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Abstract— Fractional calculus has gained increasing attention 
from researchers because of providing accurate modelling and 
flexible controller design in control applications. More research to 
design controllers for Fractional Order Two-Input Two-Output 
(FOTITO) systems, which inherently have certain difficulties, is 
needed when the studies on such control applications are reviewed. 
In this study, Coefficient Diagram Method (CDM) based 
decentralized controllers are designed for FOTITO systems. To this 
end, integer order approximate models of FOTITO systems are 
obtained and decoupled into two subsystems by using simplified and 
inverted decoupling configurations. The resulting higher-order 
approximate subsystem transfer functions are reduced by a model 
reduction method to facilitate CDM-based decentralized controllers 
design. Then, CDM-based decentralized controllers are designed by 
using each subsystem, which enable to control the FOTITO system. 
Simulation results for two different FOTITO systems, one of which 
is time delayed, show that the proposed approach exhibits successful 
performance. 
 

 
Index Terms— Coefficient Diagram Method, Decentralized 

Controller, Fractional Order Systems 
 

I. INTRODUCTION 

NDUSTRIAL SYSTEMS generally consist of multiple-input 
multiple-output (MIMO) processes which contain 

multivariable and multiple loops. MIMO systems have 
complicated loops that cause difficulties on the control of such 
systems. These complicated loops, where an input variable 
affects all output variables, can lead to unexpected interaction 
problems [1]. 
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 The interaction problems arising in these systems can 
adversely affect control performance of the system. For this 
reason, it is necessary to consider the interaction problem when 
designing controllers for MIMO systems. One of the techniques 
to eliminate the interaction problem and simplify the controller 
design is the decoupling technique [2], [3]. Decoupling 
techniques provide that the MIMO systems are decomposed into 
single-input single-output (SISO) subsystems by extra decouplers 
included into the systems, and they enable the design of 
decentralized controllers for each loop  by considering the 
interaction problems [4]. Various methods such as ideal, 
simplified and inverted decoupling have been given for  the 
decoupling of systems in the literature [5]–[7]. Among these 
methods, simplified and inverted decoupling methods are more 
preferred in applications due to their simplicity [3], [8], [9]. 

Decoupling methods and formulations are generally applied to 
two-input two-output (TITO) systems, which are the simplest 
type of the MIMO systems. Thus, various control strategies 
developed for TITO systems, which  are relatively less complex 
and easily configurable, can also be generalized for MIMO 
systems [10]. There are many studies on the design of 
decentralized controllers for TITO systems using decoupling 
methods. For example, decentralized controller design based on 
Characteristic Ratio Assignment (CRA) for TITO systems, which 
use conventional decoupling method, was presented in [11]. A 
decentralized PID controller technique was suggested for TITO 
systems which used reduced models of diagonal elements 
according to Nyquist plots fitting [12]. An internal model control 
strategy was proposed for TITO systems by using conventional 
and inverted decoupling methods [13]. Stability regions of 
decentralized PI controllers for TITO systems were obtained to 
calculate all stabilizing controller parameters [8]. 
 Fractional order differential equations more accurately 

represent the model of a dynamic system [14]. In this direction, 

various fractional order models have been developed for TITO 

systems [15]–[17]. Although the fractional order calculus has the 

advantage of yielding more accurate modeling for dynamic 

systems, analysis and control of such systems can be quite 

difficult due to their complexity. Some studies on the fractional 

order TITO (FOTITO) control systems have been presented in 

the literature. For example, simplified, inverted and ideal 

decoupling techniques were expanded for FOTITO systems 

considering properness and frequency dependent RGA (relative 

gain array) [16]. An FOTITO model, which has more accurate 
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time response, for a prototype of a hydraulic canal was proposed 

by using experimental data [18]. All stabilizing parameters of 

decentralized PI controllers for an FOTITO thermo-electric 

temperature process model, which uses inverted and simplified 

decoupling, were presented [9]. A fractional order IMC (Internal 

Model Control) methodology, which exhibits robust performance 

for set point tracking and disturbance rejection, was suggested 

for FOTITO systems [15]. In another study, fixed low order 

decentralized controllers were given for FOTITO systems by 

using optimization according to CRA (Characteristic Ratio 

Assignment) method [17]. There is a need for more research and 

development of control algorithms for FOTITO control systems 

which allow to obtain better and more accurate mathematical 

models.  

