were surveyed and documented as part of the study site. The typical lowland and upland crops in the areas visited were taken and documented. Documentation of some of the crops was done with the use of the camera. Data were gathered using a pen and bond paper, and additional data were taken from the office of the Department of Agriculture in the Municipality of Hinunangan, Southern Leyte, Philippines.

#### **RESULTS AND DISCUSSION**

The results of the survey are presented in Table 1-3 and Figure 1-8. The study found that rice, corn, and cassava are among the crops grown for commercial purposes. The other crops like peanut, sweetpotato, eggplant, mungbean, string bean, and winged bean were grown for subsistence type of production. They are only grown for a small area.

| Common<br>Name | Scientific<br>Name     | Type of<br>Production | Family<br>Name        | Primary use in the<br>locality                                                                            | Primary Use<br>Internationally                                                              | Life<br>Span   |
|----------------|------------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------|
| Rice           | Oryza<br>sativa L.     | Commercial            | Poaceae/<br>Gramineae | Staple food and<br>some used for the<br>production of<br>products such as<br>suman, puto, and<br>bebingka | Staple food.<br>Used for the<br>manufacture<br>of flour,<br>starch, and oil<br>(CABI, 2019) | 3-5<br>months  |
| Gabi           | Colocasia<br>esculenta | Subsistence           | Araceae               | As food and<br>vegetables and<br>by-product for<br>sagmani and<br>budbud                                  | primarily for<br>its edible<br>corms, a root<br>vegetable most<br>commonly<br>known as taro | 7-10<br>months |
| Kangkong       | Ipomoea<br>Aquatica    | Subsistence           | Convolvulac<br>eae    | Vegetable and<br>feed to animal<br>pigs                                                                   | Vegetable                                                                                   | 2-10<br>Months |

 
 Table 1. Common lowland agronomic crops grown Barangay Manalog and Bangcas, in Hinunangan, Southern Leyte

| 500            | thern Leyte                 | 5                  |                       |                                                                                                                 |                                                                                                                                                                              |                                                                       |
|----------------|-----------------------------|--------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Common<br>Name | Scientifi<br>c<br>Name      | Type of production | Family<br>name        | Primary use<br>in the locality                                                                                  | Primary Use                                                                                                                                                                  | Life Span                                                             |
| Coconut        | Cocos<br>nucifera           | Commercial         | Arecaceae             | Commerciall<br>y sold 'buko'<br>to interested<br>buyers,<br>processed to<br>copra.                              | Used for food (can<br>be eaten fresh),<br>copra production<br>(for oil), and<br>manufacture of<br>ropes, mats,<br>baskets, brushes,<br>brooms, etc.<br>(Brittanica, 2019).   | 60-80 years                                                           |
| Pineapple      | Ananas<br>comosus           | Commercial         | Bromeliaceae          | Snacks items<br>sold to<br>interested<br>clients                                                                | Fruit is edible and<br>can<br>be eaten raw or<br>used as an<br>ingredient in Pan-<br>Asian cuisine and<br>pastry (Britannica,<br>Pineapple, 2020).                           | Commercial<br>pineapples<br>take 32-46<br>months<br>(Grant,<br>2021). |
| Banana         | Musa<br>sp.                 | Subsistence        | Musaceae              | Cooked<br>banana, other<br>sold to the<br>market                                                                | Fruit is widely<br>consumed in the<br>tropics, eaten<br>fresh or cooked—<br>an excellent<br>source of dietary<br>fiber and<br>potassium<br>(Britannica,<br>2020).            | 6-10 years                                                            |
| Corn           | Zea<br>mays L.              | Commercial         | Poaceae/Gra<br>mineae | For grains as<br>food to<br>human and<br>animals                                                                | Used for food as<br>cereal,<br>flour/starch,<br>oil/fat, vegetable<br>(CABI, 2019)                                                                                           | 3-4 months                                                            |
| Cassava        | Manihot<br>esculent<br>a L. | Subsistence        | Euphorbiacea<br>e     | Sold to<br>interested<br>clients, sold<br>for chips, and<br>proceed to<br>starch by the<br>commercial<br>buyers | They are used for<br>food as a primary<br>carbohydrate<br>source, used for<br>animal feed, and<br>industrial purposes<br>like starch<br>production<br>(Waisundara,<br>2018). | 6-7 months<br>for fast-<br>growing<br>cultivars<br>(Alves,<br>2002).  |
| Peanut         | Arachis<br>hypogae<br>a L.  | Subsistence        | Fabaceae              | Processing<br>into peanut<br>butter by the<br>commercial<br>buyers                                              | Good source of<br>protein, fiber,<br>magnesium, and<br>phosphorus. Raw<br>material for the<br>manufacture of oil<br>and bakery                                               | 3-4 months                                                            |

