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Abstract − The roots of second order polynomials with real coefficients are obtained
in the S1+2 scator set. Explicit formulae are computed in terms of the polynomial
coefficients. Although the scator product does not distribute over addition, the lack
of distributivity is surmountable in order to find the zeros of the polynomial. The
structure of the solutions and their distribution in 1+2 dimensional scator space are
illustrated and discussed. There exist six, two, or eight solutions, depending on the
value of polynomial coefficients. Four of these roots only exist in the hypercomplex
S1+2 \ S1+1 set.
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1. Introduction

The quadratic equation ax2 + bx+ c = 0, x ∈ H in the quaternion set with real coefficients a, b, c: i)

if 4ac ≤ b2, has real solutions x = 1
2a

(
−b±

√
b2 − 4ac

)
and ii) if 4ac > b2, has an infinite number of

solutions x = −b+ βi+ γj+ δk, with β2 + γ2 + δ2 = 4c− b2 and β, γ, δ ∈ R [1, 2]. In contrast, as we
shall presently see, the quadratic equation with real coefficients in elliptic scator algebra has a finite
number of roots.

Scator numbers are compound numbers that have one scalar component and n director components
in R1+n,

o
φ = f0 +

∑n
j=1 fj ěj , where f0, fj ∈ R for j from 1 to n in N and ěj /∈ R. Scator addition,

performed component-wise, satisfies commutative group properties. Multiplication in elliptic scator
algebra is commutative, possesses an identity element and all elements are invertible if zero is excluded.
Multiplication is not associative if the additive scalar component of any two products vanish [3].
However, the non associative products can be isolated by imposing the appropriate conditions (i.e.
ajbj ̸= a0b0 in (3a)), so that the additive scalar component of the products does not vanish. In
general, scator multiplication is not distributive over addition [4]. Scator algebra has been successfully
applied to several problems: time-space description in a deformed Lorentz metric [5], a wave-function
evolution and collapse unified description in quantum mechanics [3] and three dimensional fractal
structures [6]. Explicit formulae for scator holomorphic functions recently published, will very likely
expand applications to other areas [7].
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1.1. Elliptic Scators

Scator multiplication is defined in the scator set,

S1+n =

 o
φ = f0 +

n∑
j=1

fj ěj , (f0; . . . fj , . . . fn) ∈ R1+n : f0 ̸= 0, if there exists fjfl ̸= 0 for j ̸= l ∈ n

 (1)

where the scalar component must be non-zero if two or more director components are non-zero. In
particular, in 1 + 2 dimensions,

S1+2 =
{

o
φ = f0 + f1 ě1 + f2 ě2, (f0; f1, f2) ∈ R1+2 : f0 ̸= 0, if f1f2 ̸= 0

}
(2)

The S1+1
j scator set is isomorphic to the complex set C for the real component and any one of the j

director components. There are n copies of the complex set embedded in S1+n sharing the real part
(named the scalar component in scator algebra) and having n different hyper-imaginary parts. In this
communication, we shall restrict to scators in 1 + 2 dimensions.

Definition 1.1. The product of two scators
o
α = a0+a1ě1+a2ě2 ∈ S1+2 and

o
β = b0+b1ě1+b2ě2 ∈ S1+2

is defined by:

If a0b0 ̸= 0,

o
α

o

β = a0b0

(
1− a1b1

a0b0

)(
1− a2b2

a0b0

)
+ (a0b0 − a2b2)

(
a1
a0

+
b1
b0

)
ě1 + (a0b0 − a1b1)

(
a2
a0

+
b2
b0

)
ě2 (3a)

If a0 = 0 and b0 ̸= 0,

(a1ě1)
o
β = −a1b1 + b0a1ě1 −

(
a1b1b2
b0

)
ě2 (3b)

(a2ě2)
o
β = −a2b2 + b0a2ě2 −

(
a2b2b1
b0

)
ě1 (3c)

If a0 = b0 = 0,
a1ě1b2ě2 = 0, a1ě1b1ě1 = −a1b1, a2ě2b2ě2 = −a2b2 (3d)

The conjugate of a scator
o
φ = f0 + f1ě1 + f2ě2 ∈ S1+2 is obtained by reversing the sign of all

the director components while leaving the scalar component unaltered,
o
φ
∗
= f0 − f1ě1 − f2ě2. The

magnitude of a scator
∥∥ o
φ
∥∥ ∈ R, is given by the positive square root of the scator times its conjugate

∥∥ o
φ
∥∥2 = o

φ
o
φ
∗
= f2

0

(
1 +

f2
1

f2
0

)(
1 +

f2
2

f2
0

)
(4)

if f0 ̸= 0, and
∥∥ o
φ
∥∥2 = f2

j if f0 = 0.

