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TAIL DEPENDENCE ESTIMATION BASED ON SMOOTH

ESTIMATION OF DIAGONAL SECTION

Selim Orhun SUSAM

Department of Econometrics, Munzur University, Tunceli, TURKEY

Abstract. This paper is mainly developed around the diagonal section which

is strongly related to tail dependence coefficients as defined in Nelsen [19].
Hence, we propose a flexible method for estimating tail dependence coefficients

based on the new smooth estimation of the diagonal section based on the

Bernstein polynomial approximation. To assess the performance of the new
estimators we conduct the Monte-Carlo simulation study. As a result of the

simulation study, both estimators perform satisfactory performance. Also, the
estimation methods are illustrated by real data examples.

1. Introduction

Let X and Y be the random variable having the joint distribution function H
and the marginals F and G, respectively. The copula C is the function that links
the multivariate joint distribution function to its marginal distributions due to the
following relationship proposed by Sklar [24]:

H(x, y) = C(F (x), G(y)).

Copula C is unique if and only if marginals F and G are continuous. Also, it
satisfies the following properties

(1) C(0, u) = C(u, 0) = 0 for all u ∈ [0, 1]
(2) C(1, u) = C(u, 1) = u for all u ∈ [0, 1]
(3) for all u, u′, v, v′ ∈ [0, 1] with u < u′ and v < v′

VC([u, u
′]× [v, v′]) = C(u, u′)− C(u, v′)− C(u′, v) + C(u, v) ≥ 0

where VC([u, u
′]× [v, v′]) is the C − volume of the rectangle [u, u′]× [v, v′].
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The contribution of this study is two-fold: first, we are proposing a smooth esti-
mation of diagonal section of the copula. Second, we estimate the tail dependence
coefficients using the smooth estimation of the diagonal section.

The diagonal section of copulas is an important aspect in the field of dependence
modelling. Especially, the diagonal section provides some pieces of information
about the tail dependence behaviour of the bivariate random variables (Joe [18]).
Thus, estimation of the diagonal section is a crucial part of the estimation of tail
dependence coefficients between bivariate random variables. For this reason, we
propose a non-parametric smooth estimation of the diagonal section based on the
Bernstein polynomial approximation. The proposed estimation method is a contin-
uous approximation of the classical estimation which has jump discontinuous. In a
copula framework, estimation procedures based on the polynomial approximation
is not new: see, e.g., Susam and Hudaverdi [21]- [22], Dimitrova et al. [6], Durante
and Okhrin [8], Ambrard and Girard [1].

The second aim of this paper is tail dependence estimation based on the plug-in
method. Because there is a direct relationship between the diagonal section and
tail dependence coefficients as defined in Nelsen [19], the tail dependence estimation
method is mainly developed around the smooth estimation of the diagonal section.
The use of the Bernstein estimator of the diagonal section reduced the complexity
of the tail dependence estimation coefficients. Moreover, the proposed estimation
method of the tail dependence coefficient is flexible according to its polynomial
degree, hence the error of the estimation may be reduced by increasing the degree
of the Bernstein polynomial. There are some papers which introduces the tail de-
pendence estimation in the literature e.g., Susam and Erdogan [23], Ferreira [13],
Schmidt and Stadtmuller [20], Ferreira and Ferreira [14], Frahm et al. [16], Caillault
and Guégan [4], Goegebeur and Guillou [17]. The plug-in estimation of tail depen-
dence based on Bernstein polynomial approximation is not a new idea. Susam and
Erdogan [23] proposed a tail dependence estimation using the plug-in principle.
Their tail dependence estimation is mainly developed around the smooth estima-
tion of the Kendall distribution function of Archimedean copula family. The main
difference of this article from the Susam and Erdogan [23] is that our proposed tail
dependence estimator is applicable to all copula families such as Elliptical, Extreme
value, etc.

