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Abstract − The objective of our work is to couple the Elzaki transform method and the local

fractional derivative which is called local fractional Elzaki transform, where we have provided im-

portant results of this transformation as local fractional Laplace-Elzaki duality, Elzaki transform of

the local fractional derivative and the local fractional integral and the local fractional convolution,

also we have presented the properties of some special functions with the local fractional derivative

sense. The Elzaki transform was applied to solve some linear local fractional differential equations

in order to obtain non-differentiable analytical solutions. The results of the solved examples show

the effectiveness of the proposed method.

Subject Classification (2020): 44A05, 44A20.

1. Introduction

The integral transformations play a crucial role in the resolution of ordinary differential equations, partial

differential equations and in the resolution of integral differential equations with integer order or fractional

order. They are also widely used by engineers to solve the linear differential equations, the systems of linear

partial differential equation, and determine the transfer function of a linear system.

The Laplace transform method [1], the Fourier transform method [2], the Hankel transform method [3],

and the Mellin transform method [4] are among the most well-known transformations. Other transforma-

tions that have recently appeared include for example the Sumudu transform method [5], the Natural trans-

form method [6], the Elzaki transform method [7–10], the Aboodh transform method [11], the ZZ-transform

method [12], the Shehu transform method [13], and others.

Tarig M. Elzaki et al. developed the Elzaki transform method in 2011 from the classical Fourier integral [7],

based on the Elzaki transform’s mathematical simplicity and fundamental features. This transform has been

used by many researchers to facilitate the process of solving the ordinary differential equations without

and with variable coefficients [14–17], the higher order differential equations [18], the integro-differential
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equations [19–22] and to the partial differential equations [23–27] in the time domain. Several works have

been made by using the Elzaki transform method and its combination with other methods to solve the linear

and nonlinear differential equations with the concept of fractional operator, for example the fractional order

differential equation arising in RLC electrical circuit, the fractional Porous Medium equation, the fractional

higher dimensional initial boundary value problems [28–32].

In this work, we will based on the notion of local fractional operator by presented some important results

and properties of the local fractional Elzaki transform and we will extend and applied it to solve the linear

differential equations with local fractional derivative. We supported our work, with illustrative examples

showing how to apply this transformation to the differential equations on Cantor sets.

2. Basic of local fractional calculus

We present the basic definitions and theorems of local fractional derivative, local fractional integral, local

fractional Taylor’s series and local fractional Laplace transform method.

Definition 2.1. [33–35] Let f (x) ∈Cσ(a,b), so

∣∣ f (x)− f (x0)
∣∣< εσ, 0 <σ6 1, (2.1)

with |x −x0| < δ, for ε,δ ∈R∗+. f (x) is local fractional continuous.

Definition 2.2. [33–35] The local fractional derivative of f (x) of order σ at x = x0 is

f (σ)(x) = dσ f

d xσ

∣∣∣∣
x=x0

= lim
x→x0

∆σ( f (x)− f (x0))

(x −x0)σ
, 0 <σ6 1, (2.2)

where

∆σ( f (x)− f (x0)) ∼= Γ(1+σ)
[
( f (x)− f (x0))

]
. (2.3)

The local fractional partial differential operator of order σ was given by

∂σw(x0, t )

∂tσ
= lim

x→x0

∆σ(w(x0, t )−w(x0, t0))

(t − t0)σ
, (2.4)

where

∆σ(u(x0, t )−u(x0, t0)) ∼= Γ(1+σ) [u(x0, t )−u(x0, t0))] . (2.5)

Definition 2.3. [33–35] The local fractional integral of f (x) of order σ is

a I (σ)
b f (x) = 1

Γ(1+σ)

b∫
a

f (t )(d t )σ

= 1

Γ(1+σ)
lim
∆t−→0

N−1∑
j=0

f (t j )(∆t j )σ, (2.6)

where ∆t j = t j+1 − t j , ∆t = max{∆t0, ∆t1, ∆t2, · · · } and
[
t j , t j+1

]
, t0 = a, tN = b, is a partition of the interval

[a,b].
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Definition 2.4. [35–37] The local fractional Laplace transform of f (x) of order σ is given by

Lσ
{

f (x)
}= Fσ(s) = 1

Γ(1+σ)

∫ ∞

0
Eσ(−sσxσ) f (x)(d x)σ. (2.7)

If LF Lσ
{

f (x)
}= Fσ(s), so the inverse formula of (2.7) is

f (x) = L−1
σ {Fσ(s)} = 1

(2π)σ

∫ β+i∞

β−i∞
Eσ(sσxσ)Fσ(s)(d s)σ, (2.8)

sσ =βσ+ iσ∞σ, iσ is the fractal imaginary unit and Re(s) =β> 0.

