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Abstract  Öz 

An analytical model is developed to estimate the mechanical response 
of nonisothermal, orthotropic, variable thickness disks under a variety 
of boundary conditions. Combining basic mechanical equations of disk 
geometry with the equations of orthotropic material, the elastic 
equation of the disk is obtained. This equation is transformed into a 
standard hypergeometric differential equation by means of a suitable 
transformation. An analytical solution is then obtained in terms of 
hypergeometric functions. The boundary conditions used to complete 
the solutions simulate rotating annular disks with two free surfaces, 
stationary annular disks with pressurized inner and free outer surfaces, 
and free inner and pressurized outer surfaces. The results of the 
solutions to each of these cases are presented in graphical forms. It is 
observed that, for the three cases investigated the elastic orthotropy 
parameter turns out to be an important parameter affecting the elastic 
behavior 

 Bu çalışmada eş ısıl olmayan, ortotropik, değişken kesitli disklerin, farklı 
sınır koşulları altında mekanik davranışlarını tahmin edebilmek için 
analitik bir model geliştirilmiştir. Disk geometrisi için temel mekanik 
denklemleri, ortotropik malzeme denklemleri ile birleştirilerek elastik 
denklem elde edilmiştir. Bu denklem uygun bir dönüşüm tekniği ile 
standart hipergeometrik diferansiyel denkleme dönüştürülmüş ve 
bunun analitik çözümü hipergeometrik fonksiyonlar cinsinden 
bulunmuştur. Çözümü tamamlayan sınır koşulları, iki ucu serbest 
dönen, iç veya dış yüzeyden basınçlandırılmış durağan değişken kesitli 
disklerin benzetişimini sağlayacak şekilde seçilmiştir. Elde edilen 
sonuçlar grafiksel olarak sunulmuştur. Sonuçlar göstermiştir ki 
makalede incelenen her üç problem için de elastik ortotropi 
parametresi diskin elastik davranışını etkileyen en önemli parametre 
olarak ortaya çıkmıştır. 
 

Keywords: Orthotropic disk, Variable thickness, Thermoelasticity, 
Hypergeometric equation 

 Anahtar kelimeler: Ortotropik diskler, Değişken kesit, Termo 
elastisite, Hipergeometrik denklem   

1 Introduction 

The mechanical response of rotating and stationary disks has 
been treated extensively by researchers because of the 
importance of these structures in various branches of 
engineering [1]-[14]. It appears that most of these 
investigations involve isotropic or functionally graded disk 
materials. 

An orthotropic disk is the one in which the modulus of 
elasticity, E, and the Poisson’s ratio, ν, differ in radial and 
circumferential directions. The ratio of the modulus of elasticity 
in one direction to the other is considered as the measure of 
material orthotropy [15]. Wood is an example of a natural 
orthotropic material in which material properties in radial and 
circumferential directions are different [16],[17]. Graphite-
epoxy, glass-epoxy and plywood disks are among artificial 
orthotropic ones [15]. 

 Although to a lesser extent than isotropic disks, there appear 
numerable research articles on the subject of disk orthotropy 
in the literature. These are shortly mentioned here in 
chronological order. Dumir and Mehta [15] have numerically 
investigated the stresses in orthotropic, uniform thickness, 
annular disks under external or internal pressure. The stress 
response of rotating orthotropic uniform thickness circular 
plates has been studied by Tutuncu [18] using laminated plate 
theory. Jain et al. [19] have proposed a calculation procedure to 
design uniform strength orthotropic constant thickness disks 
by adjusting the elastic orthotropy parameter in the radial 
direction. In a similar work, Guven et al. [20] have determined 
transverse vibrations of an orthotropic, variable thickness, 
solid disk. The degree of orthotropy has been adjusted radially 