 In current study, decentralized controllers are designed for 

FOTITO systems by using the Coefficient Diagram Method 

(CDM) [19]. Integer order approximate models of FOTITO 

systems are obtained by using the M-SBL fitting approximation 

method [20]. Then, the subsystem models, which are configured 

with simplified and inverted decoupling methods, are used to 

design decentralized controllers. Since these decoupled 

approximate models become higher order models, they are 

transformed to more practicable models suitable for CDM by 

using a model reduction method [21]. CDM has generally been 

used to design controllers for SISO systems [19], [22]–[25].  

Since industrial systems consist of MIMO systems, CDM based 

controller design has been extended to MIMO systems. In one of 

Manabe’s studies on MIMO systems [26], CDM was used to 

control a dual-control surface missile. In the same study, Manabe 

additionally decomposed MIMO systems into single-input 

multiple-output (SIMO) systems and performed controller design 

by applying the CDM design procedure to each SIMO system. 

Similarly, in another study [27], Manabe applied the CDM in the 

control of a fighter with dual control surfaces, which consists of a 

MIMO system. Also, decentralized controller design [28], 

decentralized PI controller [29], [30] and PID controller [31] 

designs by using CDM were presented for TITO systems. In this 

study, unlike the others, the systems are fractional order systems 

which bring design difficulties due to its nature. 

The main advantage of CDM is the ability to predefine 
specifications of time response such as settling time and 
overshoot during the design process [25]. Thus, CDM offers the 
possibility to guarantee a simple and robust controller design 
[25]. The basic properties of CDM are briefly as follows; i) 
There is a little or no overshoot. ii) Two degrees of freedom 
(2DOF) control system is used. iii) It has robust performance to 
changes in parameters and limited uncertainties in the control 
system. iv) It provides convenience to the designer thanks to the 
predefined settling time [22]–[25]. In this study, CDM based 
decentralized controllers are designed for two different FOTITO 
systems, and simulation results validate that the proposed 
approach provides good performance. 

 

II. FRACTIONAL ORDER TITO SYSTEMS AND DECOUPLING 

METHODS 

A FOTITO system can be expressed as a transfer function matrix 

given below. 

     
   

11 12

21 22

G s G s
G s

G s G s

 
  
 

 (1) 

 
where each element of transfer function matrix 
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    can be expressed as fractional-order 

transfer functions for ,i j R   , , 1, 2i j  . 

   1ij ijs

ij ij ijG s K e T s
    can be expressed as a fractional 

order system with time delay. The time delay should be 
considered while applying the decoupling techniques to FOTITO 

systems. In this context, if 11 12   and 22 21  , the decoupler 

becomes causal and can be realized easily [32]. 
 When the system is an FOTITO process, decoupling methods 

can be applied to facilitate the design of the controllers by 

considering the interaction problem [16]. The most well-known 

decoupling methods are ideal, simplified and inverted decoupling 

methods [33]. Researchers should decide on the selection of the 

decoupling method for the system by considering the advantages 

and disadvantages of these methods. The advantage of ideal 

decoupling is that the controller transfer matrix is very easy to 

determine, the disadvantage is that it has realization problems 

due to the complexity of the decoupler elements [34]. In 

simplified decoupling, the values of the diagonal elements of the 

decoupler matrix are assumed to be 1, so it is easy to determine 

the decoupling elements. Weischedel et al. [6] observed that 

simplified decoupling is more robust compared to ideal 

decoupling in their study. The inverted decoupling has a 

combination of the positive properties of ideal and simplified 

decouplings [7]. In this study, the simplified and inverted 

decoupling methods are applied to FOTITO systems. Fig. 1 

shows the block diagrams of simplified and inverted decoupling 

methods.  

The decoupling transfer function matrix  D s  and the diagonal 

transfer function matrix  T s  can be written as follows [33], 

 
   
   

11 12
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D s D s
D s

D s D s
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                    
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2

0

0

T s
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 
  
 

 (3) 

The decoupler transfer function matrix of the simplified and 

inverted decouplings are the same and expressed as follows: 

     
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 (4) 
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The diagonal transfer matrix  T s  of the simplified decoupling 

is calculated by using Equations (1), (3) and (4) as follows:  

 
     

 

     
 

12 21
11

22

12 21
22

11

0

0

G s G s
G s

G s
T s

G s G s
G s

G s

 
 

   
 
  

 (5) 

The diagonal transfer matrix  T s  of the inverted decoupling is 

calculated as: 

 
 

 
 
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2 22
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 (6) 

The diagonal transfer matrix of the controller  C s  is defined as  
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 Fig.1. a) Simplified decoupling, b) Inverted decoupling 

 

 

FOTITO system is decoupled into two SISO subsystems by 

using simplified and inverted decoupling, and the transfer 

function of each subsystem is denoted as  iT s , and its controller 

is denoted as  iC s  for  1,2i  .  