Theorem 2.5. [34] If Lσ
{

f (x)
}= Fσ(s), then one has

Lσ
{

f (σ)(x)
}= sσLσ

{
f (x)

}− f (0). (2.9)

Proof.

see [34]

Theorem 2.6. [34] If Lσ
{

f (x)
}= Fσ(s), so

Lσ
{

0Iσx f (x)
}= 1

sσ
Lσ

{
f (x)

}
. (2.10)

Proof.

see [34]

Theorem 2.7. [34] If Lσ
{

f (x)
}= Fσ(s) and Lσ

{
g (x)

}=Gσ(s), then one has

Lσ
{

f (x)∗ g (x)
}= Fσ(z)Gσ(z), (2.11)

where

f (x)∗ g (x) = 1

Γ(1+σ)

∫ ∞

0
f (t )g (x − t )(d t )σ. (2.12)

Proof.

see [34]

Theorem 2.8. [38] Let f (x) ∈Cσ[a,b], so there is a function

Π(x) = a I (σ)
x f (x),

its derivative with respect to (d x)ρ is

dσΠ(x)

(d x)σ
= f (x), a 6 x 6 b.

Proof.

see [38]
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3. Main Result

Now, we present the local fractional Elzaki transform method (LF ET ) and some properties are discussed. If

there is a new transform operator LF Eσ : f (x) −→ Tσ(v), namely

LF Eσ
{

f (x)
}= LF Eσ

{ ∞∑
k=0

ak xkσ

}
=

∞∑
k=0

Γ (1+kσ) ak vkσ+2σ. (3.1)

For example if f (x) = Eσ(iσxσ), we obtain

LF Eσ
{
Eσ(iσxσ)

} = LF Eσ

{ ∞∑
k=0

i kσxkσ

Γ(1+kσ)

}
(3.2)

=
∞∑

k=0
i kσvkσ+2σ, (3.3)

and if f (x) = xσ

Γ(1+σ) , we get

LF Eσ

{
xσ

Γ (1+σ)

}
= v3σ. (3.4)

These results can be generalized by this definition.

Definition 3.1. The local fractional Elzaki transform of f (x) of order σ is defined as

LF Eσ
{

f (x)
}= Tσ(v) = 1

Γ(1+σ)
vσ

∫ ∞

0
Eσ(−xσ

vσ
) f (x)(d x)σ, 0 <σ6 1. (3.5)

The inverse transformation can be obtained as follows

LF E−1
σ { Tσ(v)} = f (x). (3.6)

Theorem 3.2. (linearity).

If LF Eσ
{

f (x)
}= Fσ(v) and LF Eσ

{
g (x)

}=Gσ(v), then one has

LF Eσ
{
λ f (x)+µg (x)

}=λFσ(v)+µGσ(v), (3.7)

where λ and µ are constant.

Proof.

Using formula (3.5), we obtain
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LF Eσ
{
λ f (x)+µg (x)

} = vσ

Γ(1+σ)

∫ ∞

0
Eσ(−xσ

vσ
)
{
λ f (x)+µg (x)

}
(d x)σ

= vσ

Γ(1+σ)

∫ ∞

0

[
Eσ(−xσ

vσ
)
(
λ f (x)

)+Eσ(−xσ

vσ
)
(
µg (x)

)]
(d x)σ

= λ
vσ

Γ(1+σ)

∫ ∞

0
Eσ(−xσ

vσ
) f (x)(d x)σ+µ vσ

Γ(1+σ)

∫ ∞

0
Eσ(−xσ

vσ
)g (x)(d x)σ

= λLF Eσ
{

f (x)
}+ µLF Eσ

{
g (x)

}
.

This ends the proof.

Theorem 3.3. (local fractional Elzaki-Laplace and Laplace-Elzaki duality).

