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Abstract: In the present work, three different modes of heat conduction, diffusion, thermal wave, and dual-phase lag, 

across a thin layer subjected to a constant temperature and insulated boundary conditions are compared by using a finite 

element solution. The finite element model is developed by considering relaxation time to heat flux and relaxation time 

to temperature gradient for a single element. After assembling all the elements, the number of algebraic equations 

obtained is solved to predict the temperature distribution across the thin layer using Python. The solution predicted by 

the dual-phase lag is compared with that obtained by the single-phase Cattaneo–Vernotte’s model and diffusion Fourier 

model. The developed model is validated with analytical, numerical, and experimental solutions with good agreement. 

The temperature contours are plotted for all three conditions and the way it propagates differently through the thin layer 

is clearly shown. Further, the temperature variation at the center of the layer, at which collision occurred, is predicted 

and the speed of the thermal wave, infinite in the Fourier diffusion model and finite in both single and dual-phase lag, 

is examined under transient to steady-state condition. 

Keywords: dual-phase lag, CV model, relaxation time, finite element model, python. 

 

İNCE TABAKADA DİFÜZYON, TERMAL DALGA VE ÇİFT FAZLI-LAG ISI 

İLETİMİNİN KARŞILAŞTIRMALI BİR ÇALIŞMASI 

 
Özet: Bu çalışmada, sabit bir sıcaklığa ve yalıtılmış sınır koşullarına maruz kalan ince bir katman boyunca üç farklı ısı 

iletimi, difüzyon, termal dalga ve çift fazlı gecikme modu, sonlu bir eleman çözümü kullanılarak karşılaştırılmıştır. 

Sonlu eleman modeli, tek bir eleman için akıyı ısıtmak için gevşeme süresi ve sıcaklık gradyanı için gevşeme süresi 

dikkate alınarak geliştirilmiştir. Tüm elemanları birleştirdikten sonra, elde edilen cebirsel denklemlerin sayısı Python 

kullanılarak ince katman boyunca sıcaklık dağılımını tahmin etmek için çözülür. Çift fazlı gecikme ile tahmin edilen 

çözüm, tek fazlı Cattaneo – Vernotte modeli ve difüzyon Fourier modeli ile elde edilen çözüm ile karşılaştırılır. 

Geliştirilen model, analitik, sayısal ve deneysel çözümlerle iyi bir uyum içinde doğrulanmıştır. Her üç koşul için 

sıcaklık sınırları çizilmiştir ve ince katman boyunca farklı şekilde yayılma şekli açıkça gösterilmiştir. Ayrıca, 

çarpışmanın meydana geldiği katmanın merkezindeki sıcaklık değişimi tahmin edilir ve Fourier difüzyon modelinde 

sonsuz ve hem tek hem de çift fazlı gecikmede sonlu olan termal dalganın hızı, geçici olarak kararlı durum koşulu. 

Anahtar Kelimeler: çift fazlı gecikme, CV modeli, gevşeme süresi, sonlu eleman modeli, python. 

 
 

NOMENCLATURE 

 

Symbols 

q heat flux [W/m2] 

k thermal conductivity [W/m∙K] 

T temperature [K] 

∇𝑇 temperature gradient [K/m] 

t time [s] 

L thickness of the layer [m] 

𝑐𝑝 specific heat capacity [J/kg∙K] 

𝑙 element length [m] 

𝑍 dimensionless relaxation time 

[𝑀] mass matrix 

[𝐶] capacitance matrix 

[𝐾] stiffness matrix 

{𝐹} force vector 

 

Greek Symbols 

𝜏 relaxation time [s] 

𝜌 density [kg/m3] 

𝛼 thermal diffusivity [m2/s] 

𝜉 dimensionless distance 

𝜂 dimensionless time 

𝜃 dimensionless temperature 

𝜁 dimensionless heat flux 

 

Subscripts 

q heat flux 

T temperature gradient 
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INTRODUCTION 

  

The synthesis of thin coatings is of great interest to 

engineers and physicists in modern technology. The 

energy transfer takes place over extremely small 

dimensions and time scales like etching of printed 

circuits, thin-film superconductors, fins, reactor walls, 

the satellite in orbit, thermal barrier coatings used in gas 

turbines, heating and cooling of micro-electronic 

elements involving a duration time of nanosecond or 

even picosecond in which energy is absorbed within a 

distance of microns from the surface. It is always 

required a correct prediction of thermal behavior to avoid 

thermal damage in devices. A major factor that depicts 

the energy transfer of the above applications requires 

certain non-Fourier conduction effects that need to be 

taken into account for the accurate prediction of heat 

transfer across thin layers.  

 

The Fourier diffusive mode of heat conduction, parabolic 

in nature,  

 

𝑞 =  −𝑘 ∇𝑇 (1) 

 

is accurate and appropriate in most common engineering 

situations for solving heat conduction problems. The 

most important drawbacks of the Fourier heat conduction 

model for solids are the prediction of thermal wave 

propagation speed and the simultaneous development of 

heat flux and temperature gradient. The rise of electron 

temperature is much faster than that of the lattice because 

of the faster interaction between the photons and 

electrons when large energy fluxes are deposited onto a 

metallic substrate in the form of electromagnetic 

radiation and the distinct relaxation time activates the 

electrons ballistically (Qui and Tien, 1992).  Moreover, 

finite relaxation time is required for local thermal 

equilibrium to be established between the electrons and 

photons. The infinite speed of thermal wave leads to 

inaccurate results in situations where short-time inertial 

effects are dominant. Thus, Cattaneo (1958) and 

Vernotee (1958) proposed the thermal wave (CV) model,  

 

𝜏
𝜕𝑞

𝜕𝑡
+ 𝑞 =  −𝑘 ∇𝑇 

(2) 