The paper is organized as follows. In section 2, we propose the smooth es-
timation of the diagonal section using Bernstein polynomial approximation and
investigate its properties. Also, we conduct a simulation study to measure its per-
formance. In section 3, we deal with the estimation of tail dependence coefficients
using the smooth estimation of the diagonal section. Moreover, we investigate its
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performance. As an illustration, we apply the proposed tail dependence estimation
method to the Danube data set. Finally, the conclusion is given in the last section.

2. Estimation of Diagonal Section

In this section, firstly, we review basic definitions and properties about diagonal
section of copulas, which can be found, for instance, in Durante et al. [9] and Du-
rante et al. [10]. Then, we investigated the smooth estimation of diagonal section
of copulas based on the Bernstein polynomial approaximation.

δC : [0, 1] → [0, 1], called diagonal section of copula, is the function defined by
δ(t) = C(t, t). Let us consider that X and Y are uniformly distributed on the unit
interval. Moreover, suppose that W = max(X,Y ) is distributed according to the
cumulative distribution function (cdf) H. The behaviour of the random variable W
is determined by the diagonal section of the copula CX,Y , such that δC(t) = HW (t)
(Durante et al. [10]). Diagonal section of the copula has the following properties:

(D1) δC(0) = 0 and δC(1) = 1;
(D2) δC(t) ≤ t for all t ∈ [0, 1];
(D3) δC(t) is non-decreasing function;
(D4) δC is 2− Lipschitz, such that

∣∣δC(t2)− δC(t1)
∣∣ ≤ 2

∣∣t2 − t1
∣∣ for all t2, t1 ∈

[0, 1].

Let {(X1, Y1), . . . , (Xn, Yn)} be a random sample of (X,Y ) from cdf H(x, y).
The inference is then based on the pseudo-samples defined as

Ui =
R(Xi)

n
, Vi =

R(Yi)

n
, i = 1, . . . , n;

where R(.) is the rank of random variable. Hence, the pair of random vari-
ables (U, V ) yield an approximate sample from the copula C(u, v). The non-
parametric estimation of diagonal section relies on the pseudo-observations wi =
max

(
ui, vi

)
, i = 1, . . . , n which have the distribution function C(w,w). It is natural

to non-parametric estimate the diagonal section given by

δn(t) =
1

n

n∑
i=0

I
(
wi ≤ t

)
, t ∈ [0, 1]; (1)

which by the Glivenko–Cantelli lemma converges to the true cdf. Erderly [12]
investigated properties of empirical diagol section δn. An empirical diagonal section
can be written by following:

δn(t) = Cn(t, t), t ∈ [0, 1]

where Cn is the empirical copula defined by Deheuvels [5]. Hence, the properties
of δn may be imvestigated using the properties of empirical copula and empirical
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(a) Gumbel Copula with

τ = 0.25

(b) Gumbel Copula with

τ = 0.50

(c) Clayton Copula with
τ = 0.25

(d) Clayton Copula with
τ = 0.50

Figure 1. MISE values for some Archimdean copulas with τ =
0.25, 0.5

cdf. It is clear that δn(0) = 0, δn(1) = 1 and δn(t) is non-decreasing function.
Moreover, by the Fréchet–Hoeffding bounds for empirical copula:

max(2t− 1, 0) ≤ δn(t) ≤ t, t ∈ [0, 1],
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(a) Normal Copula with

τ = 0.25

(b) Normal Copula with

τ = 0.50

(c) Student-t Copula with
τ = 0.25

(d) Student-t Copula with
τ = 0.50

Figure 2. MISE values for some Elliptical copulas with τ =
0.25, 0.5

hence property D3 is also satisfied. Erderly [12] also proved the propoerty given
by:

δn(
i+ 1

n
)− δn(

i

n
) ∈

{
0,

1

n
,
2

n

}
, i = 1, . . . , n. (2)
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Because of the δn has jump discontinuties, estimating a continuous distribution
function may not be a good choice. Hence, in this paper, we propose a smooth esti-
mation of δn using Bernstein polynomial approximation. The Bernstein estimator
of order (m > 0) of the diagonal section δ is defined as,

δm,n(t) =

m∑
k=0

δn(
k

m
)Pk,m(t), t ∈ [0, 1]

where Pk,m(t) =
(
m
k

)
tk(1−t)m−k is the binomial probability. The following theorem

defined in Feller [15] helps us to prove the consistency of the Bernstein empirical
diagonal section.