2.Roots of the Scator Quadratic Polynomial with Real Coefficients

Consider the second order polynomial

a
o
φ
2
+ b

o
φ+ c = 0 (5)

where
o
φ is a scator element and a, b, c ̸= 0 are real numbers. This polynomial cannot be factorized

into
( o
φ− o

r1
)( o
φ− o

r2
)
= 0, since the scator product does not distribute over addition if

o
φ ∈ S1+2 \S1+1.

Furthermore, the product
o
α

o
β = 0 does not imply that

o
α = 0 or

o
β = 0. The product of two scators

o
α,

o
β is zero if their components satisfy the conditions

a0b0 = a1b1 = a2b2 (6)
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as may be seen from direct computation from the product definition (3a). For a given scator
o
α ∈

S1+2 \ S1+1, there always exists
o
β such that (6) is satisfied. Thus, all elements are zero divisors in

the Bourbaki sense [8, p.98]. Nonetheless, it is possible to solve the polynomial equation in the scator
domain without performing a factorization.

Theorem 2.1. The second order polynomial a
o
φ
2
+ b

o
φ+ c = 0, where

o
φ ∈ S1+2 is an elliptic scator

and a, b, c ̸= 0 are real coefficients, has the following roots:

If |4ac| > b2, then

o
φS1+2\S1+1 = −4ac+ b2

4ab
±

√
(4ac)2 − (b2)2

16a2b2
ě1 ±

√
(4ac)2 − (b2)2

16a2b2
ě2 (7a)

If 4ac ≤ b2, then

o
φS1+0 = − b

2a
±

√
b2 − 4ac

2a
(7b)

If 4ac > b2, then

o
φS1+1

1
= − b

2a
±

√
−b2 + 4ac

2a
ě1,

o
φS1+1

2
= − b

2a
±

√
−b2 + 4ac

2a
ě2 (7c)

Proof. Consider the scator
o
φ = f0 + f1ě1 + f2ě2 ∈ S1+2 \ S1+1, with non-vanishing components

f0, f1, f2 ̸= 0. From the product definition (3a), the square of this scator is,

o
φ
2
= f2

0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ 2f0f1

(
1− f2

2

f2
0

)
ě1 + 2f0f2

(
1− f2

1

f2
0

)
ě2

The polynomial (5), is then

a

[
f2
0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ 2f0f1

(
1− f2

2

f2
0

)
ě1 + 2f0f2

(
1− f2

1

f2
0

)
ě2

]
+ b (f0 + f1ě1 + f2ě2) + c = 0 (8)

Grouping components,

af2
0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ bf0+ c+

(
2af0f1

(
1− f2

2

f2
0

)
+ bf1

)
ě1+

(
2af0f2

(
1− f2

1

f2
0

)
+ bf2

)
ě2 = 0

Two scators are equal if and only if all its additive components are equal. In particular, since the zero

scator is 0 =
o
0 = 0 + 0 ě1 + 0 ě2, the scalar component of the polynomial equation is then

af2
0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ bf0 + c = 0 (9a)

whereas the director components equations are

2af0f1

(
1− f2

2

f2
0

)
+ bf1 = 0 (9b)

2af0f2

(
1− f2

1

f2
0

)
+ bf2 = 0 (9c)

Since f1 and f2 are both different from zero, Eq. (9b) can be multiplied by 1
f1

and (9c) by 1
f2
, to

obtain

2af0

(
1− f2

2

f2
0

)
+ b = 0 (10a)

2af0

(
1− f2

1

f2
0

)
+ b = 0 (10b)
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The square of the two director components must then be equal, f2
1 = f2