 

to consider a finite speed of thermal propagation by 

considering relaxation time 𝜏. Tan and Yang (1997) 

investigated the propagation of the thermal wave in thin 

films subjected to sudden temperature changes on its 

surfaces. This investigation was extended to study the 

asymmetrical temperature changes on both sides (Tan 

and Yang, 1997). Li et al. (2005) developed an implicit 

difference scheme by considering the non-Fourier 

conduction effects in multilayer materials for rapid 

transient heat conduction under pulsed heating. Torii and 

Yang (2205) examined the heat transfer mechanism in a 

thin layer with symmetrical heat source impingement on 

its boundaries. Lewandowska and Malinowski (2006) 

presented an analytical solution of the hyperbolic heat 

conduction equation for the case of a thin slab 

symmetrically heated on both sides. Mitra et al. (1995) 

presented experimental evidence of hyperbolic heat 

transfer in processed meat for different conditions and 

experimentally determined the relaxation time for 

processed meat. Lam and Fong (2011) considered the 

effect of thermal diffusion and wave propagation in 

solids subjected to a time-varying and spatially decaying 

laser irradiation and the temperature profiles. Further, 

this study examined the temperature across the thin film 

subjected to asymmetrical boundary conditions by 

solving the CV model with non-homogeneous boundary 

conditions with the superposition principle (Fong and 

Lam, 2014). 

 

The relaxation time 𝜏 in Eq. (2) is the phase lag between 

the heat flux and the temperature gradient. When 𝜏 = 0, 
Eq. (2) reduces to the classical Fourier equation and 𝜏 is 

small, Eq. (2) reduces to the exponential relaxation 

model. The CV model does not account for the finite 

thermal relaxation time for the electrons and lattice to 

reach local thermal equilibrium. A two-step model for 

phonon-electron interaction has been proposed to 

account for the microscale response of thin metallic films 

subjected to short-pulse laser heating (Fujimoto et al., 

1984; Elsayed-Ali, 1991; Hector et al., 1992; Majumdar, 

1993). Korner and Bergman (1998) found that the 

hyperbolic approach to the heat current density violates 

the fundamental law of energy conservation and the 

solution obtained by the CV model is physically 

impossible solutions with negative local heat content. 

Tzou (1995; 1996) proposed a dual-phase lag (DPL) 

model,  

 

𝜏𝑞

𝜕𝑞

𝜕𝑡
+ 𝑞 =  −𝑘 ∇𝑇 − 𝑘𝜏𝑇

𝜕

𝜕𝑡
(∇𝑇) 

(3) 

 

where 𝜏𝑞 and 𝜏𝑇 are the phase lags for the heat flux and 

the spatial temperature gradient concerning the local 

temperature, which is capable of predicting both the 

observed microscale and macroscale effects in 

conduction and found that the wave model overestimates 

the peak value of transient temperatures and the DPL 

model accurately describes the entire transient response. 

In fact, 𝜏𝑞 is related to the thermal wave speed and 𝜏𝑞 

represents the time constant for electron-phonon 

equilibrium. When 𝜏𝑞 = 0 and 𝜏𝑇 = 0 the Eq. (3) 

reduces to classical Fourier equation, and 𝜏𝑇 = 0 Eq. (3) 

reduces to CV model. Antaki (1998) used the DPL model 

to study the microscale transient heat conduction in a 

semi finite slab with surface flux. Tang and Araki (2000) 

solved the DPL model analytically to analyze the 

transient heat conduction in a finite medium subjected to 

pulse surface heating. Al-Nimr and Al-Huniti (2000) 

used the DPL model to explore the transient thermal 

stresses induced by rapid heating in a thin plate. Siva 

Prakash et al. (2000) identified the origin of the 

discrepancy in the available analytical results as the 

sensitivity of the predicted solution to the way of 

implementing the surface boundary condition. Also 

employed finite element method and fourth-order 

Runge–Kutta time marching procedure for the prediction 
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of spatial and temporal discretization, respectively. Liu 

and Cheng (2006) investigated heat conduction induced 

by a pulsed volumetric source in a two-layered film with 

the dual-phase-lag model. An analytical method and a 

numerical scheme are used to solve the DPL problem. 

Recently, Dhanaraj et al. (2019) resolved the DPL heat 

conduction using a three-time level finite difference 

scheme in a micro-scale gold film subjected to 

spontaneous temperature boundary conditions without 

knowing the heat flux. Tang et al. (2007) employed the 

dual-phase-lagging model (DPL), including the thermal 

wave situation, to simulate the temperature responses of 

the specimens and shown the absence of temperature 

jump caused by thermal wave propagation by comparing 

with the experimental results. Also found a wave-like 

shape predicted by the DPL model, which is almost the 

same as the numerical results from the Fourier model for 

heterogeneous medium. 

 

Although there are, many articles available for solving 

the DPL model numerically and analytically, only very 

few finite element solutions are available for solving the 

DPL model due to the large discrepancy, identified by 

Al-Nimr and N. S. Al-Hunti (2000), exists between the 

analytical and finite element results. The reason for this 

discrepancy is due to the electron-phonon interaction 

term dominates and as a result, the overall temperature 

reached is higher than that predicted by the classical 

conduction equation. To overcome this in the finite 

element method, Siva Prakash et al. (2000) and Liu and 

Cheng (2006) used an analytical method to solve DPL 

when the value of 𝜏𝑇 > 𝜏𝑞 . Dhanaraj et al. (2019) used a 

three-time level finite difference scheme to resolve the 

dual-phase lag’s heat conduction in a micro-scale gold 

film subjected to spontaneous temperature boundary 

conditions without knowing the heat flux. In the previous 

works, a complete finite element solution for the DPL 

problem is not given and the comparative temperature 

distribution of diffusive model, CV model, and DPL 

model at the same instant from transient to steady-state 

are not presented. 