Theorem 1. If f(t) is a bounded and continuous function on the interval [0, 1],
then as m → ∞

f∗
m(t) =

m∑
k=0

f(
k

m
)Pk,m(t) → f(t)

The following theorem states that the Bernstein empirical diagonal section is a
consistent estimator of δ(t).

Theorem 2. Let δ be a continuous diagonal section on the interval [0, 1]. If m,n →
∞, then sup

t∈[0,1]

|δn,m(t)− S(t)| → 0 a.s.

Proof. Recall Theorem 1 of f∗
m for any f .

sup
t∈[0,1]

|δn,m(t)− δ(t)| ≤ sup
t∈[0,1]

|δn,m(t)− δ∗m(t)|+ sup
t∈[0,1]

|δ∗m(t)− δ(t)|.

As

δn,m(t)− δ∗(t) =

m∑
k=0

(
δn(t)− δ(t)

)
Pk,m(t)

we have

sup
t∈[0,1]

|δn,m(t)− δ∗m(t)| ≤ max
0≤k≤m

|δn(
k

m
)− δ(

k

m
)| ≤ sup

t∈[0,1]

|δn(t)− δ(t)|

Then, sup
t∈[0,1]

|δn(t)− δ(t)| → 0 a.s as n → ∞. See also, Babu et al. [2]. □

The next proposition investigates the properties of the Bernstein empirical di-
agonal section:

Proposition 1. The Bernstein empirical diagonal section with order m > 0 has
the following properties:

(P1) δn,m(0) = 0 and δn,m(1) = 1;
(P2) δn,m(t) ≤ t for all t ∈ [0, 1];
(P3) δn,m(t) is non-decreasing function;
(P4) δn,m is 2− Lipschitz.
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Proof. From the endpoint property of Berntein ploynomial, δm,n(1) = δn(1) = 1
and δm,n(0) = δn(0) = 0. See Duncan [7]. We know that δn(t) ≤ t, hence we can
write δn(

i
m ) = i

m − ri, i = 1, . . . ,m then

δm,n(t) =

m∑
i=0

δn(
i

m
)

(
m

k

)
tk(1− t)m−k

=

m∑
k=0

(
k

m
− rk)

(
m

k

)
tk(1− t)m−k

=

m∑
k=0

(
k

m
)

(
m

i

)
tk(1− t)m−k −

m∑
k=0

rk

(
m

k

)
tk(1− t)m−k

= t

m∑
k=1

(
m− 1

k − 1

)
tk−1(1− t)m−k −

m∑
k=0

rk

(
m

k

)
tk(1− t)m−k

= t

m−1∑
l=0

tl(1− t)m−l−1

(
m− 1

l

)
−

m∑
k=0

rk

(
m

k

)
tk(1− t)m−k

= t−
m∑

k=0

rk

(
m

k

)
tk(1− t)m−k < t.

Thus δm,n(t) ≤ t is satisfied for all t ∈ [0, 1]. The first derivative of the δm,n can
be obtained as

δ′m,n(t) = m

m−1∑
k=0

(
δn(

k + 1

m
)− δn(

k

m
)
)
tk(1− t)m−k−1

(
m− 1

k

)
, see Duncan [7]. Becasue δn is non-decreasing function such that

δn(
k + 1

m
)− δn(

k

m
) ≥ 0, k = 0, . . . ,m− 1;

then δ′m,n(t) ≥ 0, t ∈ [0, 1]. We note that a function f : [a, b] → ℜ is said to be a
Lipschitz if there is a constant L such that∣∣f(x2)− f(x1)

∣∣ ≤ L
∣∣x2 − x1

∣∣, ∀ x2, x1 ∈ [a, b],

where Lipschitz constant of f equals to sup
x∈[0,1]

∣∣f ′(t)
∣∣. Brown et al. [3] showed that

Bernstein polynomial approximation defined as

B(t) =

m∑
k=0

f(
k

m
)Pk,m(t), t ∈ [0, 1]

is L−Lipschitz function. Hence, the Lipschitz constant L eqauls to L = sup
t∈[0,1]

∣∣B′(t)
∣∣.