Block diagram of each subsystem is given in Figure 2. 

+

-ir iy
iC iT

 
Fig.2. Feedback control system for subsystems. 

 

III. COEFFICIENT DIAGRAM METHOD 

 Coefficient Diagram Method developed by Manabe in 1991 

[19], is an algebraic method that is used to design a high order 

controller. CDM is a polynomial approach where the numerator 

and denominator polynomials of the transfer function of the 

system are treated independently. The advantage of the CDM 

based control system is to predefine settling time and maximum 

overshoot at the beginning of the design task [25]. 

 CDM based configuration illustrated in Fig. 3 has a two-

degree of freedom control system, which can better perform in 

respect to set-point tracking and disturbance rejection [35]. 
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Fig.3. CDM based control system 

 

In the CDM based control system in Fig. 3,  N s  and  D s  are 

numerator and denominator polynomials of the plant transfer 

function  G s , respectively.  A s  is denominator of the 

controller,  B s  is feedback numerator of the controller, and 

 F s  is the reference numerator of the controller [19]. 

The output of this control system can be written as follows [25]. 

   
 

   
 

N s F s A s N s
y r d

P s P s
   (8) 

Characteristic polynomial of the closed loop system is 
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where the controller polynomials  A s  and  B s  are defined as 
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Reference numerator of the controller  F s  is 
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There is an important point to be considered in the selection of 

 A s  and  B s  polynomials. In order to achieve the desired 

time response performance, if the system transfer function does 

not include an integrator, 0 0l   should be selected to completely 

eliminate the effects of the disturbance [28]. 

CDM design parameters are expressed with equivalent time 

constant  , stability index i  and stability limit index *
i  [19]. 

They can be written in terms of the coefficients of the 

characteristic polynomial as follows: 

 

1

0
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a
  ,    
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i i

i n
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i i

  
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      

(12) 

 

Manabe proposed that the stability indexes are selected as 

1 2.5,   2i   and 0 n    for  2 ~ 1i n   so that CDM 

based controller design provides the desired performance [19]. 

These proposed values can be changed to achieve the desired 

control performance according to 1.5i   for all  1 ~ 1i n   

[28]. Using these parameters, the coefficients of the characteristic 

polynomial are determined as follows: 

0
2 1

1 2 1.

i

i i
i i

a
a


   

 




 (13) 

According to the standard Manabe form [19], the settling time is 

calculated with  / 2.5 ~ 3st  . After determining the desired 

settling time and stability indexes of the system, the target 

characteristic polynomial is defined with the equation given 

below [28]. 

 

   
1

target 0
2 1

1
1

in
i

j
i j i j

P s a s s 




  

               
   (14) 

By matching the target characteristic polynomial to the 

characteristic polynomial of the system, the controller parameters 

ik  and il  can be calculated as follows. 

         targetA s D s B s N s P s   (15) 

When the CDM based control system is adapted to the 2DOF 

control system as given in Fig. 4, it exhibits better performance 

for set point tracking and disturbance rejection [22]  

 

+

 1C s+r e u
d

y

-
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Fig. 4. Two-degree-of-freedom (2DOF) control system 

 

The controllers  1C s  and  2C s  are defined by using the CDM 

polynomials as follows: 

 

   
 1 ,

B s
C s

A s
    

 2

F s
C s

B s
  (16) 

This modification, which is made according to the 2DOF control 

system, facilitates the use of CDM in FOTITO systems with 

decoupling. The simplified and inverted decoupling block 

diagrams can be redesigned by using the 2DOF structure [31] as 

shown in Fig. 5, respectively. In Equation (16),  11C s  and 

 12C s  correspond to  1C s  and  2C s  for r1-y1 relation and 

 21C s  and  22C s correspond to  1C s  and  2C s   r2-y2 

relation, respectively. 

 

 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 5. Modified FOTITO systems based on 2DOF control: a) simplified 
decoupling b) inverted decoupling.  

