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An Analogue of Thébault’s Theorem Linking
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Insphere and the Monge Point of a
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ABSTRACT

In 1953, Victor Thébault conjectured a link between the altitudes of a tetrahedron and the radical
center of the four spheres with the centers at the vertices of this tetrahedron and the corresponding
tetrahedron altitudes as radii. This conjecture was proved in 2015. In this paper, we propose an
analogue of Thébault’s theorem. We establish a link between the radical center of the four spheres,
the insphere, and the Monge point of a tetrahedron.
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1. Introduction

The famous French problemist Victor Thébault (1882 —1960) conjectured the following geometric fact linking
the radical center of four spheres with other elements of a tetrahedron. Let AA’, BB’, CC’, DD’ be the altitudes
of a tetrahedron ABCD with feet A’, B/, C’, and D’, respectively. Let P be the radical center of the spheres
with centers A, B, C, D and radii AA’, BB’, CC’, and DD’, respectively. Then each plane passing through the
midpoint of the segment B'C’, C'A’, A'B’, D'A’, D' B’ or D'C" perpendicular to the segment BC, CA, AB, DA,
DB or DC, respectively, contains the point P [5, 6]. This hypothesis was proved in 2015 in [3]. We found a fact
that is similar to the result of Thébaultt, but now linking the radical center of four spheres with the insphere
and the Monge point of a tetrahedron. To avoid ambiguities, we give here the following definitions.

Let T be a tetrahedron in the Euclidean space E®. A sphere that touches four faces of the tetrahedron T is
called the insphere of T. There are six planes, each of which passes through the midpoint of the edge of the
tetrahedron T perpendicular to its opposite edge. These six planes have a common point, which is called the
Monge point of T' [4, 7, 8].

The power of a point P with respect to a sphere w with a center O and radius R is the number

Pow(w, P) = |OP)* — R*.

Let w1, wa, w3, and w4 be spheres with noncomplanar centers in E3. There exists an unique point that has the
same power with respect to each of these spheres. This point is called the radical center of the spheres w1, wa, ws,
and wy [2, 1].
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Figure 1. The contact points A’, B’, C’, and D’ of the insphere w with the tetrahedron ABC D, the sphere wy,, and the points I, M, P.

2. The main theorem

Theorem 2.1. Let w be the insphere of a tetrahedron ABC D. Assume that w has the center at a point I and touches the
faces (BCD), (CDA), (DAB), and (ABC) at points A’, B', C', and D', respectively. Denote a sphere with the center A,
B, C or D and radius AA’, BB', CC' or, respectively, DD’ by w,, wy, we 0F wgq, respectively. Let M be the Monge point
of the tetrahedron A'B'C'D’, and let P be the reflection of I with respect to M. Then point P is the radical center of the
spheres wy, Wy, We, And wy.

Proof. We provide an analytical proof of the theorem by depicting the considered elements of the tetrahedron
ABCD in Figure 1.

Let us introduce a Cartesian coordinate system in the space E? putting the origin to the point I and selecting
the radius I A’ of the insphere w as a unit segment of the first coordinate axis. Assume that the coordinate plane
(xy) contains the point B’. Using the spherical coordinates for the insphere w (see, for instance, formulae (8),
(9), (10) in [9]), we find the following coordinates of the considered points

1(0,0,0), A’ (1,0,0), B’ (a,a’,0), C' (be,cb', "), D' (de,ed’ €', (2.1)

where for the real numbers a, b, ¢, d, e, d, V', ¢/, d’, and €’ from the segment [—1, 1] the following conditions hold

ad =vV1—a? b =+1-02c=v1-c2d=+1-d% e =+/1—¢e2

The plane, which is orthogonal to the segment C'D’ and passes through the midpoint of the segment A'B’,
has the equation

a' (ed —cb') + (de —be) (a+ 1)

(de —bc)x + (ed — b )y + (¢! — ')z — 5

=0. (2.2)

The plane, which is orthogonal to the segment B'D’ and passes through the midpoint of the segment A’C’,
is given by the equation
(be+1)(a—de)— e —cb (ed —a')
2

(de —a)x+ (ed —a')y+ (¢') z + =0. (2.3)