If Lσ
{

f (x)
}= Fσ(s) and LF Eσ

{
g (x)

}= Tσ(v), then one has

LF Eσ
{

f (x)
}= vσFσ

(
1

v

)
. (3.8)

Lσ
{

f (x)
}= sσTσ(

1

s
). (3.9)

Proof.

We show the formula (3.8). Using the formula (3.5) gives

LF Eσ
{

f (x)
} = vσ

1

Γ(1+α)

∫ ∞

0
Eσ

(
−xσ

vσ

)
f (x)(d x)σ

= vσ
1

Γ(1+σ)

∫ ∞

0
Eσ

(
−

(
1

v

)σ
xσ

)
f (x)(d x)σ

= vσFσ

(
1

v

)
.

Proof of the formula (3.9). We have

Tσ (v) = vσFσ

(
1

v

)
.

By substituting v = 1
s , we obtain

Tσ

(
1

s

)
= 1

sσ
Fσ (s) ,

then

Fσ (s) = sσTσ

(
1

s

)
,

therefore, we get

Lσ
{

f (x)
}= sσTσ

(
1

s

)
.

This ends the proof.
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Theorem 3.4. (Elzaki transform of local fractional derivative).

If LF Eσ
{

f (x)
}= Tσ(v), so

LF Eσ
{
Dσ

0+ f (x)
}= 1

vσ
Tσ(v)− vσ f (0), 0 <σ6 1, (3.10)

and

LF Eσ
{
Dnσ

0+ f (x)
}= 1

vnσTσ(v)−
n−1∑
k=0

v (k−n+2)σ f (kσ)(0), 0 <σ6 1. (3.11)

Proof.

We proof the formula (3.10). Using the formula (3.8) and the integration by parts [41], we get the follow-

ing

LF Eσ
{

f (σ)(x)
} = vσFσ

(
1

v

)
= vσ

Γ(1+σ)

∫ ∞

0
Eσ(−xσ

vσ
) f (σ)(x)(d x)σ

= vσ

Γ(1+σ)

([−Γ(1+σ) f (0)
]+ 1

vσ
lim

t−→∞

∫ t

0
Eσ(−xσ

vσ
) f (x)(d x)σ

)
= −vσ f (0)+ 1

vσ

(
vσ

Γ(1+σ)

∫ ∞

0
Eσ(−xσ

vσ
) f (x)(d x)σ

)
= 1

vσ
Tσ(v)− vσ f (0).

To demonstrate the validity of (3.11), we use the mathematical induction.

If n = 1 and according to (3.11), we have

LF Eσ
{
Dσ

0+ f (x)
}= 1

vσ
Tσ(v)− vσ f (0),

so, according to (3.10), we note that the formula holds when n = 1.

Assume inductively that the formula holds for n, we get

LF Eσ
{
Dnσ

0+ f (x)
}= 1

vnσTσ(v)−
n−1∑
k=0

v (k−n+2)σ f (kσ)(0). (3.12)

It remains to show that (3.11) is true for n + 1. Let Dnσ
0+ f (x) = g (x) and according to (3.10) and (3.12), we

have

LF Eσ
[

D (n+1)σ
0+ f (x)

]
= LF Eσ

[
Dσ

0+g (x)
]= 1

vσ
Gσ(v)− vσg (0)

= 1

vσ

[
1

vnσTσ(v)−
n−1∑
k=0

v (k−n+2)σ f (kσ)(0)

]
− vσg (0)

= 1

v (n+1)σ
Tσ(v)−

n−1∑
k=0

v (k−n+1)σ f (kσ)(0)− vσ f (nσ)(x)

= 1

v (n+1)σ
Tσ(v)−

n∑
k=0

v (k−n+1)σ f (kσ)(0).
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Therefore the formula (3.11) is true for n +1. Thus by the principle of mathematical induction, for all n > 1

the formula (3.11) holds.

Theorem 3.5. (Elzaki transform of local fractional integral ).

If LF Eσ
{

f (x)
}= Tσ(v), so

LF Eα
{

0I (σ)
x f (x)

}= vσTσ(v). (3.13)

Proof.

Let H(x) = 0I (σ)
x f (x). According to the (theorem 3.2.9, [38]), we get

Dσ
0+H(x) = f (x), (3.14)

and H(0) = 0.

Taking the local fractional Elzaki transform on both sides of (3.14), we have

LF Eσ
{
Dσ

0+H(x)
}= LF Eσ

{
f (x)

}
.