 

In the present work, one-dimensional dual-phase-lag heat 

conduction across a thin layer subjected to a constant 

temperature and insulated boundary conditions are 

predicted by using a complete finite element solution 

without using an analytical method for DPL when the 

value of 𝜏𝑇 > 𝜏𝑞 . The DPL model is solved to predict the 

temperature distribution across the thin layer using 

Python 3.6.3 after considering the relaxation time to heat 

flux 𝜏𝑞 and to the temperature gradient 𝜏𝑇. The three 

different modes of heat conduction, diffusion (Fourier 

model), thermal wave (CV model), and dual-phase lag 

(DPL model), across the thin layer, are compared for the 

same instants against the initial and boundary conditions. 

The developed finite element DPL model is validated 

with the analytical solution given by Tzou (1995), 

numerical solutions given by Dhanaraj et al. (2019), and 

experimental work presented by Tang et al. (2007) with 

good agreement.  Recently, Yuvaraj and Senthilkumar 

(2020) presented the length and time scale at which the 

thermal wave propagation vanishes from the CV  model 

to the Fourier model. Also, to distinguish the diffusion, 

thermal wave, and DPL model, temperature variation at 

the center of the layer is predicted and shown that the 

speed of the thermal wave, infinite in the Fourier 

diffusion model and finite in both single and dual-phase 

lag are examined under transient to steady-state. Further, 

temperature contours plotted are evident for the DPL 

mode of heat conduction in a thin layer is entirely 

different from diffusion mode and thermal wave mode of 

heat conduction across the thin layer.  

 

PROBLEM DESCRIPTION 

 

 
Figure 1.  Thin layer subjected to symmetrical boundary 

conditions. 

 

A thin layer of length 𝐿 with thermal conductivity 𝑘, 

density 𝜌, and specific heat capacity 𝑐𝑝 shown in Fig. 1 

is subjected to two cases symmetrical and insulated 

boundary conditions respectively. In the first case, the 

left side and right side of the boundary are subjected to a 

constant temperature of 𝑇𝑤1 = 𝑇𝑤2  maintained to be 

constant and in the second case, the left side boundary is 

maintained at a constant temperature 𝑇𝑤1 and the right 

side boundary is insulated. When the heat is transferred 

from 𝑥 = 0 to 𝑥 = 𝐿, 𝐿 is in macro size, the infinite speed 

of the thermal wave is assumed and followed by 

Fourier’s mode of heat conduction across the thin layer. 

When 𝐿 is in micro/nano-size, the finite speed of thermal 

waves caused the wave-like mode and DPL mode of heat 

conduction across the thin layer. In diffusion mode, the 

heat transfer is decided by thermal diffusivity 𝛼 and in 

thermal wave mode of heat conduction, it is decided by 

thermal diffusivity and relaxation time 𝜏. Whereas in the 

DPL mode of heat conduction, the heat transfer decided 

by thermal diffusivity, relaxation time for heat flux 𝜏𝑞 

and relaxation time for temperature gradient 𝜏𝑇. Heat 

transfer through a thin layer is assumed as one-

dimensional and thermophysical properties are constant. 
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Governing equations 

 

One dimensional heat conduction in a thin layer is 

governed by the Tzou (1995) DPL heat conduction 

equation and local energy balance equation. 

 

The energy equation for anisotropic material can be 

written as 

 

𝛻𝑞 = −𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
 

(4) 

 

where 𝜌 is the density and 𝑐𝑝 is the specific heat capacity.  

The given governing equations are in the form of 

dimensional characters are converted into non-

dimensional form by using the following dimensionless 

parameters, 

 

𝜉 =
𝑥

𝐿
, 𝜂 =

𝑡𝛼

𝑙2
, 𝜃 =

𝑇𝑤 − 𝑇

𝑇𝑤 − 𝑇0

, 𝑧𝑞 =
𝜏𝑞𝛼

𝑙2
,

𝑧𝑇 =
𝜏𝑇𝛼

𝑙2
, 𝜁 =

𝑞

𝑞𝑟

 

(5) 

 

where 𝜉 is the dimensionless distance in 𝑥 direction as 

shown in Fig. 1, 𝜂 is the dimensionless time, 𝜃 is the 

dimensionless temperature,  𝑧𝑞 is the dimensionless heat 

flux relaxation time, 𝑧𝑇 is the dimensionless temperature 

gradient relaxation time and 𝜁 is the dimensionless heat 

flux. Rearranging Eqn. (1-4), the general form of DPL 

heatwave equation can be written as, 

 

𝛼 𝜏𝑇

𝜕3𝑇

𝜕𝑥2𝜕𝑡
+ 𝛼

𝜕2𝑇

𝜕𝑥2
= 𝜏𝑞

𝜕2𝑇

𝜕𝑡2
+

𝜕𝑇

𝜕𝑡
 

(6) 

 

where 𝛼 is thermal diffusivity (𝛼 = 𝑘/𝜌𝑐𝑝). If 𝜏𝑞 = 𝜏𝑇 =

0, Eqn. (6) reduces to the first-order diffusion equation, 

𝜏𝑇 = 0 then Eqn. (6) becomes second-order thermal 

wave heat equation. 

 

After substituting the non-dimensional terms from Eqn. 

(5) in to the Eqn. (6), the governing partial differential 

equation for one-dimensional DPL heat conduction 

equation can be given in the form of the dimensionless 

equation as 

 

𝑧𝑇

𝜕3𝜃

𝜕𝜉2𝜕𝜂
+

𝜕2𝜃

𝜕𝜉2
= zq

𝜕2𝜃

𝜕𝜂2
+

𝜕𝜃

𝜕𝜂
 

(7) 

 

Initial conditions: 

 

𝜃(𝜉, 𝜂) =  1    𝑎𝑡  𝜂 = 0,        0 < 𝜉 < 1 (8) 

 

Boundary conditions: 

 

Case – 1: The prescribed temperature at both side of the 

thin layer 

 
𝜕𝜃

𝜕𝜂
(𝜉, 𝜂) =  0   𝑎𝑡  𝜂 > 0, 𝜉 = 0, 𝜉 = 1 

(9) 

𝜃(𝜉, 𝜂) =  1    𝑎𝑡  𝜉 = 0,     𝜂 > 0 (10) 