so that the corresponding stress component remained 
constant. The stresses in rotating, orthotropic, constant 
thickness, annular disks have been determined analytically by 
Callioglu [21] in existence of a prescribed radial temperature 
gradient. In a later work, Callioglu et al. [22] have derived an 
analytical solution to determine the stress response in uniform 
thickness, isothermal, annular, rotating disks in the partially 
plastic state of stress. In a more recent work, Nie et al. [23] have 
described material tailoring in the radial direction to design 
orthotropic, rotating, uniform thickness annular disks with 
either constant radial stress or hoop stress or in-plane shear 
stress. Creep analysis based on Hill’s yield criterion and 
Sherby’s law in orthotropic, variable thickness, rotating 
annular disks has been the subject of the investigation carried 
out by Gupta and Singh [24]. Recently, a general formulation 
has been realized by Lubarda [25] to investigate the elastic 
behavior of pressurized, orthotropic, annular disks, hollow 
cylinders and spherical shells. In the most recent work that 
appear in the literature, Eraslan et al. [26] have developed a 
computational model to analyze partially plastic stresses in an 
orthotropic variable thickness disk under external pressure. 
Using Hill’s quadratic yield criterion and a Swift type hardening 
law a nonlinear hardening material behavior has been 
simulated. 

This work deals with the analysis of stress and deformation in 
orthotropic disks under different boundary conditions. An 
analytical model is developed for this purpose. The fact that 
material properties vary in different coordinate directions in an 
orthotropic disk brings additional difficulty in the analytical 
treatment. A general derivation which takes into account 
orthotropy, thickness variability, and the existence of a radial 
temperature gradient is carried out. The variation of the disk 
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thickness along the radial direction is described by the 
thickness function h given by 

ℎ(𝑟) = ℎ0 [1 − 𝑛 (
𝑟

𝑏
)

𝑘

] (1) 

in which ℎ0 is the thickness at the center, 𝑟 the radial 
coordinate, 𝑏 the radius of the disk, 𝑛 and 𝑘 the thickness 
parameters. Considering this thickness profile and using the 
equation of equilibrium, the compatibility relation, an 
orthotropic form of Hooke’s law and the strain-displacement 
relations, the governing differential equation describing the 
elastic response of the disk is obtained in terms of a predefined 
stress function. The elastic equation turns into a familiar 
hypergeometric type by performing an appropriate 
transformation. The analytical solution is then obtained in 
terms of hypergeometric functions. Three different boundary 
conditions to model realistic loading conditions are handled. 

2 Formulation and solution 

2.1 Basic equations 

The equation of motion 

𝑑

𝑑𝑟
(ℎ𝑟𝜎𝑟) − ℎ𝜎𝜃 + ℎ𝜌𝜔2𝑟2 = 0, (2) 

the equations of the generalized Hooke’s Law 

𝜀𝑟 =
𝑑𝑢

𝑑𝑟
=

𝜎𝑟

𝐸𝑟
−

𝜐𝜃𝑟

𝐸𝜃
𝜎𝜃 , (3) 

𝜀𝜃 =
𝑢

𝑟
=

𝜎𝜃

𝐸𝜃
−

𝜐𝑟𝜃

𝐸𝑟
𝜎𝑟 , (4) 

the compatibility equation 

𝑑

𝑑𝑟
(𝑟𝜀𝜃) − 𝜀𝑟 = 0, (5) 

and the Maxwell relation 

𝜐𝜃𝑟

𝐸𝜃
=

𝜐𝑟𝜃

𝐸𝑟
, (6) 

form the basic equations of the problem [1]-[4]. In these 
equations 𝜎𝑟 and 𝜎𝜃 represent the radial and circumferential 
stress components, 𝜌 the mass density of the disk material, 𝜔 
the angular speed, 𝜀𝑟 and 𝜀𝜃 the radial and circumferential 
strains, 𝑢 the displacement in the radial direction, 𝐸𝑟 and 𝐸𝜃 the 
elasticity moduli in coordinate directions and 𝜐𝑟𝜃 and 𝜐𝜃𝑟 the 
Poisson’s ratios in coordinate directions. Introducing a ratio 
which will be referred to as the elastic orthotropy parameter 