Which give

1

vσ
LF Eσ {H(x)} = Tσ(v),

because H(0) = 0, and LF Eσ
{

f (x)
}= Tσ(v).

Thus we get

LF Eσ
{

0I (σ)
x f (x)

}= vσTσ(v).

Theorem 3.6. (local fractional convolution).

If LF Eσ
{

f (x)
}= Tσ(v) and LF Eσ

{
g (x)

}=Gσ(v),

then one has

LF Eσ
{(

f (x)∗ g (x)
)
σ

}= 1

vσ
Tσ(v)Gσ(v), (3.15)

where

(
f (x)∗ g (x)

)
σ = 1

Γ(1+σ)

∫ ∞

0
f (θ)g (r −θ)(dr )σ.
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Proof.

The Laplace transform of fractional order of the function
(

f (x)∗ g (x)
)
σ is

Lσ
{(

f (x)∗ g (x)
)
σ

}= Lσ
{

f (x)}Lσ{g (x)
}

.

Using the formula (3.8) gives

LF Eσ
{(

f (x)∗ g (x)
)
σ

} = vσLσ{ f (x)∗ g (x)}

= vσLσ{ f (x)}Lσ{g (x)}

= 1

vσ
(
vσLσ{ f (x)}vσLσ{g (x)}

)
= 1

vσ
Tσ(v)Gσ(v).

This completes the proof.

3.1. Local fractional Elzaki transform of somes special functions

In the all following results, we relied on the formula (3.5), and some of the results found in the references

[39–41].

1) If f (x) = 1, we get

LF Eσ {1} = 1

Γ(1+σ)
vσ

∫ ∞

0
Eσ

(
−xσ

νσ

)
(d x)σ

= vσ lim
t−→∞

[
−vσEσ

(
−xσ

νσ

)]t

0

= v2σ.

2) If f (x) = xσ

Γ(1+σ) (0 <σ6 1), by using the integration by parts [41], we obtain the following

LF Eσ

{
xσ

Γ(1+σ)

}
= 1

Γ(1+σ)
vσ

∫ ∞

0
Eσ

(
−xσ

νσ

)
xσ

Γ(1+σ)
(d x)σ

= vσ

Γ(1+σ)
lim

t−→∞

(∫ t

0

(
−vσEσ

(
−xσ

νσ

))(σ) xσ

Γ(1+σ)
(d x)σ

)

= vσ lim
t−→∞

([
−vσEσ

(
−xσ

νσ

)
xσ

Γ(1+σ)

]t

0
+ vσ

Γ(1+σ)

∫ t

0
Eσ

(
−xσ

νσ

)
(d x)σ

)
= lim

t−→∞

(
v2σ

[
−vσEσ

(
−xσ

νσ

)]t

0

)
.

Because limt−→∞
[
−vσEσ

(
− xσ

νσ

)
xσ

Γ(1+σ)

]t

0
= 0.
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Therefore,

LF Eσ

{
xσ

Γ(1+σ)

}
= lim

t−→∞

(
v2σ

[
−vσEσ

(
−xσ

νσ

)]t

0

)
= v3σ.

3) If f (x) = Eσ ((ax)σ) , using the formula (3.5) gives

LF Eσ
{
Eσ

(
(ax)σ

)} = vσ

Γ(1+σ)

∫ ∞

0
Eσ(−xσ

vσ
)Eσ

(
(ax)σ

)
(d x)σ

= vσ

Γ(1+σ)

∫ ∞

0
Eσ

(
−1− (av)σ

vσ
xσ

)
(d x)σ

= vσ lim
t−→∞

[ −vσ

1− (av)σ
Eσ

(
−1− (av)σ

vσ
xσ

)]t

0

= v2σ

1− (av)σ
.