 

IV. APPROXIMATE MODELS FOR IMPLEMENTING FRACTIONAL 

ORDER TRANSFER FUNCTIONS 

The realization of fractional order derivative and integrator 

operators is inherently difficult due to their long memory effects 

[36]. Therefore, approximate integer order models of fractional 

order operators are used in the realization task. Several 

approximation methods such as Oustaloup’s method [37], 

Matsuda’s method [38], SBL (Stability Boundary Locus) fitting 

method [39] and its modified version M-SBL (Modified Stability 

Boundary Locus)  fitting method [20] were presented in the 

literature to obtain these approximate models. In this study, 
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authors prefer to use the M-SBL fitting approximation method 

[20], which is based on fitting the stability boundary curves of 

the fractional order operator with its integer order approximation 

model. Thus, it can be ensured that the integer order approximate 

models can preserve stabilization of fractional order transfer 

functions in the realization process [40]. 
Using M-SBL fitting approximation method, one can obtain an 

nth integer order approximate model for a fractional order 

derivative operator s  in a desired frequency range [ , ]l h    

rad/sec as follows: 

1 0
0 1 1

1 0
1 1 0

.......

.......

n n
n n

n n
n n

a s a s a s a s
s

a s a s a s a s








   


   
, 0 1   (17) 

The M-SBL fitting Matlab function [41] is used to obtain the 

integer order approximate transfer functions of the fractional 

order derivative operators. This subject was studied in  [20] 

comprehensively. 

 

V. SUB-OPTIMAL MODEL REDUCTION 

The sub-optimal model reduction is a reduction method based on 

optimization, and its algorithms are simple [21]. This method 

reduces the size of the coefficient matrix of the system while 

preserving the dominant eigenvalues or most important states of 

the original system. Target of the model reduction method is that 

it can easily reduce the model to the most realistic and desired 

degree [21]. 
ISE (Integral Square Error) criterion commonly used in 

determining the quality of the reduced model according to the 

error signal  e t  is expressed as follows. 

 2

0

ISEI e t dt


   (18) 

Using the ISE criterion, the error rate is minimized, and the 

model reduction problem is converted into an optimization 

problem. The approximate error of the model can be written as 

 ˆ ,e t   for a particular original model and input signal. The sub-

optimal model reduction objective function can be given as 

follows: 

   2 2

0

ˆmin ,J t e t dt


 
 

  
 
  (19) 

where  t  is the weighting function, 

 1 1 1,..., , ,..., ,
T

k r       is the parameter vector. In this 

study, the sub-optimal Matlab function algorithm given in [21] is 

used to reduce the high order transfer functions to the models of 

desired orders.  

 

VI. SIMULATION RESULTS 

In this section, two examples are given to demonstrate the 

decentralized controller design by using the coefficient diagram 

method for FOTITO systems. At first, the integer order 

approximate models of the FOTITO systems are obtained by 

using the M-SBL fitting approximation method. Then, the 

FOTITO systems are decoupled into two subsystems by 

appropriate decoupling methods. The integer order approximate 

models are remarkably high order models and not suitable for 

CDM based decentralized controller design. For this reason, the 

approximate models are brought into suitable forms for the 

design by using the mentioned model reduction method. Finally, 

the CDM based decentralized controller design procedure is 

applied. 

 

Example 1: Let us consider an FOTITO system [17] which has 

the transfer function matrix 

 
1.4 0.7 1.4 0.7

1.4 0.7 1.4 0.7

1 1

2 1 0.5 0.5
0.5 1

0.5 0.5 0.4 0.5 1.2

s s s sG s

s s s s

 
      
 
     

 (20) 

 

M-SBL fitting approximation method is applied to obtain 4th 

integer order approximate models of fractional order operators 

s  in the frequency range 1 110 ,10     rad/sec, and by using 

this approximate models, integer order approximate transfer 

functions of FOTITO systems are calculated as high order 

transfer functions. Details are given in appendix. 

High order transfer functions complicate the design of the CDM 

based decentralized controller. Therefore, using the sub-optimal 

model reduction method [21], the reduced transfer function 

matrix elements are obtained as follows. 
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r

s s
G s

s s s

 


  
 (21) 

   
2

12 3 2

0.4273 1.168 0.1387

1.584 0.7806 0.07191
r

s s
G s

s s s

 


  
 (22) 

 
2

21 3 2

0.2059 2.764 0.3635

4.879 3.162 0.3043
r

s s
G s

s s s

 


  
 (23) 

            
2

22 3 2

0.1995 15.54 2.569

20.35 24.9 3.178
r

s s
G s

s s s

 


  
 (24) 

 

Fig. 6 shows that step responses of the fractional order transfer 

matrix elements in Equation (20), their integer order approximate 

transfer functions and their reduced transfer functions match 

successfully. Step responses of the fractional order transfer 

functions are obtained by using fotf function in [21]. Considering 

the matching of the unit step responses, the 2nd degree numerator 

and the 3rd degree denominator polynomials were used.  
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Fig. 6. The step responses of the fractional order transfer matrix elements Gfij(s), 

their integer order approximate transfer functions Gij(s), and their reduced 

transfer functions Grij(s). 