2 . The term 1 − f2
2

f2
0
can be

written in terms of f0 from (10a) or (10b) , 1− f2
2

f2
0
= − b

2af0
. The scalar component is then

f0 = −
(
c

b
+

b

4a

)
and the director components are

f2 = f1 = ±
√

c2

b2
− b2

16a2

The four hyper-complex roots with non-vanishing director components are then

o
φS1+2\S1+1 = −

(
c

b
+

b

4a

)
±
√

c2

b2
− b2

16a2
ě1 ±

√
c2

b2
− b2

16a2
ě2

These roots can be written in a similar form to the complex solutions as in equation (7a). To es-
tablish the interval where these roots exist, recall that the director coefficients were assumed to
be non zero, thus (4ac)2 ̸=

(
b2
)2
. However, non-vanishing director coefficients also imply the in-

equality (4ac)2 >
(
b2
)2
: Assume (4ac)2 <

(
b2
)2
, since the radicand is negative,

√
(4ac)2 − (b2)2 =√

(b2)2 − (4ac)2
√
−1, where

√
(b2)2 − (4ac)2 ∈ R. The root of minus one is any of the imaginary

director units in scator algebra, let
√
−1 =

√
ě1ě1 = ±ě1. The first director term in (7a) is then√

((b2)2−(4ac)2)
16a2b2

ě1ě1 = −
√

((b2)2−(4ac)2)
16a2b2

∈ R, thus this director term is zero. For the second director

term in (7a),

√
((b2)2−(4ac)2)

16a2b2
ě1ě2 = 0, the director term is again zero. Therefore the two director

coefficients vanish for (4ac)2 <
(
b2
)2
.

If one of the director components is zero, then
o
φ = f0 + f1ě1 ∈ S1+1

1 or
o
φ = f0 + f2ě2 ∈ S1+1

2 .
If f2 = 0, the polynomial (8) is

a
[(
f2
0 − f2

1

)
+ 2f0f1ě1

]
+ b (f0 + f1ě1) + c = 0

and the real and ě1 equations are a
(
f2
0 − f2

1

)
+ bf0 + c = 0, and 2f0f1 + bf1 = 0, respectively.

If f1 ̸= 0, f0 = − b
2a , the solutions if 4ac > b2 are then,

o
φS1+1

1
= f0 + f1ě1 = − b

2a
±

√
−b2 + 4ac

2a
ě1

If 4ac ≤ b2,
√
−b2 + 4ac =

√
b2 − 4ac ě1, and thus

o
φS1+1

1
= − b

2a
∓

√
b2 − 4ac

2a
∈ S1+0

Similarly, if f1 = 0 and 4ac > b2, then

o
φS1+1

2
= f0 + f2ě2 = − b

2a
±

√
−b2 + 4ac

2a
ě2

whereas if 4ac ≤ b2,
√
−b2 + 4ac =

√
b2 − 4ac ě2, thus

o
φS1+1

2
= − b

2a
∓

√
b2 − 4ac

2a
∈ S1+0.

If the solutions are real, S1+0 ∈
(
S1+1
1 ∩ S1+1

2

)
= S1+0 This exhausts all possibilities stated in the

proposition.
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We refer to solutions of the form (7a), as the hypercomplex roots. Notice that the scalar component
of the solution is zero for the hypercomplex roots (7a) if 4ac = −b2, but then the two director

components are also zero. Thus,
o
φS1+2\S1+1 ∈ S1+2. However, the hypercomplex roots are not a

solution if 4ac = −b2, the only solution is then given by the
o
φS1+0 real root.

o
φ is always in the S1+2

set, where the scator product is defined. Note that two of the conditions |4ac| > b2, 4ac ≤ b2 and
4ac > b2 can be met simultaneously depending on the values of a, b and c, so that the hypercomplex
roots can coexist with the real or complex roots.

In order to establish the interval where the hypercomplex roots (7a) exist,
√
−1 was written as

ě1 in the Theorem’s proof. It could have equally been written as ě2, then the product with ě1
vanishes. As far as the proof is concerned, in both cases, the director component is zero, so no
problems arise. However, the two results are not equal, i.e. −1 · ě1 = (ě1ě1) ě1 = −ě1, whereas
−1 · ě1 = (ě2ě2) ě1 ̸= ě2 (ě2ě1) = 0. The reason being that associativity does not hold when the
product of two factors have zero scalar component, as is the case for (ě2ě1) = 0.