𝑅 =
𝐸𝑟

𝐸𝜃
, (7) 

the Maxwell relation takes the form 

𝜐𝑟𝜃 = 𝑅𝜐𝜃𝑟 . (8) 

Accordingly, the total elastic strains can be written as 

𝜀𝑟 =
1

𝐸
(𝜎𝑟 − 𝜐𝜎𝜃) + 𝛼Δ𝑇, 

𝜀𝑟 =
1

𝐸
(𝜎𝑟 − 𝜐𝜎𝜃) + 𝛼Δ𝑇, 

(9) 

𝜀𝜃 =
1

𝐸
(𝑅𝜎𝜃 − 𝜐𝜎𝑟) + 𝛼Δ𝑇, (10) 

in which 𝛼 represents the coefficient of thermal expansion, Δ𝑇 
the temperature gradient in the radial direction, and 𝐸 = 𝐸𝑟 , 
𝜐 = 𝜐𝑟𝜃. At this stage, basic equations are put into their 
nondimensional and normalized forms for convenience. For 
this purpose, we use the following variables: the radial 

coordinate 𝑟 = 𝑟/𝑏, the thickness function ℎ = ℎ/ℎ0, the stress 

𝜎 = 𝜎/𝜎0, the angular speed Ω = 𝜔𝑏√𝜌/𝜎0, the strain  

𝜀 = 𝜀𝐸/𝜎0, the displacement 𝑢 = 𝑢𝐸/𝑏𝜎0, the coefficient of 
thermal expansion 𝛼 = 𝛼𝐸/𝜎0, where 𝜎0 is the yield strength of 
the disk material. From here on nondimensional variables are 
used without overbars for convenience. The equation of motion 
and the equations of Hooke’s law respectively take the forms 

𝑑

𝑑𝑟
(ℎ𝑟𝜎𝑟) − ℎ𝜎𝜃 + ℎΩ2𝑟2 = 0, (11) 

𝜀𝑟 =
𝑑𝑢

𝑑𝑟
= 𝜎𝑟 − 𝜐𝜎𝜃 + 𝛼Δ𝑇, (12) 

𝜀𝜃 =
𝑢

𝑟
= 𝑅𝜎𝜃 − 𝜐𝜎𝑟 + 𝛼Δ𝑇. (13) 

The nondimensional compatibility relation has a form similar 
to Eq. (5) as the overbars are not used. 

2.2 The elastic equation 

Introducing the stress function 

𝑌(𝑟) = ℎ𝑟𝜎𝑟 , (14) 

and using the equation equilibrium, Eq. (2), the stresses take 
the forms 

𝜎𝑟 =
𝑌

ℎ 𝑟
  ,    𝜎𝜃 = 𝑟2Ω2 +

1

ℎ

𝑑𝑌

𝑑𝑟
. (15) 

With stresses expressed in 𝑌 and with the nondimensional 
thickness function 

ℎ(𝑟) = 1 − 𝑛𝑟𝑘, (16) 

the elastic strains read 

𝜀𝑟 =
𝑌

𝑟(1 − 𝑛𝑟𝑘)
− 𝜈 (𝑟2Ω2 +

1

1 − 𝑛𝑟𝑘

𝑑𝑌

𝑑𝑟
) + 𝛼Δ𝑇, (17) 

𝜀𝜃 = −
𝜈𝑌

𝑟(1 − 𝑛𝑟𝑘)
+ 𝑅 (𝑟2Ω2 +

1

1 − 𝑛𝑟𝑘

𝑑𝑌

𝑑𝑟
) + 𝛼Δ𝑇. (18) 

The elastic equation is obtained by substitution of the strains 
into the compatibility relation, Eq. (5). The result is 

𝑟2(1 − 𝑛𝑟𝑘)
𝑑2𝑌

𝑑𝑟2 + 𝑟[1 − (1 − 𝑘)𝑛𝑟𝑘]
𝑑𝑌

𝑑𝑟
− [

1−(1−𝑘𝜐)𝑛𝑟𝑘

𝑅
] 𝑌  

= −
(1 − 𝑛𝑟𝑘)2(𝜐 + 3𝑅)Ω2𝑟3

𝑅
 

+
(1 − 𝑛𝑟𝑘)2𝑟2𝛼

𝑅

𝑑𝑇

𝑑𝑟
 . 