We know that δm,n(t) is non-decreasing function and δ′m,n(1) equals to m
(
δn(

m

m
)−
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δn(
m− 1

m
)
)
∈ {0, 1, 2}. Hence, the Lipschitz constant of δm,n(t) can be calculated

as

L = sup
t∈[0,1]

∣∣δ′m,n(t)
∣∣ = 2.

□

To measure the performance of the proposed estimator, we conduct Monte-Carlo
simulation study. Gumbel, Clayton (Archimedean) and Normal, Student-t (Ellipti-
cal) copulas that have parameters coressponding to Kendall’s tau as τ = 0.25, 0.50
are used to generate the data. Specifically, 10.000 Monte-Carlo samples of size
n = 100, 200 are generated from each copula, and the performance of the Bernstein
empirical diagonal section with order m = 3, . . . , 30 are measured by means of the
Mean Integrated Squared error (MISE) defined as

MISE(δ) = E
(∫ 1

0

(
δm,n(t)− δ(t)

)2
dt
)
.

Simulation results are shown in Figures 1 and 2 for the Archimedean and El-
liptical copulas, respectively. From these figures, it is clear that MISE scores of
the Bernstein empirical diagonal section gets closure to the true cdf when both
order m and sample size n are increased for all copula classes. Moreover, the Bern-
stein empirical diagonal section δm,n outperforms to classical one δn for all possible
situations.

3. Tail Dependence Estimation

In this section, firstly, we will be introducing the tail dependence concept. Then,
we investigate the plug-in estimators for the upper and lower tail dependence coef-
ficients based on the smooth estimation of the diagonal section discussed in Section
2.

An crucial part of the dependence between the variables in the upper-right quad-
rant and in the lower-left quadrant of I2. In general, most dependence measures
associate the entire distribution of two or more random variables. However, the
dependence between the upper part of the distribution may be different than the
mid-range and/or lower part of the distribution (Embrechts et al. [11]). Let X and
Y be continuous random variables with margins F and G, respectively. Nelsen [19]
shows that the tail dependence coefficients depend on the derivative of diagonal
section are given by following:

λU = 2− lim
t→1−

1− C(t, t)

1− t
= 2− δ′C(1

−), λL = lim
t→0+

C(t, t)

t
= δ′C(0

+). (3)

In general, the tail dependence between variables may strongly depend on the
choice of model or estimation technique (Frahm et al. [16]). For this reason, to
estimate the tail dependence coefficients we prefer to use smooth estimation of
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diagonal section of copula which outperforms the classical estimator as shown in
section 2. The estimation of the tail dependence coeffcients investigated in next
propsition.

Proposition 2. Let δm,n(.) be the estimator of diagonal section based on Bernstein
polynomial approximation and δn(.) be empirical diagonal section. The estimation
of the lower tail and the upper tail dependence for copulas are obtained by

λ̂L = m
(
δn(

1

m
)
)

λ̂U = 2−m
(
(1− δn(

m− 1

m
)
)

The proof of the Proposition 2 can be easley done using the properties of Bern-
stein polynomials. It is obvious that there are clear link beetwen the tail dependence

estimations λ̂L, λ̂U and the Bernstein polynomial degree m.