It is reassuring to confirm that the solutions satisfy the polynomial equation. The real and complex
like expressions are the familiar solutions. Let us evaluate the entirely novel hypercomplex solution
(7a). The squared term for equal director components, from (3a) is

o
φ
2
= f2

0

(
1− f2

1

f2
0

)2

+ 2f0f1

(
1− f2

1

f2
0

)
ě1 + 2f0f1

(
1− f2

1

f2
0

)
ě2 (11)

Evaluation of f0, f1 and f2 from (7a), noting that f0

(
1− f2

1

f2
0

)
= − b

2a , after some algebra gives,

o
φ
2

S1+2\S1+1 =
b2

4a2
∓ b

a

√
(4ac)2 − (b2)2

16a2b2
ě1 ∓

b

a

√
(4ac)2 − (b2)2

16a2b2
ě2

The sum of a times this expression plus b
o
φS1+2\S1+1 + c, confirms that the quadratic polynomial

equation (5) is satisfied.

3.Geometric Representation of the Scator Roots in 1+2 Space

If 4ac ≤ b2 and |4ac| > b2, there exist six roots: i) two real roots and ii) four hypercomplex roots.
The initial conditions imply that 4ac is negative, 4ac + b2 < 0. Recalling that the hypercomplex
scalar component is −4ac+b2

4ab , these hypercomplex roots always lie in the real positive semispace if the
product a b is positive and in the real negative semispace if a b is negative. These roots are depicted in

Figure 1, for a = 1, b = 1, c = −1. The two real roots (drawn in blue) are
o
φS1+0 = −1

2 ±
√
5
2 , whereas

the four hypercomplex roots (drawn in orange) are
o
φS1+2\S1+1 = 3

4 ±
√
15
4 ě1 ±

√
15
4 ě2. It is interesting

to notice that the hypercomplex roots coexist with real roots in this region.
If 4ac > b2, there are eight roots because conditions |4ac| > b2 and 4ac > b2 in Theorem 2.1

are met: i) two in the s, ě1 plane (the scalar axis is hereafter labeled s) and ii) two in the s, ě2
plane, corresponding to the complex roots in C, but the imaginary parts are now the orthogonal
ě1, ě2 imaginary units. iii) four hypercomplex roots that lie in the negative s semispace if a b is
positive and in the real positive s semispace if a b is negative. These roots are shown in Figure 1, for

a = 1, b = 1, c = 1. The complex akin roots are
o
φS1+1

1
= −1

2 ±
√
3
2 ě1 (green) and

o
φS1+1

2
= −1

2 ±
√
3
2 ě2

(brown). The hypercomplex roots are
o
φS1+2\S1+1 = −5

4 ±
√
15
4 ě1 ±

√
15
4 ě2 (drawn in red).

In the interval −b2 < 4ac ≤ b2, only the two real roots exist; these roots collapse to the same − b
2a

value when 4ac = b2. The regions where the different roots coexist are illustrated in Figure 2. Since
the hypercomplex roots have directors with equal square components f2

1 = f2
2 , the hypercomplex roots

always lie in planes at 45° with respect to the ě1, ě2 axes. Let the function
o
f(a, b, c) = a

o
φ
2
+ b

o
φ+ c.

The values of
o
φ where

o
f(a, b, c) is zero as a function of c, for constant a, b are shown in Figure 3. The

possible values for the real, complex like and hypercomplex roots are shown in different colors. The
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Fig. 1. Roots of the scator quadratic polynomial. Left: 4ac ≤ b2 and |4ac| > b2 with a = 1, b =
1, c = −1. Hypercomplex roots in orange; real roots in blue. Right: 4ac > b2 with a = 1, b = 1, c = 1.
Hypercomplex roots in red; complex like roots in the s, ě1 plane in green and in the s, ě2 plane in
brown.

Fig. 2. The scator quadratic equation with real coefficients has six, two or eight roots, depending on
the value of 4ac.

complex like roots (in green) have constant scalar component since the real (or scalar) part does not
depend on c. There are however, two perpendicular branches, one for each hypercomplex direction
ě1 or ě2. The hypercomplex roots with two nonvanishing director components, have been drawn in
orange when they coexist with the real (blue) solutions and in red, when they coexist with the complex
(green) solutions.

Lemma 3.1. Given a hypercomplex solution
o
φS1+2\S1+1 = f0+f1ě1+f2ě2 to the quadratic polynomial

equation with real coefficients a
o
φ
2
+ b

o
φ + c = 0, the scators

o
φS1+2\S1+1 = f0 ± f1ě1 ± f2ě2 are also

solutions to this equation.