(19) 

2.3 Analytical solution 

The homogeneous part of the elastic equation is 
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𝑟2(1 − 𝑛𝑟𝑘)
𝑑2𝑌

𝑑𝑟2
+ 𝑟[1 − (1 − 𝑘)𝑛𝑟𝑘]

𝑑𝑌

𝑑𝑟

− [
1 − (1 − 𝑘𝜐)𝑛𝑟𝑘

𝑅
] 𝑌 = 0. 

(20) 

Using the transformation 𝑌(𝑟) = 𝜙(𝑧) with 𝑧 = 𝑛𝑟𝑘 we first 
derive  

𝑑𝑌

𝑑𝑟
= 𝑘𝑛𝑟𝑘−1

𝑑𝜙

𝑑𝑧
, (21) 

𝑑2𝑌

𝑑𝑟2 = 𝑘𝑛(𝑘 − 1)𝑟𝑘−2
𝑑𝜙

𝑑𝑧
+ 𝑘2𝑛2𝑟2(𝑘−1) 𝑑2𝜙

𝑑𝑧2  , (22) 

and replace 𝑟 with (𝑧/𝑛)1/𝑘  which is substituted into Eq. (20). 
After tedious simplifications we arrive at 

𝑧(1 − 𝑧)
𝑑2𝜙

𝑑𝑧2
+

𝑑𝜙

𝑑𝑧
− [

1 − 𝑧(1 − 𝑘𝜈)

𝑘2𝑅𝑧
] 𝜙 = 0. (23) 

This is a hypergeometric differential equation which assumes 
the exact solution 

𝜙(𝑧) = 𝐴 𝜙1(𝑧) + 𝐵 𝜙2(𝑧), (24) 

where 𝐴 and 𝐵 are arbitrary constants and 

𝜙1(𝑧) = 𝑧−
𝑀
𝑘 𝐹(𝛼, 𝛽, 𝛿; 𝑧), (25) 

𝜙2(𝑧) = 𝑧
𝑀
𝑘 𝐹(𝛼 − 𝛿 + 1, 𝛽 − 𝛿 + 1,2 − 𝛿; 𝑧). (26) 

In these equations 𝑀 = 1/√𝑅 and 𝐹(𝛼, 𝛽, 𝛿; 𝑧) is the 
hypergeometric function with the following arguments: 

𝐹(𝛼, 𝛽, 𝛿; 𝑧) = 1 +
𝛼𝛽

𝛿1!
𝑧 +

𝛼(𝛼 + 1)𝛽(𝛽 + 1)

𝛿(𝛿 + 1)2!
𝑧2 

 +
𝛼(𝛼+1)(𝛼+2)𝛽(𝛽+1)(𝛽+2)

𝛿(𝛿+1)(𝛿+2)3!
𝑧3+. . ., 

(27) 

𝛼 = −
1

2
−

𝑀

𝑘
−

𝑀√4(1 − 𝑘𝜐) + 𝑘2𝑅

2𝑘
 (28) 

𝛽 = −
1

2
−

𝑀

𝑘
−

𝑀√4(1 − 𝑘𝜐) + 𝑘2𝑅

2𝑘
 (29) 

𝛿 = 1 −
2𝑀

𝑘
 (30) 