 

In this example, the system is decoupled with simplified 

decoupling to eliminate the interaction. Thus, the decoupler 

matrix elements of simplified decoupling, which are calculated 

with equation (4) by using the reduced transfer functions, are 

obtained as follows: 

   
 

5 4 3

2
12

12 5 4 3
11

2

0.4273 1.845 2.323

1.162 0.1923 0.009972

0.2136 0.9225 1.161

0.5811 0.09613 0.004986

r
r

r

s s s

G s s s
D s

G s s s s

s s

  

   
 

 

  

 (25) 

   
 

5 4 3

2
21

21 5 4 3
22

2

0.2059 6.955 61.74

76.87 17.83 1.155

0.1995 16.51 79.01

61.72 12.85 0.7818

r
r

r

s s s

G s s s
D s

G s s s s

s s

  

   
 

 

  

 (26) 

The diagonal transfer matrix elements are calculated by using the 

approximate transfer functions of the FOTITO system in 

Equation (20). Since the obtained transfer functions are 

remarkably high order, the diagonal transfer matrix elements are 

redefined as follows using model reduction.  

      

 
2

1
1 3 2

1

( ) 0.03348 0.557 0.09187

( ) 1.126 0.4854 0.04872
r

r

r

N s s s
T s

D s s s s

 
 

  
 (27) 

 
2

2
2 3 2

2

( ) 0.01349 1.522 0.2131

( ) 2.466 1.405 0.1348
r

r

r

N s s s
T s

D s s s s

 
 

  
 (28) 

After the suitable transfer functions are defined, the task of 

designing a CDM based decentralized controller can be 

performed.  The numerator and denominator polynomials of the 

transfer functions  1rT s  and  2rT s are given in the above 

equations. 

According to Equation (10), polynomials  A s  and  B s  can be 

defined as follows. 

  3 2
3 2 1 0A s l s l s l s l     (29) 

  3 2
3 2 1 0B s k s k s k s k     (30) 

where 0 0l    is used to provide the disturbance rejection on the 

system [28]. 

The characteristic polynomial of the CDM control system, which 

consists of decentralized controller parameters and the subsystem 

transfer function  1rT s , can be written as 

    
  

3 2 1 3 2
3 2 1

3 2 1 2
3 2 1 0

1.126 0.4854 0.04872

0.03348 0.557 0.09187

P s l s l s l s s s s

k s k s k s k s s

     

     
 (31) 

The target characteristic polynomial, which is determined with 
CDM parameters 10  , 1 3.4  , 2 2   3 2  , 4 2  , 

5 2  , is obtained as 

 

  6 5 4
target

3 2

2.149 11.69 31.8

43.25 29.41 10 1

P s s s s

s s s

  

   
 (32) 

By matching Equation (31) and Equation (32), the polynomials 
of the decentralized controller are obtained as follows: 
 

  3 22.1490 11.6124 18.0864A s s s s    (33) 

  3 269.9564 95.5171 52.4465 10.8849B s s s s      (34) 

In addition,   10.8849F s    can be calculated by using 

Equation (11). The decentralized controllers  11C s  and  12C s  

given in Fig. 5a are obtained as follows: 
                            

 
3 2

11 3 2

69.9564 95.5171 52.4465 10.8849

2.1490 11.6124 18.0864

s s s
C s

s s s

   


 
 (35) 

 

 12 3 2

10.8849

69.9564 95.5171 52.4465 10.8849
C s

s s s



   

 (36) 

 
The characteristic polynomial for the CDM control system using 

the subsystem  2rT s  is calculated as follows: 

    
  

3 2 1 3 2
3 2 1

3 2 1 2
3 2 1 0

2.466 1.405 0.1348

0.01349 1.522 0.2131

P s l s l s l s s s s

k s k s k s k s s

     

     
 (37) 

Substituting the 10  , 1 4.5  , 2 2.2  , 3 2  , 4 2  , 

5 2   parameters in Equation (14), the target characteristic 

polynomial is obtained as follows: 
 

  6 5 4
target

3 2

0.3615 2.863 11.34

22.45 22.22 10 1

P s s s s

s s s

  

   
 (38) 

Polynomials of the decentralized controller 

  3 20.3615 2.1044 9.0065A s s s s   ,   4.6926F s    and 
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  3 29.8547 26.1558 19.1079 4.6926B s s s s      are 

computed for  2rT s  by using Equation (37) and Equation (38). 