 

𝜃(𝜉, 𝜂) =  1   𝑎𝑡  𝜉 = 1,     𝜂 > 0 (11) 

 

Case – 2: The prescribed temperature at the left side and 

insulated at the right side of the thin layer 

 

𝜃(𝜉, 𝜂) =  1    𝑎𝑡  𝜉 = 0,     𝜂 > 0 (12) 

 

𝜁(𝜉, 𝜂) =  0    𝑎𝑡  𝜉 = 1,     𝜂 > 0 (13) 

 

The nodal temperatures 𝑇2 to 𝑇𝑛 as shown in Fig. 1 can 

be predicted by applying the initial and boundary 

conditions given in Eqn. (8-13) using the finite element 

method. The dimensionless temperature of 1 is 

maintained at the left and right side of the thin layer and 

maintained constant for case-1 and insulated condition 

for case-2. Initially, the temperature of the thin layer in 

length 𝐿 is maintained at a dimensionless temperature of 

𝜃 = 0 at the dimensionless time is 𝜂 = 0 and suddenly 

changed to the boundary conditions. The nodal 

temperatures are predicted by executing the finite 

element model using Python 3.6.3 (2020). The 𝑛 numbers 

of linear algebraic equations are solved and the nodal 

temperatures and temperature contours are predicted by 

using the NumPy and matplotlib modules available in 

Python. 

 

FINITE ELEMENT MODEL 

 

In the finite element method, the given domain is 

discretized into several subdomains, called a finite 

element, the approximation functions of weighted-

residual are constructed on each element for the solution 

of the problem. The step by step procedure followed in 

the present work to develop a finite element model is 

given by Reddy (2015). 

 

The finite element model for the heat transfer problem, 

the one-dimensional steady-state without heat 

generation, can be developed by making a weak form of 

Eqn. (6) 

 

𝑧𝑇

𝜕3𝜃

𝜕𝜉2𝜕𝜂
+

𝜕2𝜃

𝜕𝜉2
− zq

𝜕2𝜃

𝜕𝜂2
−

𝜕𝜃

𝜕𝜂
= 0 

(14) 

 

The finite element formulation for the governing 

equation (14) is, 

 

zq[M]{�̈�} + ([C] + zT[K]){�̇�} + [K]{θ}

= {F} 

(15) 

 

where, [𝐾] =
1

𝑙
[

1 −1
−1 1

] is the stiffness matrix, [𝐶] =

𝑙

6
[
2 1
1 2

] is the capacitance matrix, [𝑀] is the mass 

matrix, and {𝐹} is the force vector for a linear element. 

Eqn. (15) is the DPL mode of finite element model which 

contains a first-order time derivative {�̇�} and second-
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order time derivative {�̈�}. The solution for the DPL heat 

equation in the form of a finite element model can be 

obtained using Newmark’s scheme as follows 

 

�̇�𝑛+1 = �̇�𝑛 + ∆𝜂((1 − 𝛾)�̈�𝑛 + 𝛾�̈�𝑛+1 (16) 

𝜃𝑛+1 = 𝜃𝑛 + ∆𝜂𝜃𝑛 + ∆𝜂2 (
1

2
− 𝛽) �̈�𝑛

+ 𝛽�̈�𝑛+1 

(17) 

 

zq[M]{�̈�𝑛+1} + ([C] + zT[K]){�̇�𝑛+1}

+ [K]{θ𝑛+1} = {F𝑛+1} 

(18) 

 

The value of 𝛾 and 𝛽 are taken as 
1

2
 and 

1

4
 respectively. By 

applying initial and boundary conditions as given in Eqn. 

(8-13), first the value of �̈�𝑛 can be obtained by solving 

Eqn. (15). The finite-difference form of �̈�𝑛 can be written 

as 

 

{�̈�𝑛} =
�̇�𝑛+1 − �̇�𝑛

 ∆𝜂
 

(19) 

 

After finding �̈�𝑛, substitute it in Eqn. (19) to find �̇�𝑛+1 

and from Eqn. (16) the value of �̈�𝑛+1 can be obtained. 

The value of 𝜃𝑛+1 for the first time step can be obtained 

from Eqn. (17) and repeating this procedure for the 

consecutive time steps. Then Eqn. (18) is the element 

level DPL heat equation for 𝑛 + 1𝑡ℎ time step. 

 

RESULTS AND DISCUSSION 

 

Mesh sensitivity test 

 

Figure 2.  Mesh sensitivity test. 

 

The mesh sensitivity study was conducted for the range 

of several elements from 10 to 300. Fig. 2 shows the 

propagation of the thermal wave, at 𝑍𝑞 = 0.05, 𝑍𝑇 =

0.001 and 𝜂 = 0.045, for a different number of elements. 

The non-dimensional temperature variation is negligible 

for the mesh 200 and 300 elements. When the time scale 

increases the convergent solution for the present model 

requires more number of elements than 200. Hence, 300 

elements and time step 10−4 have been chosen for the 

execution of all the three models from transient to steady-

state. The temperatures of each nodal point are predicted 

by solving Eqn. (15-19) for DPL heat transfer across a 

thin layer. The code is generated and the finite element 

model is solved by using Python 3.6.3 (2020), an open-

source software. 

 

Validation of the present model with the Analytical 

and Numerical solutions 

 

The present finite element model is validated with the 

analytical solution given by Tzou (1995) for different 𝑍𝑇 

values as shown in Fig. 3 (a). Tzou considered the 

dimensionless heat flux relaxation time 𝑍𝑞 = 0.05 and 

varied the dimensionless temperature gradient relaxation 

time 𝑍𝑇 and found that when 𝑍𝑇 > 0.05 the heat 

conduction follows the dual-phase lag model. All three 

models, 𝑍𝑇 = 0.001, 𝑍𝑇 = 0.05 and 𝑍𝑇 = 0.5 validated 

with the analytical solution with good agreement. The 

present model is also compared and validated with the 

numerical solution given by Dhanaraj et al. (2019) for 

different dimensionless times 𝜂 = 0.02, 𝜂 = 0.05, and 

𝜂 = 0.16. The similar kind of boundary conditions used 

and obtained good results as shown in Fig. 3 (b). 