The general solution to the elastic equation, Eq (19), can now 
be written as 

𝑌(𝑟) = 𝐶1𝑌1(𝑟) + 𝐶2𝑌2(𝑟) + 𝑌𝑃(𝑟), (31) 

in which 𝐶1 and 𝐶2 are constants, 𝑌1(𝑟), 𝑌2(𝑟) and 𝑌𝑃(𝑟) are two 
homogeneous and particular solutions, respectively. The 
homogeneous solutions take the form 

𝑌1(𝑟) = 𝑟−𝑀𝐹(𝛼, 𝛽, 𝛿; 𝑛𝑟𝑘), (32) 

𝑌2(𝑟) = 𝑟𝑀𝐹(𝛼 − 𝛿 + 1, 𝛽 − 𝛿 + 1,2 − 𝛿; 𝑛𝑟𝑘). (33) 

The method of variation of parameters is used to calculate 𝑌𝑃(𝑟) 
as 

𝑌𝑃(𝑟) = 𝑈1𝑌1 + 𝑈2𝑌2, (34) 

where 

𝑈1(𝑟) = ∫
𝑟

𝑎

𝐺1(𝜆)𝑑𝜆; 𝑈2(𝑟) = ∫
𝑟

𝑎

𝐺2(𝜆)𝑑𝜆, (35) 

with 𝑎 being the dimensionless inner radius and 

𝐺1(𝑟) = −
𝑌2(𝑟) 𝑓(𝑟)

𝑊(𝑟)
and  𝐺2(𝑟) = −

𝑌1(𝑟) 𝑓(𝑟)

𝑊(𝑟)
, (36) 

𝑓(𝑟) = −
(1 − 𝑛𝑟𝑘)(𝜐 + 3𝑅)Ω2𝑟

𝑅
−

𝛼

𝑅

𝑑𝑇(𝑟)

𝑑𝑟
, (37) 

𝑊(𝑟) = 𝑌1(𝑟)
𝑑𝑌2

𝑑𝑟
− 𝑌2(𝑟)

𝑑𝑌1

𝑑𝑟
. (38) 

As 𝑈1 and 𝑈2 have polynomial integrands, the integrals in Eq. 
(35) can be evaluated exactly by expanding them in series at 
Gaussian points: 

𝑈1(𝑟) =
𝑟 − 𝑎

2
∑

𝑁

𝑖=1

Φ𝑖 × 𝐺1 (
(𝑟 − 𝑎)𝑋𝑖 + 𝑟 + 𝑎

2
), (39) 

𝑈2(𝑟) =
𝑟 − 𝑎

2
∑

𝑁

𝑖=1

Φ𝑖 × 𝐺2 (
(𝑟 − 𝑎)𝑋𝑖 + 𝑟 + 𝑎

2
), (40) 

where Φ𝑖 ’s are the weights and 𝑋𝑖 ’s the roots. Note that 𝑈1(𝑎) =
𝑈2(𝑎) = 0, and as a result 𝑌𝑃(𝑎) = 0. 

The stresses and displacement are then determined from 

𝜎𝑟(𝑟) =
1

ℎ 𝑟
[𝐶1𝑌1(𝑟) + 𝐶2𝑌2(𝑟) + 𝑌𝑃(𝑟)], (41) 

𝜎𝜃(𝑟) = 𝑟2Ω2 +
1

ℎ
[𝐶1

𝑑𝑌1

𝑑𝑟
+ 𝐶2

𝑑𝑌2

𝑑𝑟
+

𝑑𝑌𝑃

𝑑𝑟
], (42) 

𝑢(𝑟) =
𝐶1

ℎ
[𝑟𝑅

𝑑𝑌1

𝑑𝑟
− 𝜈𝑌1] +

𝐶2

ℎ
[𝑟𝑅

𝑑𝑌2

𝑑𝑟
− 𝜈𝑌2]

+
1

ℎ
[𝑟𝑅

𝑑𝑌𝑃

𝑑𝑟
− 𝜈𝑌𝑃] 

+𝑅Ω2𝑟3 + 𝑟𝛼Δ𝑇. 
 