**Table 2.** Upland agronomic crops grown in Barangay Manalog and Bangcas, in Hinunangan, Southern Leyte

|                |                                         |             |                    |                                                                       | products (The<br>Peanut Plant,<br>n.d.).                                                                                                                                                               |             |
|----------------|-----------------------------------------|-------------|--------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Sweetpotato    | <i>Ipomoea</i><br><i>batatas</i><br>Lam | Subsistence | Convolvulace<br>ae | For food and<br>processing,<br>some are<br>utilized for<br>vegetables | Vines and foliage<br>can be used as<br>animal feed,<br>fodder, or forage,<br>and human food<br>(vegetable).<br>Tubers are used as<br>a staple food and<br>for the                                      | 3-6 months  |
|                |                                         |             |                    | and animal feeds.                                                     | manufacture of<br>flour/ starch<br>(CABI, 2019).                                                                                                                                                       | 50 100 1    |
| Eggplant       | Solanum<br>melonge<br>na                | Subsistence | Solanaceae         | For<br>vegetables                                                     | Used in cuisine.<br>Good source of<br>fiber, folic acid,<br>potassium, etc.<br>(Perry, n.d.)                                                                                                           | 70-120 days |
| Mungbean       | Vigna<br>radiata<br>L.                  | Subsistence | Fabaceae           | For<br>vegetables                                                     | They were used<br>for food as a<br>source of protein<br>and vitamins—an<br>excellent<br>alternative to<br>meat.                                                                                        | 70 days     |
| String bean    | Phaseol<br>us<br>vulgaris               | Subsistence | Fabaceae           | For<br>Vegetables                                                     | Used for food:<br>pods are edible<br>and cooked in<br>many vegetable<br>dishes. The<br>primary source of<br>protein and starch,<br>and small amounts<br>of carbohydrates,<br>sugar, fiber, and<br>fat. | 50-70 days  |
| Winged<br>bean | Psophoc<br>arpus<br>tetragon<br>olobus  | Subsistence | Fabaceae           | For<br>vegetables                                                     | Used for food:<br>leaves, pods,<br>flowers, and roots<br>are edible. It is a<br>good source of<br>carbohydrates and<br>dietary fiber.                                                                  | 70 days     |

|              |          |             |              |            | Important           | 110-130 |
|--------------|----------|-------------|--------------|------------|---------------------|---------|
|              |          |             |              |            | vegetable crop      | days    |
|              |          |             |              | For        | with medicinal      |         |
|              |          |             |              | vegetables | value, particularly |         |
|              |          |             |              | -          | anti-diabetic       |         |
| Bitter gourd | Momord   | Subsistence | Cucurbitacea |            | properties.         |         |
| _            | ica      |             | e            |            | Suitable for        |         |
|              | charanti |             |              |            | weight loss and     |         |
|              | а        |             |              |            | cholesterol         |         |
|              |          |             |              |            | control.            |         |



Figure 1. Lowland rice in Manalog, Hinunangan, Southern Leyte



Figure 2. Sweet potato, cassava, and winged bean are grown in a backyard in Bangcas A, Hinunangan, Southern Leyte



Figure 3. Coconut in Bangcas A, Hinunangan, Southern Leyte

Figure 4 showed some intercropping systems adopted by the farmers Manalog, Hinunangan, Southern Leyte for perennial crops. Some farmers also intercropped rootcrops from corn and other agronomic crops.