4) If f (x) = xσ

Γ(1+σ) Eσ ((ax)σ) , by using the definition, and the integration by parts [41], we have

LF Eσ

{
xσ

Γ(1+σ)
Eσ

(
(ax)σ

)} = vσ

Γ(1+σ)

∫ ∞

0
Eσ

(
−xσ

νσ

)
xσ

Γ(1+σ)
Eσ

(
(ax)σ

)
(d x)σ

= vσ

Γ(1+σ)
lim

t−→∞

∫ t

0

( −vσ

1− (av)σ
Eσ

(
−1− (av)σ

vσ
xσ

))(σ) xσ

Γ(1+σ)
(d x)σ

= vσ lim
t−→∞

[ −vσ

1− (av)σ
Eσ

(
−1− (av)σ

vσ
xσ

)
xσ

Γ(1+σ)

]t

0

+ vσ

Γ(1+σ)
lim

t−→∞

∫ t

0

vσ

1− (av)σ
Eσ

(
−1− (av)σ

vσ
xσ

)
(d x)σ

= vσ lim
t−→∞

[ −v2σ

(1− (av)σ)2 Eσ

(
−1− (av)σ

vσ
xσ

)]t

0
,

because limt−→∞
[

−vσ

1−(av)σ Eσ
(
−1−(av)σ

vσ xσ
)

xσ

Γ(1+σ)

]t

0
= 0.

Therefore, we get

LF Eσ

{
xσ

Γ(1+σ)
Eσ

(
(ax)σ

)}= v3σ

(1− (av)σ)2 . (3.16)

5) If f (x) = sinσ((ax)σ) (0 <σ6 1), by using the formula (3.5), we get

LF Eσ
{
sinσ((ax)σ)

}= vσ

Γ(1+σ)

∫ ∞

0
Eσ

(
−xσ

vσ

)
Eσ (iσ (ax)σ)−Eη (−iσ (ax)σ)

2iσ
(d x)σ

= 1

2iσ
vσ

Γ(1+σ)

∫ ∞

0

[
Eσ

(
−1− (av)σ iσ

vσ
xσ

)
−Eσ

(
−1+ (av)σ iσ

νσ
xσ

)]
(d x)σ

= vσ

2iσ
lim

t−→∞

[
− vσ

1− (av)σ iσ
Eσ

(
−1− (av)σ iσ

vσ
xσ

)
+ vσ

1+ (av)σ iσ
Eσ

(
−1+ (av)σ iσ

νσ
xσ

)]t

0
.
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After calculations, we find

LF Eσ
{
sinσ((ax)σ)

}= aσν3σ

1+ (aν)2σ . (3.17)

6) If f (x) = cosσ((ax)σ) (0 <σ6 1), the use of the formula (3.5) gives

LF Eσ
{
cosσ((ax)σ)

}= vσ

Γ(1+σ)

∫ ∞

0
Eσ

(
−xσ

vσ

)
Eσ (iσ (ax)σ)+Eη (−iσ (ax)σ)

2
(d x)σ

= 1

2

vσ

Γ(1+σ)

∫ ∞

0

[
Eσ

(
−1− (av)σ iσ

vσ
xσ

)
+Eσ

(
−1+ (av)σ iσ

νσ
xσ

)]
(d x)σ

= vσ

2
lim

t−→∞

[
− vσ

1− (av)σ iσ
Eσ

(
−1− (av)σ iσ

vσ
xσ

)
− vσ

1+ (av)σ iσ
Eσ

(
−1+ (av)σ iσ

νσ
xσ

)]t

0
.

After calculations, we find

LF Eσ
{
cosσ((ax)σ)

}= v2σ

1+ (aν)2σ . (3.18)

7) If f (x) = sinhσ((ax)σ) (0 <σ6 1), we obtain

LF Eσ
{
sinhσ((ax)σ)

}= vσ

Γ(1+σ)

∫ ∞

0
Eσ

(
−xσ

vσ

)
Eσ ((ax)σ)−Eσ (− (ax)σ)

2
(d x)σ

= 1

2

vσ

Γ(1+σ)

∫ ∞

0

[
Eσ

(
−1− (av)σ

vσ
xσ

)
−Eσ

(
−1+ (av)σ

vσ
xσ

)]
(d x)σ

= vσ

2
lim

t−→∞

[
− vσ

1− (av)σ
Eσ

(
−1− (av)σ

vσ
xσ

)
+ vσ

1+ (av)σ
Eσ

(
−1+ (av)σ

vσ
xσ

)]t

0
.