The decentralized controllers  21C s  and  22C s  given in Fig. 

5a are obtained as follows: 
                                  

 
3 2

21 3 2

9.8714 26.1920 19.1222 4.6926

0.3615 2.1047 9.0291

s s s
C s

s s s

   


 
 (39) 

 22 3 2

4.6926

9.8714 26.1920 19.1222 4.6926
C s

s s s



   

 (40) 

 

A unit step function with an amplitude of 0.1 at 50t  sec is 

given to the FOTITO system as a disturbance signal. When the 

FOTITO system is performed with CDM based decentralized 

controllers, the unit step responses are obtained as given in Fig. 

7. 

 
Fig. 7. The step responses of the FOTITO system with simplified decoupling 

 

The unit step responses obtained for the subsystems  1rT s , 

 2rT s  and the FOTITO system are shown in Fig. 7. It can be 

seen from this figure that the CDM-based decentralized 

controllers obtained for the subsystems provide successful 

performance when placed in the FOTITO system using 

simplified decoupling. 

 
Fig 8. Control signals generated by the FOTITO system with simplified 

decoupling 

 

The control signals generated by the decentralized controllers in 

the FOTITO system are given in Fig.8. Although the previous 

studies that controllers can be unstable in control systems with 

CDM [22], the control signals of the FOTITO system are 

acceptable in terms of saturation limits. 

The performance values of the step responses shown in Fig. 7 are 

listed in Table I. As seen in Table I and Fig. 7, the system 

controlled by the CDM based decentralized controllers exhibits a 

successful control performance in respect to the settling time and 

maximum overshoot.  In addition, when a disturbance signal is 

applied to the system, the CDM based decentralized controllers 

provide satisfactory disturbance rejection. 

 
TABLE I  

PERFORMANCE VALUES OF THE STEP RESPONSES IN FIG. 7 

 
PERFORMANCE 
VALUES 

 
FOTITO

1y   

 
FOTITO

2y  

 
Subsystem 

1y  

 
Subsystem 

2y  

Settling Time 7.4843 7.0743 7.6272 6.3575 
Maximum 
Overshoot (%) 

0.3338 0 0.5021 0.0180 

 

In this example, the stability index and equivalent time constant 

values, which are different from the values proposed by Manabe, 

are used to achieve better time response performance. Settling 

time and maximum overshoot are obtained as given in the Table 

I according to the selected values. Depending on the selected 

values, it can be seen that the ratio between st  and   suggested 

by Manabe [19] is relatively smaller. One can say that better 

results can be obtained depending on the selected stability index 

values and equivalent time constant. 

 
Example 2: Consider the following FOTITO system with time 

delay as given in [15],  

   

 

0.2 0.3

0.5 0.7

0.4 0.3

0.8 0.6

1.2 0.6

2 1 3 1

0.5 1.5

1 3 1

s s

s s

e e

s sG s
e e

s s

 

 

 
   
 
   

 (41) 

Similar to the example 1, 4th integer order approximate models of 

fractional order operators s  in the frequency range 
1 110 ,10     rad/sec are obtained by using the M-SBL fitting 

approximation method. Then, the integer order approximate 

transfer functions of the FOTITO system are calculated by using 

the obtained 4th order approximate models (in appendix), and 1st 

order Pade approximation [22] is used for time delay elements.  

The following reduced transfer functions are obtained by 

applying the sub-optimal model reduction method [21] to integer 

order approximate transfer functions to facilitate controller 

design with CDM. 

 

 11 4 3 2

117.2 16.57

4.879 180.9 209.1 16.89
r

s
G s

s s s s




   
 (42) 
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 12 4 3 2

8.648 1.36

4.155 50.41 31.25 2.519
r

s
G s

s s s s




   
 (43) 

 21 4 3 2

10.61 2.009

5.885 31.61 29.91 4.092
r

s
G s

s s s s




   
 (44) 

 22 4 3 2

28.6 4.112

3.859 63.93 45.47 3.289
r

s
G s

s s s s




   
 (45) 

 
Fig. 9. The step responses of the fractional order transfer matrix elements Gfij(s), 

their integer order approximate transfer functions Gij(s), and their reduced 

transfer functions Grij(s). 