Proof. The solution
o
φS1+2\S1+1 = f0−f1ě1−f2ě2 can be obtained following the usual complex proof

of the conjugate polynomial equation. To prove that the sign of any one director can be changed,
consider one such component. The ě1 component of the squared scator can only cancel out with the
ě1 component of the linear scator term since the polynomial coefficients are real, thus

a · 2f0f1
(
1− f2

1

f2
0

)
ě1 = bf1ě1 ⇒ 2f0

(
1− f2

1

f2
0

)
=

b

a

If this result is satisfied for f1 it also holds for−f1. A similar argument is true for the ě2 component.
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Fig. 3. Image of the polynomial roots for a = b = 1 with c as a parameter in the ±2 interval in each

axis,
o
f(1, 1, c) =

o
φ
2
+

o
φ+ c. Real solutions in blue, complex like solutions in green and hypercomplex

solutions for 4ac > 0 in red and 4ac < 0 in orange. Roots for c = 1 (red and green dots) and c = −1
(blue and orange dots)

The hypercomplex roots clearly have the same magnitude (4), since
∥∥ o
φ
∥∥ depends only on the

square of the scator coefficients. The magnitude of the hypercomplex roots (7a), noticing that the

squared ratio of director over scalar components is
f2
1

f2
0
= 4ac−b2

4ac+b2
, is given by∥∥∥ o

φS1+2\S1+1

∥∥∥ = 2
∣∣∣c
b

∣∣∣ (12)

The solutions as a function of a, depicted in figure 4, lie in an isometric surface since the above
equation is independent of a. The elliptic scators isometric surface, named a cusphere, is illustrated
in Figs. 5 and 6 in [9]. The teal curves in figure 4, are scator isometric ellipses lying on one of the two
planes at ±45° with respect to the ě1, ě2 director axes. The projection of these ellipses in the s, ě1
and s, ě2 planes are actually circles with unit radius centered at −1, as we shall now see.

Consider the change of variable u = 1
4a , the hypercomplex solutions (7a), can then be written as

o
φS1+2\S1+1 = −c

b
− bu±

√
c2

b2
− b2u2 ě1 ±

√
c2

b2
− b2u2 ě2 (13)

Let c and b be constants. The above expression is then recognized as the parametric representation
of the circle equation x2 + y2 = c2

b2
, shifted by c

b in the negative scalar axis, where x = −bu and

y =
√

c2

b2
− b2u2 is the director coefficient in the ě1 or the ě2 axes. These circle projections in the

s, ě1 and s, ě2 planes, exclude the points when the circles cross the scalar axis, i.e. c2 = b4u2. If b and
u are considered constant, a parametric representation of the hyperbolic equation x2 − y2 = b2u2, is
obtained, this time shifted by −bu in the scalar axis, where x = − c

b and y is the director coefficient
in either axis. These curves are plotted in red in figure 4, the asymptotes lie at ±45° in the s, ě1 or
s, ě2 planes. The vertices are located at 0 and −2bu = − b

2a , but these two points are not solutions to
o
φS1+2\S1+1 , since

∣∣ c
u

∣∣ = |4ac| must be greater than b2. If c and u are constant, the parametric equation
(13) as a function of b, is no longer a conic curve.

The limit of the hypercomplex, real and complex like roots when 4ac → b2 is the same,

lim
4ac→b2

(
o
φsol S1+2\S1+1

)
= lim

4ac→b2

(
o
φsol S1+0

)
= lim

4ac→b2

o
φsol S1+1

1,2
= − b

2a

Hypercomplex (red), real (blue) and complex like (green) curves approach − b
2a = −1

2 in the Figure 3.
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Fig. 4. Hypercomplex roots of the scator function,
o
f(a, b, c) = a

o
φ
2
+ b

o
φ + c for |4ac| > b2 in the

±2 interval in each direction. a = b = 1 with c as a parameter in red (red and orange in figure 3);
a = c = 1 with b as a parameter in green; b = c = 1 with a as a parameter in teal. All curves lie in
planes that are at ±45° with respect to the ě1, ě2 axes.