(43) 

It should be noted that according to the Hill’s quadratic yield 
condition, the yield stress 𝜎𝑌 is obtained from [27]. 

𝜎𝑌 = √𝜎𝑟
2 −

2𝑅∗

1 + 𝑅∗ 𝜎𝑟𝜎𝜃 + 𝜎𝜃
2, (44) 

where 𝑅∗ is another orthotropy parameter. When 𝑅∗ = 1, this 
criterion reduces to the well-known von Mises’s yield criterion. 
The elastic equation is valid as long as 𝜎𝑌 ≤ 1, and the elastic 
limit load corresponds to 𝜎𝑌 = 1. 

2.4 Evaluation of integration constants 

2.4.1 Rotating annular disk 

In the case of the rotating annular disk, the boundary conditions 
read 𝜎𝑟(𝑎) = 0 and 𝜎𝑟(1) = 0. Accordingly, integrating 
constants are found to be 

𝐶1 = −
𝑌𝑃(1)𝑌2(𝑎)

𝑌1(𝑎)𝑌2(1) − 𝑌1(1)𝑌2(𝑎)
 , (45) 

𝐶2 = −
𝑌𝑃(1)𝑌1(𝛼)

𝑌1(1)𝑌2(𝛼) − 𝑌1(𝛼)𝑌2(1)
. (46) 
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2.4.2 Disk subjected to internal pressure 

The boundary conditions in this case are 𝜎𝑟(𝑎) = −𝑃𝑖𝑛, and 
𝜎𝑟(1) = 0 where 𝑃𝑖𝑛 is the nondimensional internal pressure. 
Thus, the integration constants become 

𝐶1 =
𝑎𝑃𝑖𝑛ℎ(𝑎)𝑌2(1) − 𝑌2(𝑎)𝑌𝑃(1)

𝑌1(1)𝑌2(𝑎) − 𝑌1(𝑎)𝑌2(1)
, (47) 

𝐶2 =
𝑎𝑃𝑖𝑛ℎ(𝑎)𝑌1(1) − 𝑌1(𝑎)𝑌𝑃(1)

𝑌1(𝑎)𝑌2(1) − 𝑌1(1)𝑌2(𝑎)
. (48) 

2.4.3 Disk subjected to external pressure 

The conditions take the form 𝜎𝑟(𝑎) = 0 and 𝜎𝑟(1) = −𝑃𝑒𝑥  so 
that we determine 

𝐶1 =
𝑌2(𝑎)[𝑃𝑒𝑥ℎ(1) + 𝑌𝑃(1)]

𝑌1(𝑎)𝑌2(1) − 𝑌1(1)𝑌2(𝑎)
, (49) 

𝐶2 = −
𝑌1(𝑎)[𝑃𝑒𝑥ℎ(1) + 𝑌𝑃(1)]

𝑌1(𝑎)𝑌2(1) − 𝑌1(1)𝑌2(𝑎)
, (50) 

where 𝑃𝑒𝑥  represents the nondimensional external pressure. 

3 Results and discussion 

In the following calculations, Poisson’s ratio 𝜈 = 𝜐𝑟𝜃 = 0.3 and 
in the stress-displacement diagrams the solid lines represent 
the results of the orthotropic, variable thickness disk, whereas 
the dashed-lines represent the isotropic uniform thickness 
disk. 