Table 1. The values of the tail dependence and dependence pa-
rameter for Gumbel, Clayton, Normal and Student-t copula for
different level of dependence

Copula τ θ λU λL

Gumbel 0.25 1.3333 0.3182 0
0.50 2 0.5857 0

Clayton 0.25 0.6666 0 0.3535
0.50 2 0 0.7071

Normal 0.25 0.3826 0 0
0.50 0.7071 0 0

Student 0.25 0.3826 0.1953 0.1953
0.50 0.7071 0.3968 0.3968

To asses the performance of the tail dependence estimation, we simulate K =
10.000 times bivariate random of sample size n = 250, 750, respectively, from
Gumbel, Clayton, Normal and Student-t copulas with Kendall’s tau τ = 0.25, 0.50.
The value of the upper tail dependence (λU ), lower tail dependence (λL) and the
dependence parameter (θ) for Gumbel, Clayton, Normal and Student-t copulas with
τ = 0.25, 0.50 are given in Table 1.

The boxplots of the results of the tail dependence estimations obtained after
K Monte-Carlo samples of size n = 250, 750 from Gumbel, Clayton, Normal and
Student-t copulas for varying Kendall’s tau values τ = 0.25, 0.50 are displayed in
Figs. 3-6.

The following results can be obtained:
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation for τ =

0.5 and n = 750

Figure 3. Box-plots of the estimation of the tail dependence co-
efficients of Gumbel copula

(1) For copulas studied in this paper, the upper tail dependence and lower
tail dependence estimation converge to its true value defined in Table 1,
regardless of Kendall’s tau and sample size.
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation for τ =

0.5 and n = 750

Figure 4. Box-plots of the estimation of the tail dependence co-
efficients of Clayton copula

(2) It is obvious that variance of the upper tail dependence and lower tail depen-
dence estimation increases when the Bernstein polynomial degree increases
in all situations.
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation for τ =

0.5 and n = 750

Figure 5. Box-plots of the estimation of the tail dependence co-
efficients of Normal copula

(3) For Gumbel copula with sample size n = 750 and Kendall’s tau τ = 0.50,
to estimate the λL approaches its true value, the polynomial degree of
estimation should be chosen higher than 30.
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(a) λL estimation for τ =

0.25 and n = 250

(b) λU estimation for τ =

0.25 and n = 250

(c) λL estimation for τ =

0.5 and n = 750

(d) λU estimation estima-

tion for τ = 0.5 and n =

750

Figure 6. Box-plots of the estimation of the tail dependence co-
efficients of Student-t copula
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4. Case Study

In this section, in order to demonstrate the estimation methods of diagonal sec-
tion and tail dependence coefficients, we use the Danube data set which is available
in the R package copula. According to this package, the Danube data set contains
ranks of base flow observations from the Global River Discharge project of the Oak
Ridge National Laboratory Distributed Active Archive Centre (ORNL DAAC), a
NASA data centre. The measurements are the monthly average flow rate for two
stations situated at Scharding (Austria) on the Inn River and Nagymaros (Hun-
gary) on the Danube.

The scatter plot of the pseudo-observations of the Danube data set is displayed
in Figure 7. In this figure, symmetrical dependence structures are observed. From
this figure, it seems that the Danube data set has a heavy right tail dependence
structure and mild left tail dependence structure. Figure 8 represents the estimation
of upper tail dependence and lower tail dependence coefficient for polynomial degree
m = 1, . . . , 30. As it is expected estimation of upper tail dependece is greater than

the lower tail dependence estimation for all poynomial degrees. From figure 8, λ̂U

approaximates to 0.5 and λ̂L approaximates to 0.20.

Figure 7. Scatter plot of Danube data set

5. Conclusion

In this paper, we have presented a smooth estimation of the diagonal section
based on the Bernstein polynomial approximation. The new estimator is flexible
according to its polynomial degree; the error of the estimation may be decreased
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(a) Estimation of λU (b) Estimation of λL

Figure 8. Estimation of λU and λL for Danube data set

when the polynomial degree increases. Moreover, Bernstein diagonal section out-
performs the empirical diagonal section for the higher polynomial degrees. Also,
considering the strong relationship between the diagonal section and the tail de-
pendence coefficient, we propose the tail dependence coefficients estimation method
via Bernstein diagonal section. According to the simulation results and real data
example, the tail dependence coefficients estimation method has a satisfactory per-
formance.
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