 

Fig. 9 shows step responses of the fractional order transfer matrix 

elements in Equation (41), their integer order approximate 

transfer functions and their reduced transfer functions. One can 

say that the step responses match satisfactorily. 
 

In this example, the system is decoupled with inverted 

decoupling method. When reduced transfer functions are 

substituted in Equation (4), decoupler transfer function matrix 

elements are calculated as follows. 

 

 

5 4 3

2

12 5 4 3

2

8.648 43.56 1571

2055 430.4 22.97

117.2 503.6 5977

4497 813 41.74

r

s s s

s s
D s

s s s

s s

  

  


 

  

 (46) 

       

5 4 3

2

21 5 4 3

2

10.61 42.96 686.2

611 126.3 6.608

28.6 172.5 928.3

985.4 240 16.83

r

s s s

s s
D s

s s s

s s

  

  


 

  

 (47) 

The subsystem transfer functions of the FOTITO system given in 

Equation (41) are obtained as follows for the inverted 

decoupling. 

                           

 11 4 3 2

117.2 16.57

4.879 180.9 209.1 16.89
r

s
T s

s s s s




   
 (48) 

 22 4 3 2

28.6 4.112

3.859 63.93 45.47 3.289
r

s
T s

s s s s




   
 (49) 

Since both  1rT s  and  2rT s  subsystems are 4th order, 

polynomials  A s  and  B s  are expressed as follows. 

 

  4 3 2
4 3 2 1A s l s l s l s l s     (50) 

  4 3 2
4 3 2 1 0B s k s k s k s k s k      (51) 

CDM based decentralized controller design is applied by 

selecting parameters 10  , 1 6  , 2 5  ,  3 2  , 4 2  , 

5 2  , 6 2   and 7 2   for  1rT s  and  2rT s  transfer 

functions.  

The parameters determined in the CDM based decentralized 

controller design are selected the same for both transfer 

functions, so their target characteristic polynomials are also the 

same: 

 

  8 7 6
target

5 4 3 2

6.977 07 6.698 05 0.003215

0.07716 0.9259 5.556 16.67 10 1

P s e s e s s

s s s s s

    

     
 (52) 

Characteristic polynomial for  1rT s  is obtained by substituting 

the determined parameters in Equation (9) as follows. 

 

   

  

4 3 2
4 3 2 1

1 4 3 2 1

4 3 2 1
4 3 2 1 0

4.879 180.9

209.1 16.89

117.2 16.57

s s s
P s l l s l s l s

s

k k s k s k s k s

  
     

  

     

 (53) 

 A s ,  B s  and  F s  are obtained by matching the target 

characteristic polynomial to the characteristic polynomial of the 

transfer function  1rT s . 

 

  4 3 20.00001 0.0001 0.0028 0.0744A s s s s s     (54) 

  4 3 20.0011 0.0064 0.1564

0.2525 0.0604

B s s s s

s

  

 
 (55) 

                             0.0604F s   (56) 

The characteristic polynomial for CDM control system using 

 2rT s  is   

   

  

4 3 2
4 3 2 1

2 4 3 2 1

4 3 2 1
4 3 2 1 0

3.859 63.93

45.47 3.289

28.6 4.112

s s s
P s l l s l s l s

s

k k s k s k s k s

  
     

  

     

 (57) 

By matching Equation (52) with Equation (57),  A s ,  B s  and 

 F s  for  2rT s  transfer function are obtained as follows: 
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  4 3 20.00001 0.0001 0.0029 0.3918A s s s s s     (58) 

  4 3 20.0159 0.0763 1.0544

1.0538 0.2432

B s s s s

s

  

 
  (59) 

  0.2432F s   (60) 

CDM based decentralized controllers shown in Fig. 5b are 

obtained according to the given parameters as follows: 

 

 
4 3

11 4 3 2

0.0011 0.0064 0.1564 0.2525 0.0604

0.000001 0.0001 0.0028 0.0744

s s s
C s

s s s s

   


  
 (61) 

 12 4 3

0.0604

0.0011 0.0064 0.1564 0.2525 0.0604
C s

s s s


   
 (62) 

 
4 3 2

21 4 3 2

0.0159 0.0763 1.0544 1.0538 0.2432

0.000001 0.0001 0.0029 0.3918

s s s s
C s

s s s

   


  
 (63) 

 22 4 3 2

0.2432

0.0159 0.0763 1.0544 1.0538 0.2432
C s

s s s s


   
 (64) 

 

A unit step function with an amplitude of 0.1 at 30t  sec is 

given to the system shown in Fig. 5b as a disturbance signal. 