The limit of the hypercomplex and real roots when 4ac → −b2 are

lim
4ac→−b2

(
o
φsol S1+2\S1+1

)
= 0 and lim

4ac→−b2

(
o
φsol S1+0

)
= − b

2a

(
1±

√
2
)

However, it should be noted that the hypercomplex root function domain excludes 4ac = −b2, so
that 0 is not a root of the polynomial. In Figure 3, the hypercomplex curve (orange) does not intersect
the real curve (blue) at zero. However, as 4ac approaches −b2 from the negative real axis, all three
hypercomplex scator coefficients become infinitesimal. Nonetheless, from (12), the magnitude of the

scator in this limit is lim
4ac→−b2

∥∥∥ o
φS1+2\S1+1

∥∥∥ = 2
∣∣ c
b

∣∣ = ∣∣ b
2a

∣∣.
3.1. Roots of Minus One

The square roots of minus one have been studied in quaternions [10,11], complexified quaternions [12],
split quaternions [13] and more generally in Clifford algebras [14]. In scator algebra, the hypercomplex
roots tend to infinity as b tends to zero, the green curves in Figure 4 are then asymptotic to ±45°
lines. If b2 ≪ |4ac|, the binomial expansion of the roots to first non-vanishing order is

o
φS1+2\S1+1 ≈ −c

b
(1 + δ)± c

b

(
1− 1

2
δ2
)
ě1 ±

c

b

(
1− 1

2
δ2
)
ě2

where δ = b2

4ac . In the limit when b → 0, each component diverges so that the solution diverges. The

hypercomplex solutions in this limit become
o
φS1+2\S1+1 = − c

b ± c
b ě1 ± c

b ě2, but recall that scators
whose three components have equal absolute value are square nilpotent [6, Lemma 1]. This result
can also be readily seen from (11), for f0 = f1 = f2. The quadratic polynomial leading term is thus

zero a · o
φ
2

S1+2\S1+1 = 0, and the polynomial equation becomes b
o
φ + c = 0. However, no scator in

S1+2 \ S1+1 satisfies this equation since b, c are real. Therefore, there are no hypercomplex square
roots in S1+2 \ S1+1 of a real number, be it positive or negative. If b = 0, then the only possible
polynomial roots are

o
φS1+1

1
= ±

√
c

a
ě1,

o
φS1+1

2
±
√

c

a
ě2, if ac > 0

For a = c, the roots of −1 in S1+2 are thus ±ě1 and ±ě2.
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4. Conclusions

The quadratic polynomial ax2 + bx + c = 0, x =
o
φ ∈ S1+2 in the imaginary scator set with real

coefficients a, b, c, has a finite number of roots. In sharp contrast, an infinite number of roots to the
quadratic equation are encountered in quaternions and more generally in Clifford algebras. In the
S1+2 scator set:

� If 4ac > b2, there exist eight roots in three sets,
o
φS1+1

1
= − b

2a ±
√
−b2+4ac

2a ě1 and
o
φS1+1

2
=

− b
2a ±

√
−b2+4ac

2a ě2 give two sets of two roots that are akin to the complex roots but the hy-

perimaginary units are now ě1 and ě2 instead of i. Four hypercomplex roots
o
φS1+2\S1+1 =

−4ac+b2

4ab ±
√

(4ac)2−(b2)2

16a2b2
ě1 ±

√
(4ac)2−(b2)2

16a2b2
ě2, that involve non zero components in both hyper-

complex axes.

� If |4ac| ≤ b2 there exist two real roots,
o
φS1+0 = − b

2a ±
√
b2−4ac
2a identical to the roots in the real

set.

� If 4ac < b2 and |4ac| > b2, there exist six roots in two sets, two real roots
o
φS1+0 and four

hypercomplex roots
o
φS1+2\S1+1 .

Hypercomplex roots always come in sets of four in S1+2, in as much as complex roots come in sets
of two in C. Hypercomplex roots coexist with the real or complex like roots, in contrast with roots
in the complex set, where the roots are either real xor complex. If b, the polynomial linear coefficient
vanishes, the hypercomplex roots become square nilpotent so that the only roots of minus one are ±ě1
and ±ě2. Arbitrary integer powers of scators and nilpotent elements are discussed in [15]. The S1+2

scator roots can be visualized geometrically in a three dimensional space, where the scalar (real) axis
and the two hypercomplex axes are drawn in orthogonal directions.
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