 

Fig. 3 (c) shows the validation of present model with 

experimental work presented by Tang et al. (2007). They 

conducted an experiment for DPL heat conduction in 

meat specimens with three different thickness 2 mm, 3 

mm and 4 mm by using 1 sec IR light pulse. The 

experimental result for 2 mm specimen is used to validate 

with the present work shows very good agreement than 

the Fourier and CV model. The table of errors for 

different mode of heat transfer Fourier model, CV model 

and DPL model of analytical data are compared with the 

present numerical data and obtained the positive errors of 

2.2% for Fourier model, 0.67% for CV model, and 

negative errors 0.41% for DPL model. 

 

Case-1: Comparison of diffusion model, CV model, 

and DPL model 

 

In case-1, the temperature of 𝜃 = 1 is maintained 

constantly on both side of the thin layer and the heat flux 

relaxation time 𝑍𝑞 is taken as 0.05 and the temperature 

gradient relaxation time 𝑍𝑇 is varied from 0 − 0.5 similar 

to the work carried numerically by Dhanaraj et al. (2019). 

Then Eqn. (14) can be reduced to the diffusion model 

when 𝑍𝑞 = 𝑍𝑇 = 0 and CV model when 𝑍𝑇 = 0. The 

dual-phase lag model predicts the précised temperature 

variation across the thin layer when 𝑍𝑇 > 0. In the 

present work, the value of 𝑍𝑇 = 0 is considered as CV 

model, the value of 𝑍𝑇 = 0.05 is taken as the diffusion 

model and other non zero values of 𝑍𝑇 are taken as the 

DPL model. 
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(a)       (b) 

 

 
(c) 

Figure 3.  Validation of present model with (a) Analytical solution given by Tzou (1995), (b) Numerical solution presented by 

Dhanaraj et al. (2019) and (c) Experimental work presented by Tang et al. (2007). 

 
Table 1. Present numerical work error table. 

Fourier model CV model DPL model 

Analytical 

work 

Present 

work 

Error 

% 

Analytical 

work 

Present 

work 

Error 

% 

Analytical 

work 

Present 

work 

Error 

% 

1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 0.9976 0.9976 0.0000 

0.9398 0.9373 0.2564 0.9639 0.9542 1.0000 0.9735 0.9735 0.0000 

0.8482 0.8458 0.2841 0.8410 0.8434 -0.2865 0.9084 0.9108 -0.2653 

0.7398 0.7373 0.3257 0.7373 0.7373 0.0000 0.8410 0.8458 -0.5731 

0.6434 0.6337 1.4981 0.6530 0.6458 1.1070 0.7880 0.7928 -0.6116 

0.5518 0.5494 0.4367 0.5349 0.5325 0.4505 0.7301 0.7349 -0.6601 

0.4506 0.4482 0.5348 0.4699 0.4675 0.5128 0.6651 0.6699 -0.7246 

0.3639 0.3590 1.3245 0.3711 0.3663 1.2987 0.6024 0.6120 -1.6000 

0.2578 0.2530 1.8692 0.2651 0.2602 1.8182 0.5614 0.5663 -0.8584 

0.1807 0.1759 2.6667 0.1735 0.1663 4.1667 0.5157 0.5229 -1.4019 

0.1108 0.1060 4.3478 0.0602 0.0602 0.0000 0.4747 0.4795 -1.0152 

0.0627 0.0602 3.8462 0.0024 0.0024 0.0000 0.4434 0.4458 -0.5435 

0.0361 0.0361 0.0000 0.0000 0.0000 0.0000 0.4265 0.4217 1.1299 

0.0217 0.0200 7.8833 0.0000 0.0000 0.0000 0.4120 0.4120 0.0000 

0.0048 0.0042 12.2500 0.0000 0.0000 0.0000 0.4024 0.4024 0.0000 

Average Fourier model 

error 
2.2 % 

Average CV model 

error 
0.67 % 

Average DPL model 

error 
0.41 % 
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Figure 4.  Case-1 Temperature variation for different 𝑍𝑇, (a) 𝜂 = 0.01, (b) 𝜂 = 0.02, (c) 𝜂 = 0.045, (d) 𝜂 = 0.068, (e) 𝜂 =

0.091, (f) 𝜂 = 0.114, (g) 𝜂 = 0.136, and (h) 𝜂 = 0.159. 
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Figure 5.  Case-1 Temperature variation for different 𝑍𝑇, (a) 𝜂 = 0.182, (b) 𝜂 = 0.227, (c) 𝜂 = 0.295, (d) 𝜂 = 0.318, (e) 𝜂 =

0.341, (f) 𝜂 = 0.432, (g) 𝜂 = 0.568, and (h) 𝜂 = 2.468. 



 

109 
 

Case-1: Temperature contours 

 

          

       (a)              (b) 
 

         

       (c)              (d) 
 

 

(e) 

Figure 6.  Case-1 Temperature contours, (a) Diffusion model 𝑍𝑞 = 𝑍𝑇 = 0, (b) CV model 𝑍𝑇 = 0, (c) DPL model 𝑍𝑇 = 0.001, 

(d) DPL model 𝑍𝑇 = 0.01, (e) DPL model 𝑍𝑇 = 0.5. 
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The variation of temperature for different 𝑍𝑇 values from 