When the system given in Fig. 5b is simulated for the obtained 

CDM based decentralized controllers, the unit step responses and 

the control signals given in Fig. 10 and Fig. 11 are obtained. 

 
 

Fig. 10. The step responses of the FOTITO system with inverted decoupling. 

 

Fig. 10 demonstrates that the CDM-based decentralized 

controllers obtained for subsystems exhibit good performance 

when placed in the FOTITO system using inverted decoupling. 

Similar to the example 1, one can say that the amplitudes of the 

control signals in Figure 11 do not affect the saturation 

negatively.  

Performance values of the unit step responses shown in Fig. 10 

are listed in Table II.  The values in Table II validate that the 

maximum overshoot does not occur when the proposed the 

CDM-based decentralized controllers are used in the FOTITO 

system. As in the first example, the settling time is different 

because the equivalent time constant and stability index were 

selected different from those suggested by Manabe. 
 

 

 
Fig 11. Control signals generated by the FOTITO system with inverted 

decoupling 

 
TABLE II  

PERFORMANCE VALUES OF THE STEP RESPONSES IN FIG. 10 

 
PERFORMANCE 
VALUES 

 
FOTITO

1y   

 
FOTITO

2y  

 
Subsystem 

1y  

 
Subsystem 

2y  

Settling Time 16.2669 17.2318 16.1515 17.0949 
Maximum 
Overshoot (%) 

0 0 0 0 

 

VII. CONCLUSIONS  

In this study, CDM based decentralized controllers are designed 

for FOTITO systems. Integer order approximate models of 

FOTITO systems are obtained by using the M-SBL fitting 

approximation method. These approximate models are decoupled 

into two subsystems using simplified and inverted decoupling 

methods. The transfer functions of the decoupled subsystems are 

obtained as high order. CDM-based decentralized controller 

design is difficult for the high-order subsystem transfer 

functions. Therefore, the orders of subsystem transfer functions 

are reduced by using the model reduction algorithm in order to 

facilitate the design of decentralized controller with CDM. The 

decentralized controllers are designed by using CDM for the 

transfer functions of reduced subsystems. Satisfactory results are 

obtained by placing the decentralized controllers, which are 

calculated for the subsystems, in the FOTITO systems 

configuration. In other words, it is concluded that CDM based 

decentralized controllers, which are designed for subsystems 

obtained by simplified and inverted decouplings, provide 

successful performance for FOTITO systems. 

 

Appendix: 
Integer order approximate transfer functions of the FOTITO 
system in Example 1 are 
 

 

8 7 6 5 4 3

2

11 9 8 7 6 5

4 3 2

99.68 2632 1.873 04 5.04 04 5.205 04

2.174 04 3205 149.9

11.13 909.1 1.416 04 7.667 04 1.737 05

1.898 05 1.064 05 3.046 04 3700 155.5

s s s e s e s e s

e s
G s

s s e s e s e s

e s e s e s s

    

  


   

    
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  

8 7 6 5 4 3

2

12 9 8 7 6 5

4 3 2

99.68 2632 1.873 04 5.04 04 5.205 04

2.174 04 3205 149.9

5.567 454.6 7081 3.833 04 8.687 04

9.491 04 5.32 04 1.523 04 1850 77.74

s s s e s e s e s

e s s
G s

s s s e s e s

e s e s e s s

    

  


   

    

  

 

 

8 7 6 5 4 3

2

9 8 7 6 5

4 3

21

2

      0.5 49.84 1316 9363 2.52 04 2.602 04  

1.087 04 1603 74.95

2.784 234.2 3837 2.245 04 5.656 04

6.923 04 4.222 04 1.249 04 1516 62.74

s s s s e s e s

e s s

s s s e s e s

e s e s e s

s

s

G

    

  
   

   





  

 

 

8 7 6 5 4 3

2

22 9 8 7 6 5

4 3 2

2.784 248.4 4482

99.68 2

3.03

632 1.873 04 5.04 04
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and integer order approximate transfer functions of the FOTITO 
system in Example 2 are  
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