The rotating annular disk yields at the inner surface 𝑟 = 𝑎. 
Since at this location 𝜎𝑟(𝑎) = 0, the yield condition, Eq. (44) 
reduces to 

𝜎𝑌 = 𝜎𝜃 . (51) 

Hence, the elastic limit turns out independent of the plastic 
orthotropy parameter 𝑅∗ and corresponds to 𝜎𝜃 = 1. For a 
uniform thickness isotropic annular disk of inner radius 
𝑎 = 0.4 the elastic limit angular speed is determined as  
Ω = 1.08274. The corresponding integration constants are 
calculated as 𝐶1 = −0.065 and 𝐶2 = 0.406213. Taking the 
parameter values 𝑅 = 1.4, 𝑛 = 0.4, 𝑘 = 0.8, the elastic limit 
angular speed for the orthotropic variable thickness rotating 
disk of the same inner radius is determined as Ω = 1.11906 
(The shape of the corresponding disk profile can be examined 
in App. A-(a)). The integration constants at this limit are 
𝐶1 = −0.0828 and 𝐶2 = 0.257816. The stresses and 
displacement at this limiting load are then calculated and 
plotted in Fig. 1 in comparison to those in the isotropic uniform 
thickness disk at its elastic limit. As seen in this figure, although 
the stresses are not affected to a great extent by orthotropy and 
thickness variability, the effect on the displacement is obvious.  

To investigate the effect of the elastic orthotropy parameter 
𝑅 = 𝐸𝑟/𝐸𝜃 on the elastic limit rotating speed, a parametric 
analysis is carried out. An orthotropic disk of inner radius  
𝑎 = 0.25 accompanied by the parameter values 𝑛 = 0.5 and 
𝑘 = 1.2 is taken into consideration. The elastic limit rotation 
speeds are calculated for different values of 𝑅 in the range  
0.5 < 𝑅 < 1.5. The results of these calculations are plotted in 
Fig. 2. As seen in this figure, the elastic limit angular speed 
decreases with the increasing value of the parameter 𝑅. 
However, the change in the limiting speed is not more than 7%  

in the range considered. 

 

Figure 1: The states of stress and displacement in rotating 
annular disks at corresponding elastic limits. 

 

Figure 2: Variation of the elastic limit angular speed with the 
parameter 𝑅 = 𝐸𝑟/𝐸𝜃. 

Like the rotating annular disk, the stationary annular disk 
subjected to internal pressure yields at the inner surface. Since 
at this location 𝜎𝑟(𝑎) = −𝑃𝑖𝑛 ≠ 0, yielding takes place 
according to the Hill’s quadratic yield condition given by Eq. 
(44). Hence, the plastic orthotropy parameter 𝑅∗ is effective in 
this case. Note that 𝑅∗ = 1 for the isotropic disk. The elastic 
limit internal pressure for a uniform thickness isotropic 
annular disk of inner radius 𝑎 = 0.4 is determined as  
𝑃𝑖𝑛 = 0.482918. The corresponding integration constants are 
𝐶1 = −0.092 and 𝐶2 = 0.092. The orthotropic variable 
thickness disk of the same inner radius possessing the 
parameters 𝑅 = 0.5, 𝑅∗ = 1.1, 𝑛 = 0.4, 𝑘 = 0.6 reaches the 
elastic limit when 𝑃𝑖𝑛 = 0.405606. Under this load, the 
integration constants take the values 𝐶1 = −0.0468 and 
𝐶2 = 0.039. The corresponding states of stress and 
displacement are compared in Fig. 3. Again, the difference in the 
displacement is apparent. The effects of both orthotropy 
parameters 𝑅 and 𝑅∗ can be visualized in Fig. 4. The parameters 
for this disk are chosen to be 𝑎 = 0.25, 𝑛 = 0.5 and 𝑘 = 1.2 (The 
corresponding disk profile can be seen in App. A-(b)). As seen 
in Fig. 4, the increase in 𝑅 increases the elastic limit internal 
pressure, and conversely the increase in 𝑅∗ reduces this 
pressure.  
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Figure 3: The states of stress and displacement in stationary 
annular disks subjected to internal pressure at corresponding 

elastic limits. 

 

Figure 4: Variation of the elastic limit internal pressure with 
the parameter 𝑅 = 𝐸𝑟/𝐸𝜃 using 𝑅∗ (see Eq. (44)) as another 

parameter. 