0 − 0.5 are shown in Fig. 4 (a-h) and Fig. 5(a-h) for 

different time 𝜂. Fig. 4(a) shows the temperature 

variation across the thin layer, at 𝜂 = 0.01, due to heat 

conduction. Thermal wave-like temperature variation 

occurs, when 𝑍𝑇 = 0, due to only the heat flux relaxation 

time 𝑍𝑞 exist in a thin layer. The diffusion mode of heat 

conduction occurs at 𝑍𝑞 = 𝑍𝑇 = 0.05 and the thermal 

wave propagates smoothly without any collision as 

shown in Fig. 4(b-e). The thermal wave speed is assumed 

as infinite in the diffusion mode of heat conduction and 

finite in the CV model and DPL model. Fig. 4 (f) shows 

the collision of thermal wave occurs at the center of the 

layer at 𝜂 = 0.114 and the temperature increases after the 

collision and propagates in reverse order towards either 

side of the boundary. The dual lag affects the propagation 

time and both diffusion and CV model catching the DPL 

model at 𝜂 = 0.182 and overtake afterward which is 

clearly shown in Fig. 5 (a). From Fig. 5 (b-e) it is noted 

that the DPL model propagates slower than the diffusion 

and CV model to reach a steady state. The diffusion 

model reaches a steady-state first at time 𝜂 = 0.432, Fig. 

5 (f), second CV model at 𝜂 = 0.568, Fig. 5 (g), finally 

DPL model at 𝜂 = 2.468 as shown in Fig. 5 (h). 

 

The temperature contours are plotted for different 

conditions, the diffusion model 𝑍𝑞 = 𝑍𝑇 = 0, the CV 

model 𝑍𝑇 = 0, DPL model 𝑍𝑇 = 0.001, DPL model 

𝑍𝑇 = 0.01 and DPL model 𝑍𝑇 = 0.5 as shown in Fig. 6 

(a-e) respectively. In the diffusion model, there is no lag, 

𝑍𝑞 = 𝑍𝑇 = 0, in response between applied heat flux and 

the temperature gradient, causes no collision in the thin 

layer. The immediate response of temperature gradient 

against the applied heat flux causes smooth conduction 

of heat across the thin layer and the temperature contours 

from 𝜂 = 0 to 𝜂 = 1 is shown in Fig. 6 (a). Whereas in 

Fig. 6 (b), the evidence of collision is clearly shown as 

the triangular contours with sharp corners. The thermal 

wave propagates with relaxation time 𝑍𝑞 = 0.5 and 𝑍𝑇 =

0. Each sharp corner represents the occurrence of 

collisions and five times the collision consecutively 

happens at the center of the layer and boundary of the 

layer. The first collision of thermal wave occurred at 𝜉 =

0.5 and 𝜂 = 0.114 with an increase in temperature and 

move towards either side of the boundary. The second 

collision occurs at the boundary of the layer and 

propagates back towards the center of the layer with a 

further increase in temperature. After the third collision 

at the center of the layer the temperature decreases and 

repeats alternatively and after fifth collision smooth 

propagation occurred. In DPL model, Fig. 6 (c-e), both 

relaxation time 𝑍𝑇 and 𝑍𝑞 are considered and the wave-

like heat propagation disappears and propagates slower 

than the diffusion and CV model. In Fig. 6 (c), the sharp 

corners have vanished and the triangular shape of 

contours are smudged due to relaxation time 𝑍𝑇 = 0.001. 

Fig. 6 (d) shows that the increase in relaxation time 𝑍𝑇 =

0.01 the wave-like propagation are disappeared and 

transition from CV mode of heat conduction to DPL 

mode of heat conduction happened. The temperature 

contours for 𝑍𝑇 = 0.5 is shown in Fig. 6 (e) is the 

complete evidence for the DPL mode of heat conduction 

in entirely different from diffusion and CV mode of heat 

conduction. 

 

Case-1: Temperature variation at the center of the 

layer 𝝃 = 𝟎. 𝟓 

 

The heat conduction model number, 𝐹𝑇 =
𝜏𝑇

𝜏𝑞
  [26], is 

used to analyze the temperature variation at the center of 

the layer 𝜉 = 0.5. The Fig. 7 (a-d) shows the temperature 

variation at the center of the layer for different values of 

𝐹𝑇 from time 𝜂 = 0 to  𝜂 = 1. When 𝜏𝑇 = 0, heat 

conduction model number 𝐹𝑇 becomes zero and the heat 

propagates like a wave across the thin layer followed by 

the CV model with single relaxation time. When 𝐹𝑇 = 1, 

both relaxation times are equal in magnitude and it 

follows the diffusion mode of heat conduction. When 

𝐹𝑇 < 1, it follows the DPL mode of heat conduction 

followed by the transition from the CV model to the 

diffusion model. Whereas 𝐹𝑇 > 1, diffusion mode is 

changed to the DPL mode of heat conduction.  

 

Fig.  7 (a) shows that the temperature variation at the 

center of the layer 𝜉 = 0.5 from 𝜂 = 0 to 𝜂 = 0.1. The 

temperature remains in the initial state, 𝜃 = 0, for CV 

model up to 𝜂 = 0.1 and 𝐹𝑇 = 0. Whereas 𝐹𝑇 > 0, in 

case of diffusion and DPL model, the temperature at the 

center of the layer varies earlier than the CV model. At 

𝜂 = 0.114 and 𝐹𝑇 = 0, the thermal wave from either side 

of the boundary reaches the center of the layer and causes 

the first collision to occur at 𝜉 = 0.5. After the first 

collision, the temperature increases immensely from 𝜃 =

0 to 𝜃 = 0.7 as shown in Fig. 7 (b) and then it 

continuously increases the temperature and reaches 

maximum temperature 𝜃 = 1.1 which is greater than the 

applied boundary condition. This unrealistic 

phenomenon is the main cause for considering the DPL 

mode of heat conduction across the thin layer. At time 

𝜂 = 0.2, the temperature at the center of the layer is 

greater for the CV model 𝐹𝑇 = 0 and smaller for 

diffusion and DPL model 𝐹𝑇 > 0. After time 𝜂 = 0.3, the 

collision of the thermal wave, 𝐹𝑇 = 0 decreases the 

temperature at the center of the layer as shown in Fig. 7 

(c) and it follows the diffusion model, 𝐹𝑇 = 1. After time  

𝜂 = 0.6 onwards, CV model and DPL model 𝐹𝑇 = 0.25 

follows a similar way of diffusion model as clearly 

shown in Fig. 7 (d). The temperature at the center in the 

DPL model, when 𝐹𝑇 > 1, are smaller than the diffusion 

and CV model at time 𝜂 = 1.
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        (a)                 (b) 