By performing simple operations, we find

LF Eσ
{
sinhσ((ax)σ)

}= aσv3σ

1− (av)2σ . (3.19)

8) If f (x) = coshσ((ax)σ) (0 <σ6 1), we obtain

LF Eσ
{
sinhσ((ax)σ)

}= vσ

Γ(1+σ)

∫ ∞

0
Eσ

(
−xσ

vσ

)
Eσ ((ax)σ)+Eσ (− (ax)σ)

2
(d x)σ

= 1

2

vσ

Γ(1+σ)

∫ ∞

0

[
Eσ

(
−1− (av)σ

vσ
xσ

)
+Eσ

(
−1+ (av)σ

vσ
xσ

)]
(d x)σ

= vσ

2
lim

t−→∞

[
− vσ

1− (av)σ
Eσ

(
−1− (av)σ

vσ
xσ

)
− vσ

1+ (av)σ
Eσ

(
−1+ (av)σ

vσ
xσ

)]t

0
.

By performing simple operations, we get

LF Eσ
{
sinhσ((ax)σ)

}= v2σ

1− (av)2σ . (3.20)
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4. Illustrative examples

Finally, we’ll use the local fractional Elzaki transform to solve the local fractional differential equations that

have been suggested.

Example 4.1. We consider the local fractional differential equation of order σ

dσU (x)

d xσ
−U (x) = 1, 0 <σ6 1, (4.1)

with the initial condition U (0) = 0.

On both sides of (4.1), the local fractional Elzaki transform yields

1

vσ
LF Eσ {U (x)}− vσU (0)−LF Eσ {U (x)} = LF Eσ {1} . (4.2)

Then

(
1

vσ
−1

)
LF Eσ {U (x)} = v2σ. (4.3)

Which give

LF Eσ {U (x)} = v3σ

1− vσ

= v2σ

1− vσ
− v2σ. (4.4)

We get (4.4) by doing the inverse transformation on both sides

U (x) = Eσ(−xσ)−1, (4.5)

which is the exact solution of the equation (4.1). Eσ is the Mittag-Leffler function.

Example 4.2. Next, we consider the following local fractional differential equation of order σ, (0 <σ6 1)

dσU (x)

d xσ
−2U (x) = 4, (4.6)

with the initial condition

U (0) = 0. (4.7)

Taking local fractional Elzaki transform on both sides of (4.6), we have

1

vσ
LF Eσ {U (x)}−2LF Eσ {U (x)} = 4v2σ. (4.8)
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By following the same steps as the previous example, we obtain

LF Eσ {U (x)} =−2v2σ+2
v2σ

1−2vσ
. (4.9)

Take the inverse transformation on both sides of (4.9), we get

U (x) = 2Eσ(2xσ)−2. (4.10)

The result (4.10) represents the exact solution of (4.6)− (4.7).

Example 4.3. We consider the local fractional differential equation of order 2σ, (0 <σ6 1)

d 2σU (x)

d x2σ +U (x) =− xσ

Γ (1+σ)
, (4.11)

with to the initial conditions

U (0) = 0, U (σ)(0) = 0. (4.12)

Taking local fractional Elzaki transform on both sides of (4.11), we get

1

v2σ LF Eσ {U (x)}+LF Eσ {U (x)} =−v3σ. (4.13)

We get the same result as the previous example by following the same steps

LF Eσ {U (x)} =−v3σ+ v3σ

1+ v2σ . (4.14)

Take the inverse transformation on both sides of (4.14), we get

U (x) = sinσ(xσ)− xσ

Γ (1+σ)
, (4.15)

so this result (4.15) represents the exact solution to the equation (4.11)− (4.12).

5. Conclusion

The idea that we presented in this paper is based on combining the Elzaki transform with the local fractional

derivative, where we present some important results of this combination which called: Local fractional

Elzaki transform of the Mittag-Leffler function, the hyperbolic sine and the hyperbolic cosine in fractal

space and also we provide its properties of some non-differentiable functions were presented. This method

was used to solve several linear local fractional differential equations, where we have seen that the non-

differential solutions are precise and these results lead us to say that the local fractional Elzaki transform is

powerful and effective in solving this type of equation, and thus can be applied to other linear local frac-

tional partial differential equations with variable coefficients, to the linear systems of differential equations

and to the other linear problems in Cantor sets.



Ziane and Hamdi Cherif / JNRS / 10(3) (2021) 19-33 31

Author Contributions

All authors contributed equally to this work. They all read and approved the final version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgement

We thank Dr. Ali YAKAR for technical support. The authors would like to thank editor and the reviewers

for the reading carefully of the manuscript and the detail comments and valuable suggestions which has

helped us to improve this paper.