Finally, we consider stationary disks under external pressure. 
The inner surface is the location of the maximum principal 
stresses. The yield criterion is the one in Eq. (51) as 𝜎𝑟 = 0 at 
this location. The elastic limit external pressure is independent 
of 𝑅∗. For the stationary constant thickness isotropic disk of  
𝑎 = 0.4 the elastic limit external pressure is determined to be 
𝑃𝑒𝑥 = 0.42 which corresponds to the constants 𝐶1 = 0.08 and 
𝐶2 = −0.5. On the other hand, this limit is 𝑃𝑒𝑥 = 0.570813 for 
an orthotropic variable thickness disk of 𝑎 = 0.4, 𝑅 = 0.7,  
𝑛 = 0.4, 𝑘 = 1.2. The corresponding integration constants for 
the orthotropic disk are calculated as 𝐶1 = 0.0543 and  
𝐶2 = −0.881925. The stresses and displacement in this loading 
are plotted in Fig. 5. As can be seen in this figure, the stresses 
differ considerably at the outer surface, i.e. at the pressurized 
surface in accordance with the different 𝑃𝑒𝑥  values for isotropic 
and orthotropic disks. 

For an orthotropic disk having the parameters 𝑎 = 0.25,  
𝑛 = 0.5 and 𝑘 = 1.2 the effect of the elastic orthotropy 
parameter 𝑅 on the elastic limit external pressure can be 
visualized in Fig. 6. As seen in this figure, the elastic limit 
pressure decreases notably with the increasing value of the 
parameter 𝑅. 

 

Figure 5: The states of stress and displacement in stationary 
annular disks subjected to external pressure at corresponding 

elastic limits. 

 

Figure 6: Variation of the elastic limit external pressure with 
the parameter 𝑅 = 𝐸𝑟/𝐸𝜃. 

4 Conclusion 

In this work concise analytical treatments of orthotropic 
variable thickness disk problems in the elastic state of stress 
are presented. In the formulation the ratio of the modulus of 
elasticity in radial direction to the one in circumferential 
direction, i.e. 𝐸𝑟/𝐸𝜃 , is considered as the elastic material 
orthotropy parameter and is denoted by 𝑅. The analytical 
solution derived is applied to simulate rotating annular disks 
with two free surfaces and stationary annular disks with 
pressurized and free surfaces. Elastic limit loads are  
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determined by the use of Hill’s quadratic yield criterion 
described by Eq. (44), which contains another orthotropy 
parameter shown by 𝑅∗.  

The stress state diagrams indicate that, for the three cases 
investigated, the inner surface of the disk is critical in the sense 
that the difference between the principal stresses takes its 
maximum value at that location. In case of rotating orthotropic 
variable thickness annular disks with two free surfaces, it is 
observed that, the elastic limit angular speed depends only on 
the elastic orthotropy parameter 𝑅. The elastic limit angular 
speed decreases with increasing value of 𝑅. The stationary 
annular orthotropic disk subjected to internal pressure yields 
at the inner surface and the plastic orthotropy parameter 𝑅∗ in 
Hill’s yield criterion is effective in this case. A parametric study 
reveals that the increase in 𝑅 increases the elastic limit internal 
pressure, and conversely the increase in 𝑅∗ reduces this 
pressure. In case of the stationary annular orthotropic disk 
subjected to external pressure the elastic limit pressure turns 
out to be independent of 𝑅∗ like in the rotating disk. However, 
the limit depends strongly on the elastic orthotropy parameter 
𝑅 such that it decreases notably with the increasing value of the 
parameter 𝑅. 
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Appendix A 

Disk profiles for different parameters are given in the following 
figures in which dimensionless disk profile is plotted against 
dimensionless radial coordinate for each. 

 

a: Disk profile for the parameters n=0.4, k=0.8. 

 

b: Disk profile for the parameters n=0.5, k=1 -1
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