Figure 4. Pineapple plants are grown under the perennial trees in Manalog, Hinunangan, So. Leyte

Figure 5 shows that vegetables like string beans, mungbean, bitter gourd, and eggplant are commonly sold in the market. These crops are grown in backyards and for family consumption only, but the surplus was sold to the middlemen and brought to the public market. The most significant commercial production in terms of area is rice since Hinunangan has vast plain lands and is known as the rice granary of Southern Leyte.



Figure 5. Some vegetables sold in Hinunangan public market

## CONCLUSION

The common crops surveyed and identified had different growth habits ranging from herbs, shrubs, climbers, creepers, and trees. In upland conditions, the agronomic crops are mixed with annuals and perennials. On the other hand, in lowland conditions, all the crops grown were annuals. Among the crops grown, only rice, corn, coconut, cassava, and pineapple were commercially produced for the commercial market, with rice having the most significant area for production. The farmers adopted a mono-cropping system in lowland conditions, particularly rice and intercropping for upland conditions using perennial and annual crops.

## REFERENCES

| Allaire H. & Brady T. 2008. Classification and Botanical Description of Legumes. Hamilton          |
|----------------------------------------------------------------------------------------------------|
| College, New York City. Retrieved from                                                             |
| https://academics.hamilton.edu/foodforthought/our_research_files/beans_peas.pdf                    |
| Alves A. C. 2002. Chapter 5: Cassava Botany and Physiology.                                        |
| Bañoc D. M, Alcober E. L. & Escasinas R. O. 2020. Agro 122: Farming Systems (Learning              |
| guide). Baybay City, Leyte, Philippines: Visayas State University.                                 |
| Bautista E. U. & Javier E. F. 2005. The Evolution of Rice Production Practices. <i>Philippines</i> |
| Institute for Development Studies (PIDS) Discussion Paper Series No. 2005-14.                      |
| Beets W. C. 1982. Multiple Cropping and Tropical Farming Systems. Grower Pub. Co. Ltd.             |
| Briones N. D. 2005. Environmental Sustainability Issues in Philippine Agriculture. Asian           |
| Journal of Agriculture and Development, 2(1-2).                                                    |
| Britannica T. E. 2020. Banana. Retrieved from Brittanica:                                          |
| https://www.britannica.com/plant/banana-plant                                                      |
| Britannica T. E. 2020. <i>Pineapple</i> . Retrieved from Brittanica:                               |
| https://www.britannica.com/plant/pineapple                                                         |
| Brittanica T. E. 2019. Coconut. Retrieved from Britannica:                                         |
| https://www.britannica.com/plant/coconut                                                           |
| CABI 2014. Retrieved from CABI Invasive Species Compendium:                                        |
| https://www.cabi.org/isc/datasheet/10728                                                           |
| CABI 2019. Ipomoea batatas (sweet potato). Retrieved from Invasive Species Compendium:             |
| https://www.cabi.org/isc/datasheet/28783                                                           |
| CABI 2019. Oryza sativa (rice). Retrieved from Invasive Species Compendium:                        |
| https://www.cabi.org/isc/datasheet/37964                                                           |
| CABI 2019. Zea mays (maize). Retrieved from Invasive Species Compendium:                           |
| https://www.cabi.org/isc/datasheet/57417                                                           |
|                                                                                                    |
|                                                                                                    |

- De Guzman L. P., Zamora O. B. & Bernardo D. H. 2015. Diversified and Integrated Farming Systems (DIFS): Philippine Experiences for Improved Livelihood and Nutrition. *Journal of Developments in Sustainable Agriculture*, 10(1), 19-33. doi:10.11178/jdsa.10.19
- Dela Cruz R. T. 2004. *Madre de cacao and ipil-ipil: Cheap feast for hungry sheep*. Retrieved from BAR Research and Development DIGEST: https://www.bar.gov.ph/index.php/digest-home/digest-archives/83-2004-1st-quarter/3179-jan-mar04-madre-de-cacao-and-ipil-ipil
- FAO 2021. Echinochloa crus-Galli (L.) Beauv. Retrieved from Food and Agriculture Organization of the United Nations: http://www.fao.org/agriculture/crops/thematicsitemap/theme/biodiversity/weeds/listweeds/ech-cru/en/
- Filipino Herbs Healing Wonders 2009. Retrieved from Healing Wonders of Philippine Medicinal Plants: A Guide to The Use of Philippine Medicinal Plants as an Alternative Medicine:

http://www.filipinoherbshealingwonders.filipinovegetarianrecipe.com/kakawate.htm Gomez S. M. & Kalamani A. 2003. Butterfly Pea (Clitoria ternatea): A Nutritive

Multipurpose Forage Legume. *Pakistan Journal of Nutrition*, 2(6), 374-379.