And finally, the plane, which is orthogonal to the segment A’D" and contains the midpoint of the segment
B’C’, has the equation

(de—1)(a+bc)+ e +e(a +cb)d
2
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Solving the system of Egs. (2.2), (2.3), and (2.4), we find the coordinates of the Monge point M of the
tetrahedron ABCD:

v <a+de+bc+1 ed +cb +d c’+e’> .
2 ’ 2 T2
The point P, which is the reflection of I with respect to M, has the coordinates
Pla+de+bc+1,ed +a +cb,d +¢). (2.5)

The planes containing faces of the tetrahedron ABCD are defined by the following conditions

(BCD)LIA', A' € (BCD), (CDA)LIB', B € (CDA),

(DAB)LIC’, C' € (DAB), (ABC)LID', D' € (BCD).
From these conditions we find the equations of the planes (BCD), (CDA), (DAB), and (ABC), respectively:

r—1=0, (2.6)

ax +ady—1=0, 2.7)
bex +cb'y+cz—1=0, (2.8)
dex +edy+ez—1=0. (2.9)

Point C is the intersection of the planes (BCD), (CDA), and (ABC). Thus, solving the system of Egs. (2.6),
(2.7), and (2.9), we obtain the coordinates of the point C:

. B ’ ’ ’
C’(l,a /1, dea’ + ed'a — ed +a>' (2.10)
a

ea’

From the system of Egs. (2.6), (2.7), and (2.8), we obtain the coordinates of the point D:

. g ISR ’
D<1’a /1’ bea’ + cb'a — cb +a>. 2.11)
a

ca’

Using the points coordinates from (2.1), (2.5), (2.10), and (2.11), we find the power of P with respect to spheres
wq and w,, respectively:

Pow(wq, P) = d*(P,D) — d*(D', D) = (a4 de + bc + 1 — 1)°

—1)2 (, , —bca’+cb’a—cb’+a’>2
+lc+e —

—|—<ed’+a’—|—cb/—|—a

a' ca
2 2
—(de —1)" — <ed' + 1> - <e’ S AL LML al)
a ca
= 2a + 2de + 2ce’ + 2bc + 2ea’d’ + 2ade + 2ca’t’ + 2abe + 2ceb’d’ + 2bede — 3. (2.12)

Pow(w,, P) = d*(P,C) — d*(C",C) = (a4 de + bc+ 1 —1)°
2 2
-1 —dea’ da — ed /
+<ed’+a’+cb’+a ; > +(c’+e’— ea —i—e/a/ e +a>
a ea

2 2
-1 _ / /. / /
_(bc—1)2_<cb/+aa/> _(c/_ dea’ +ed'a — ed _;’_a)

e'a’
= 2a + 2de + 2c'€’ + 2bc + 2ea’d’ + 2ade + 2ca’b’ + 2abc + 2ceb’d’ + 2bede — 3. (2.13)

Expressions (2.12), (2.13) yield the equality Pow(wq, P) = Pow(w., P). Taking into account that the vertices of
the tetrahedron ABCD in the proof of this fact are chosen arbitrarily, we conclude that the power of the point
P with respect to each of spheres w,, wp, w., and wq has the same value.

This completes the theorem proof. O
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3. Conclusion

The content of this paper deal with objects in the three-dimensional Euclidean space. Nevertheless, we
believe that similar results for simplexes also exist in the Euclidean space E" of any dimension n. The concept
of Monge point in a simplex can be defined as follows.

Let F be a simplex in the space E". All hyperplanes, each of which passes through the centroid of a (n — 2)-
face of I and perpendicular to the opposite edge of this face, have a common point. This point is called the
Monge point of the simplex F' [4].

We present the following conjecture.

Conjecture. Let w be the insphere of a simplex Ay A; . .. A,, in the space E". Denote the centre of w by I, and for i = 0,n,
denote the tangency point of w with the face (AoA1 ... Ai—1Ai+1 ... Ay) by B;. Let w; be the sphere with the center A;
and radius A; B;, and let M be the Monge point of simplex BB ... By,. Then the radical center of all spheres w; lies on
the line IM.
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