 

     

        (c)                 (d) 

Figure 7.  Case-1 Temperature variation at 𝜉 = 0.5 for different 𝐹𝑇, (a) up to 𝜂 = 0.1, (b) up to 𝜂 = 0.2, (c) up to 𝜂 = 0.5 and (d) 

up to 𝜂 = 1

 

Case-2: Comparison of diffusion model, CV model 

and DPL model  

 

In case-2, the temperature of 𝜃 = 1 is maintained 

constant at left side boundary of the thin layer and 

insulated boundary condition is taken at right side of the 

boundary.  The relaxation times 𝑍𝑞 and 𝑍𝑇 are varied 

similar to that of case-1. The initial and boundary 

conditions given in Eqn. (8-11) and the Eqn. (14-19) are 

applied to solve the DPL model for insulated boundary 

condition and the temperature variations from transient 

state to steady state are shown in Fig. 8 (a-h) and Fig. 9 

(a-h). 

 

Fig. 8 (a) shows the temperature variation at 𝜂 = 0.023 

in which the DPL model with 𝑍𝑇 = 0.5 reaches the right 

boundary earlier than the diffusion and CV model. The 

diffusion model with 𝑍𝑇 = 0.5 marching towards the 

right insulated boundary faster than the DPL model, with 

𝑍𝑇 = 0.01 and 𝑍𝑇 = 0.001, and CV model with 𝑍𝑇 = 0 

as shown in Fig. 8 (b). At time 𝜂 = 0.068, Fig. 8 (c) 

shows the diffusion model reaches the right side 

boundary and still the DPL model, with 𝑍𝑇 = 0.01 and 

𝑍𝑇 = 0.001, and the CV model are well behind the 

diffusion model. After time  𝜂 = 0.114, there is no 

collision occurs at the center of the layer 𝜉 = 0.5 due to 

there is no source of heat comes from the right side 

boundary and the thermal wave propagates towards the 

right side boundary as shown in Fig. 8 (d-e). The CV 

model finally reaches the right side boundary after time 

𝜂 = 0.205, Fig. 8 (f-h), and makes the first collision at 

the right side of the boundary with an increase in 

temperature. After the first collision, reverse propagation 

occurs towards the left side boundary of the thin layer as 

shown in Fig. 9 (a-b).  The diffusion model, CV model 

and DPL model with 𝑍𝑇 = 0.001, 𝑍𝑇 = 0.01 are chasing  
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Figure 8.  Case-2 Temperature variation for different 𝑍𝑇, (a) 𝜂 = 0.023, (b) 𝜂 = 0.045, (c) 𝜂 = 0.068, (d) 𝜂 = 0.114, (e) 𝜂 =
0.136, (f) 𝜂 = 0.182, (g) 𝜂 = 0.205, and (h) 𝜂 = 0.227. 
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Figure 9.  Case-2 Temperature variation for different 𝑍𝑇, (a) 𝜂 = 0.273, (b) 𝜂 = 0.341, (c) 𝜂 = 0.386, (d) 𝜂 = 0.454, (e) 𝜂 =
0.568, (f) 𝜂 = 0.682, (g) 𝜂 = 1.136, and (h) 𝜂 = 4.122. 
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        (a)             (b) 

      

        (c)             (d) 

 

(e) 

Figure 10.  Case-2 Temperature contours, (a) Diffusion model 𝑍𝑞 = 𝑍𝑇 = 0, (b) CV model 𝑍𝑇 = 0, (c) DPL model 𝑍𝑇 = 0.001, 

(d) DPL model 𝑍𝑇 = 0.01, (e) DPL model 𝑍𝑇 = 0.5. 
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        (a)                 (b) 

     

        (c)                 (d) 

Figure 11.  Case-2 Temperature variation at 𝜉 = 0.5 for different 𝐹𝑇, (a) up to 𝜂 = 0.1, (b) up to 𝜂 = 0.2, (c) up to 𝜂 = 0.5 and (d) 

up to 𝜂 = 1. 

the DPL model with 𝑍𝑇 = 0.5, Fig. 9 (c) and overtakes at 

𝜂 = 0.454 as shown in Fig. 9 (d). This lag in heat 

propagation across the thin layer is caused by the large 

value of relaxation time 𝑍𝑇 = 0.5 and the other model 

marching towards steady state are shown in Fig. 9 (e-g). 

The CV model first reaches a steady state at time 𝜂 =

1.212 then the diffusion model reaches a steady state at 

tine 𝜂 = 1.286 and finally DPL model with  𝑍𝑇 = 0.5 

reaches a steady state at 𝜂 = 4.122 as shown in Fig. 9 (h). 

 

Case-2: Temperature contours 

 

The temperature contours are plotted for different 

conditions, diffusion model 𝑍𝑞 = 𝑍𝑇 = 0, CV model 

𝑍𝑇 = 0, DPL model 𝑍𝑇 = 0.001, DPL model 𝑍𝑇 = 0.01 

and DPL model 𝑍𝑇 = 0.5 as shown in Fig. 10 (a-e) 

respectively. In diffusion model there is no lag in heat 

flux. 𝑍𝑞 = 0, and temperature gradient, 𝑍𝑇 = 0. The 

response between applied heat flux to the temperature 

gradient is instantly obtained and no collision occurs 

anywhere across the thin layer. The immediate response 

of temperature gradient against the applied heat flux 

causes smooth conduction of heat across the thin layer 

for the diffusion model and the temperature contours 

from 𝜂 = 0 to 𝜂 = 1 is shown in Fig. 10 (a). Whereas in 

Fig. 10 (b), the evidence of collision is clearly shown as 

the triangular contours with sharp corners for the CV 

model with relaxation time 𝑍𝑞 = 0.5 and 𝑍𝑇 = 0. The 

first collision of the thermal wave occurs at the right side 

boundary at 𝜉 = 1 and 𝜂 = 0.214 then it follows reverse 

propagation and reaches the left side boundary at 𝜂 =

0.454 with the second collision. After the second 

collision the temperature decreases and the CV model 

marching towards a steady-state without any further 

collision. Fig. 10 (c) and Fig. 10 (d) are the shreds of 

evidence of vanishing sharp corners and the thin layer 

follows DPL mode of heat conduction with 𝑍𝑇 = 0.001 

and 𝑍𝑇 = 0.01 respectively.  