Grant A. 2021. *Pineapple Plant Fruiting: Do Pineapple Plants Fruit More Than Once*. Retrieved from Gardening Know How: https://www.gardeningknowhow.com/edible/fruits/pineapples/pineapple-plant-fruiting.htm

- IRRI 1992. Soil and water conservation (SWC) technologies and agroforestry systems.
- Isely D. & Berry P. 2021. *Classification Of Fabaceae*. Retrieved from Britannica: https://www.britannica.com/plant/Fabales/Classification-of-Fabaceae
- Milan P. P. 2012. Greening with native trees. Inquirer.

Noble Research Institute 2001. Plant Identification: Is It Worth the Effort? Retrieved from https://www.noble.org/news/publications/ag-news-and-views/2001/may/plant-identification-is-it-worth-the-effort/

- Perry L. (n.d.). *The Many Uses of Eggplant*. Retrieved from University of Vermont Extension Department of Plant and Soil Science: https://pss.uvm.edu/ppp/articles/eggplant.html
- PROSEA 2018. *Pterocarpus indicus Willd*. Retrieved from https://uses.plantnetproject.org/en/Pterocarpus\_indicus\_(PROSEA)

Sarkar S., Aziz F. B., Hasan M. & Islam R. 2018. Effect of Ipil Ipil and Bean Leaves Supplementation on Egg Production, Egg Quality and Growth Performance of Japanese Quail (Coturnix Japonica). Asian Journal of Medical and Biological Research, 4(2), 201-206. doi:10.3329/ajmbr.v4i2.38256

- Simons A. J. & Stewart J. L 2007. FAO. Retrieved from Gliricidia sepium A Multipurpose Forage Tree Legume: https://betucowp.be/Agroforestry/Tree/Gliricidia%20sepium%20-
  - %20%20 Multipurpose%20 For age%20 Tree%20 Legume%20 FAO.pdf

Singh A. 2018. Classification of Crops. Retrieved from

https://www.slideshare.net/AnkushSingh48/classification-of-crops-106024774 Stagnari F, Maggio A, Galieni A. & Pisante M. 2017. Multiple benefits of legumes for agriculture sustainability: an overview. *Chemical and Biological Technologies in* 

Agriculture, 4(2), 1-13. doi:10.1186/s40538-016-0085-1

- Stuart Jr. G. U. 2019. Retrieved from Philippine Medicinal Plants: stuartxchange.org/Bataw
- Stuart Jr. G. U. 2019. Philippine Medicinal Plants. Retrieved from
  - http://www.stuartxchange.org/Acacia.html

The Peanut Plant. (n.d.). Retrieved from http://bpi.da.gov.ph/bpi/images/Production\_guide/pdf/PEANUT.pdf

- VN M. D., VN A. & Prasad N. P. 2013. Nutritional Value and Potential Uses of Leucaena Leucocephala as Biofuel – A Mini-Review. *Research Journal of Pharmaceutical, Biological, and Chemical Sciences, 4*(1), 515-521.
- Waisundara V. Y. 2018. Introductory Chapter: Cassava as a Staple Food. In V. Y. Waisundara, *Cassava* (pp. 3-10). Intech. doi:10.5772/intechopen.70324
- Yusuf A. A., Mofio B. M. & Ahmed A. B. 2007. Nutrient Contents of Pride of Barbados (Caesalpinia pulcherrima Linn.) Seeds. *Pakistan Journal of Nutrition*, 6(2), 117-121. doi:10.3923/pjn.2007.117.121

https://byjus.com/biology/plants/