References

References

[1] M. R. Spiegel, Theory and problems of Laplace transform, McGraw Hill, New York, 1965.

[2] S. Benzoni, Analyse de Fourier, Universite de Lyon, Lyon 1, Camille Jordan Institute, Saint-Étienne,

2011.

[3] N. T. Negero, Zero-Order Hankel Transform Method for Partial Differential Equations, International

Journal of Modern Science and Engineering Technology, 3(10), (2016) 24-36.

[4] D. Lomen, Application of the Mellin Transforin to Boundary Value Problems, Proceedings of the Iowa

Academy of Science, 69(1), (1962) 436-442.

[5] G. K. Watugala, Sumudu transform: a new integral transform to solve differentia lequations and control

engineering problems, International Journal of Mathematical Education in Science and Technology,

24(1), (1993) 35-43.

[6] Z. H. Khan, W. A. Khan, N-transform properties and applications, NUST Journal of Engineering Sci-

ences, 1, (2008) 127-133.

[7] T. M. Elzaki, The New Integral Transform "ELzaki Transform", Global Journal of Pure and Applied Math-

ematics, 7(1), (2011) 57-64.

[8] H. J. Kim, The time shifting theorem and the convolution for Elzaki transform, Global Journal of Pure

and Applied Mathematics, 87, (2013) 261-271.

[9] A. Devi, P. Roy, V. Gill, Solution of ordinary differential equations with variable coefficients using Elzaki

transform, Asian Journal of Applied Science and Technology, 1, (2017) 186-194.

[10] A. Kalavathi, T. Kohila, L. M. Upadhyaya, On the degenerate Elzaki transform, Bulletin of Pure and Ap-

plied Sciences Section -E- Mathematics & Statistics, 40E(1), (2021) 99-107.

[11] K. S. Aboodh, The new integrale transform "Aboodh transform", Global Journal of Pure and Applied

Mathematics, 9(1), (2013) 35-43.

[12] Z. U. Zafar, ZZ Transform Method, International Journal of Advanced Engineering and Global Tech-

noloy, 4(1), (2016) 1605-1611.



Ziane and Hamdi Cherif / JNRS / 10(3) (2021) 19-33 32

[13] S. Maitama, W. Zhao, New Integral Transform: Shehu Transform a Generalization of Sumudu and

Laplace Transform for Solving differential equations, International Journal of Analysis and Applica-

tions, 17(2), (2019) 167-190.

[14] M. S. Archana, V. J. Pratibha, Elzaki Transform: A Solution of Differential Equations, International Jour-

nal of Scientific Engineering & Technology Research, 4(4), (2015) 1006-1008.

[15] P. P. Chopade, S. B. Devi, Applications of Elzaki Transform to Ordinary Differential Equations and Par-

tial Differential Equations, International Journal Advanced Research in Computer Science Software

Engineering, 5(3), (2015) 38-41.

[16] M. Eslaminasab, S. Abbasbandy, Study on usage of Elzaki transform for the ordinary differential equa-

tions with non-constant coefficients, International Journal of Industrial Mathematics, 7(3), (2015) 277-

281.

[17] T. M. Elzaki, S. M. Ezaki, On the ELzaki Transform and Ordinary Differential Equation with Variable

Coefficients, Advances in Theoretical and Applied Mathematics, 6(1), (2011) 41-46.

[18] T. M. Elzaki, S. M. Ezaki, On the ELzaki Transform and Higher Order Ordinary Differential Equations,

Advances in Theoretical and Applied Mathematics, 6(1), (2011) 107-113.

[19] T. M. Elzaki, S. M. Ezaki, Solution of Integro-Differential Equations by Using ELzaki Transform, Global

Journal of Mathematical Sciences: Theory & Practical , 3(1), (2011) 1-11.

[20] M. M. A. Mahgob, Elzaki Transform and a Bulge Function on Volterra Integral Equations of the Second

Kind, IOSR Journal of Mathematics, 11(2), (2012) 68-70.

[21] M. M. A. Mahgob, T.M. Elzaki, Solution of Partial Integro-Differential Equations by Elzaki Transform

Method, Applied Mathematical Sciences, 9(6), (2015) 295-303.