 

It is noted that, from Fig. 10 (a-e), the DPL mode of heat 

conduction is entirely different from the diffusion model  

and CV model. The maximum temperature zone is nearer 

to the left boundary at 𝜉 = 0 in case of DPL model with 
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𝑍𝑇 = 0.5 as shown in Fig. 10 (e). Whereas in the 

diffusion model, Fig. 10 (a), the maximum temperature 

zone uniformly distributed towards the right side of the 

boundary. This is due to the presence of both relaxation 

time 𝑍𝑞 and 𝑍𝑇, decreases the response between given 

heat flux and temperature gradient. In the DPL model, the 

heat propagates slowly and reaches a steady-state after 

diffusion model and the CV model. For example, take gas 

turbine blade, the ceramic thin coating are used as 

thermal barriers with thermal diffusivity of α = 1.16 ×

10−7 m2/s, coating thickness of x = 1 μm, initiall all the 

points the temperature is assumed as 303 K, one side of 

the blade is suddenly exposed to a temperature of 373 K. 

After time t ≈ 9 μs, at the center of the thin layer x =

0.5 μm, the temperature becomes T ≈ 317 K for DPL 

mode of heat transfer. Whereas, for the same condition 

the temperature becomes T ≈ 307 K for CV model and 

T ≈ 310 K for Fourier model. The Fourier model and CV 

model reaches steady state faster than the DPL model due 

to the dual relaxation time responses. 

 

Case-2: Temperature variation at the center of the 

layer 𝝃 = 𝟎. 𝟓 

 

The temperature variation at the center of the thin layer 

𝜉 = 0.5 for different values of 𝐹𝑇 from time 𝜂 = 0 to  

𝜂 = 1 are shown in Fig. 11 (a-d). From Fig. 11 (a) it is 

noted that, the CV model 𝐹𝑇 = 0,  the temperature 

remains in the initial state, 𝜃 = 0, up to 𝜂 = 0.1. Whereas 

in the case of diffusion and DPL model, 𝐹𝑇 > 0, the 

temperature at the center of the layer varies earlier than 

the CV model similar to case-1. At 𝜂 = 0.114 and 𝐹𝑇 =

0, the thermal wave from the left side of the boundary 

meets the center of the layer and propagates without any 

collision at 𝜉 = 0.5. The rise in temperature shown in 

Fig. 11 (b) for 𝐹𝑇 = 0 is the immediate response of 

temperature gradient with the absence of 𝜏𝑇. At 𝜂 = 0.2, 

the temperature at the center of the layer for the CV 

model and DPL model are greater than the diffusion 

model. The second rise in temperature, at 𝜂 = 0.342 as 

shown in Fig. 11 (c), for the CV model, is happened due 

to the first collision occurs in the right side boundary and 

reverse propagation of thermal wave towards the left side 

boundary. At 𝜂 = 0.5, the temperature at the center of the 

layer reduces for 𝐹𝑇 > 1 and increase for 𝐹𝑇 < 1 

compared to the diffusion model 𝐹𝑇 = 1.  When the time 

moves on and becomes 𝜂 = 1, the temperature variation 

is shown in Fig.11 (d) and DPL model with 𝐹𝑇 = 10 the 

temperature further decreases than the that of DPL model 

with 𝐹𝑇 = 5. From Fig. 11 (d), it is noted that when the 

conduction number 𝐹𝑇 increases the temperature 

decreases after time 𝜂 = 1 and when 𝐹𝑇 decreases the 

temperature increases after time 𝜂 = 1. 

 

 

 

 

CONCLUSION 

 

The finite element model for dual phase-lag heat 

conduction across a thin layer is developed successfully 

to predict the temperature when it is subjected to two 

cases, case-1 constant temperature at both sides and case-

2 left side constant temperature and right side insulated 

condition. The developed code is executed in Python 3.6 

and the obtained results are validated with analytical, 

numerical, and experimental results with excellent 

agreement. Uniquely in this work, a comparative study of 

diffusion mode, CV mode, and DPL mode of heat 

conduction across the thin layer is examined numerically 

from transient to steady-state. The temperature contours 

are plotted for all three conditions and the way it 

propagates differently through the thin layer is clearly 

shown. Further, the temperature variation at the center of 

the layer, at which collision occurred, is predicted and the 

speed of the thermal wave, infinite in the Fourier 

diffusion model and finite in both single and dual-phase 

lag, is examined under transient to steady-state condition.  

 

The temperature contours for different 𝑧𝑞 and 𝑧𝑇 are 

plotted and revealed the way of diffusion model with 

𝑧𝑞 = 𝑧𝑇 = 0, the CV model with 𝑧𝑇 = 0, and DPL model 

𝑧𝑞 > 0 and 𝑧𝑇 > 0 follows a different way. Also, the 

temperature variation at the center of the layer is 

analyzed for both the cases. It is found that, the diffusion 

model with the conduction number 𝐹𝑇 = 1 reaches 

steady state first at time 𝜂 = 0.432, CV model and DPL 

model with 𝐹𝑇 < 1 reaches steady sate second at time 

𝜂 = 0.568 and DPL mode with 𝐹𝑇 > 1 reaches steady-

state finally at 𝜂 = 2.468.  
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