[22] M. M. A. Mahgob, T. M. Elzaki, Elzaki Transform and Integro-Differential Equation with a Bulge Func-

tion, IOSR Journal of Mathematics, 11(2), (2015) 25-28.

[23] P. G. Bhadane, V. H. Pradhan, S. V. Desale, Elzaki Transform Solution of One Dimensional Ground Wa-

ter Recharge through Spreading, International Journal of Engineering Research and Applications, 3(6),

(2013) 1607-1610.

[24] T. M. Elzaki, E. M. A. Hilal, Analytical Solution for Telegraph Equation by Modified of Sumudu Transform

"Elzaki Transform", Mathematical Theory and Modeling, 2(4), (2012) 104-111.

[25] T. M. Elzaki, S. M. Ezaki, On the ELzaki Transform and System of Partial Differential Equations, Ad-

vances in Theoretical and Applied Mathematics, 6(1), (2011) 115-123.

[26] D. Ziane, M. Hamdi Cherif, Resolution of Nonlinear Partial Differential Equations by Elzaki Transform

Decomposition Method, Journal of Approximation Theory and Applied Mathematics, 5, (2015) 17-30.

[27] T. M. Elzaki, S. M. Elzaki, Applications of New Transform "ELzaki Transform" to Partial Differential

Equations, Global Journal of Pure and Applied Mathematics, 7(1), (2011) 65-70.

[28] A. Devi, M. Jakhar, Analytic solution of fractional order differential equation arising in RLC electrical

circuit, Malaya Journal of Matematik, 8(2), (2020) 421-426.



Ziane and Hamdi Cherif / JNRS / 10(3) (2021) 19-33 33

[29] D. Ziane, Application of Homotopy Analysis Method Combined with Elzaki Transform for Fractional

Porous Medium Equation, Journal of Approximation Theory and Applied Mathematics, 6, (2019) 1-19.

[30] D. Ziane, Elzaki transform and the decomposition method for nonlinear fractional partial differential

equations, International Journal of Open Problems in Computer Science and Mathematics, 9(4), (2016)

25-39.

[31] D. Ziane, M. Hamdi Cherif, K. Belghaba, Fractional higher dimensional initial boundary value problems

via variational iteration method coupled with Elzaki transform, Nonlinear Studies, 24(4), (2017) 1-17.

[32] D. Ziane, T. M. Elzaki, M. Hamdi Cherif, Elzaki transform combined with variational iteration method

for partial differential equations of fractional order, Fundamental Journal of Mathematics and Appli-

cations, 1(1), (2018) 102-108.

[33] H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu, X. J. Yang, Local Fractional Sumudu Transform with

Application to IVPs on Cantor Sets, Abstract and Applied Analysis, 2014, (2014) Article ID: 176395, 1-7.

[34] X. J. Yang, Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong, 2011.

[35] X. J. Yang, Local Fractional Calculus and Its Applications, World Scientific Publishing, New York, 2012.

[36] J. H. He, Asymptotic Methods for Solitary Solutions and Compactons, Abstract and Applied Analysis,

2012, (2012) Article ID: 916793, 1-130.

[37] C. G. Zhao, A. M. Yang, H. Jafari, A. Haghbin, The Yang-Laplace Transform for Solving the IVPs with

Local Fractional Derivative, Abstract and Applied Analysis, 2014, Article ID: 386459, (2014) 1-5.

[38] X. J. Yang, L. Li, R. Yang, Problems of local fractional definite integral of the one-variable non-

differentiable function, World Science and Technology R&D, 31(4), (2009) 722-724.

[39] J. Ahmad, S. T. Mohyud-Din, H. M. Srivastava, X-J. Yang, Analytic solutions of the Helmholtz and

Laplace equations by using local fractional derivative operators, Waves, Wavelets and Fractals - Ad-

vanced Analysis, 1, (2015) 22-26.

[40] X. J. Yang, Generalized Sampling Theorem for Fractal Signals, Advances in Digital Multimedia, 1(2),

(2012) 88-92.

[41] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville

derivative for non-differentiable functions, Applied Mathematics Letters, 22, (2009) 378-385.


	Introduction
	Basic of local fractional calculus
	Main Result
	Local fractional Elzaki transform of somes special functions

	Illustrative examples
	Conclusion

