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Highlights 

• This paper focuses on stability inequalities for the linear VDIDE. 

• The solution continuously depends on the right side and initial data. 

• A highly precise theoretical result is obtained. Examples illustrate the theoretical result. 
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Abstract 

In this paper stability inequalities for the linear nonhomogeneous Volterra delay integro-

differential equation (VDIDE) is being established. The particular problems are encountered to 

show the applicability of the method and to confirm the predicted theoretical analysis. 
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1. INTRODUCTION 

 

Volterra delay integro-differential equations (VDIDEs) have an important impact on the field of science. 

VDIDEs arise widely in physics and engineering applications. For a detailed results we recommend the 

reader the books [1-3]. 

 

Many research has been studied on the stability of differential equations. In most works on stability of delay 

differential equations, coefficients and delays are assumed to be continuous. But in some problems, for 

example, in biological, ecological or in economical models, parameters of differential equations are not 

continuous. In [4], the authors consider the stability relation between ODEs and DIDEs and shown that 

under some suitable conditions a DIDE will remain exponential stability of the given ODE. In [5] the author 

gave conditions for the solution to a first order differential equations to be bounded by an exponential 

function, uniformly stable, and uniformly asymptotically stable. The author applied the obtained results to 

the nonlinear equations and systems of equations. Construction of highly stable method based on the energy 

estimates method for the initial-boundary value problem for linear pseudo-parabolic equation is described 

in [6] and example of method have good stability properties with respect to the basic equation.  

 

Over the last fifty years, in case of Volterra/Fredholm integral equations substantial efforts on their 

numerical treatment have been recorded [7-10, 11]. [12] is conserned with the analytical and numerical 

stability of neutral DIDEs. In [13] the authors consider a new direct numerical method for high-order linear 

VIDEs. An algorithm based on the use of Taylor polynomials is developed for the numerical analysis of 

high-order linear VIDEs. The singularly perturbed initial value problem for a linear first order VDIDE 
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examined in [14]. An extensive overview of assorted techniques for singularly perturbed differential or 

integro-differential equations can be seen in [15]. The theory and numerical solution of delay differential 

equations have been extensively analyzed in the [16, 17] and in the references therein. 

 

In this paper, we establish the stability inequalities for the problem (1)-(2), indicating the continuous 

dependence of the solution on the right side and initial data expressed by the inequality (6). 

 

2. STABILITY BOUNDS 

 

Consider the linear integro-differential equation with constant delay: 

 

𝑢′(𝑧) + 𝑎(𝑧)𝑢(𝑧) + 𝑏(𝑧)𝑢(𝑧 − 𝑟) + ∫ 𝐾(𝑧, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑧)
𝑧

𝑧−𝑟
,    𝑧 ∈ 𝐼,                                                   (1)  

  

𝑢(𝑧) = 𝜑(𝑧),  −𝑟 ≤ 𝑧 ≤ 0,                                                                                                                           (2) 

 

where 𝐼 = (0, 𝑇] =∪𝑝=1
𝑚 𝐼𝑝, 𝐼𝑝 = {𝑧: 𝑟𝑝−1 < 𝑧 ≤ 𝑟𝑝}, 1 ≤ 𝑝 ≤ 𝑚  and  𝑟𝑠 = 𝑠𝑟,  for 0 ≤ 𝑠 ≤ 𝑚,      

 𝐼 = [𝑂, 𝑇]  and  𝐼0 = [−𝑟, 0].  𝑎(𝑧) ≥ 0, 𝑓(𝑧)   (𝑧 ∈ 𝐼), 𝑏(𝑧)   (𝑧 ∈ 𝐼), 𝜑(𝑧)   (𝑧 ∈ 𝐼0) and 

 𝐾(𝑧, 𝑠)  ((𝑧, 𝑠) ∈ 𝐼 × 𝐼) are assumed to be sufficiently smooth functions, 𝑟 is a constant delay. 

 

Lemma 1. Assume that 𝑎(𝑧)  ≥ 0, |𝐹(𝑧)|  ≤ ℱ(𝑧)  and ℱ(𝑧)  is a nondecreasing function. Then the 

solution of the initial value problem 

 

𝑢′ + 𝑎(𝑧)𝑢 = 𝐹(𝑧),    𝑥0 < 𝑧 < 𝑋,                                                                                                                               (3)   
 
𝑢(𝑥0) = 𝜇                                                                                                                                                                          (4) 
   
satisfies 

 

|𝑢(𝑧)| ≤ |𝜇| + (𝑋 − 𝑥0)ℱ(𝑧),    𝑥0 < 𝑧 < 𝑋.                                                                                                           (5) 
 
Proof.   From (3)-(4) we have                                     

 

𝑢(𝑧) = 𝜇𝑒
−∫ 𝑎(𝜏)𝑑𝜏

𝑧

𝑥0 +∫ 𝐹(𝜏)𝑒−∫ 𝑎(𝜍)𝑑𝜍
𝑡

𝜏 𝑑𝜏.
𝑧

𝑥0

 

 

From here it is easy to get      

                               

|𝑢(𝑧)| ≤ |𝜇| + ∫ |𝐹(𝜏)|𝑑𝜏 ≤ ∫ ℱ(
𝑡

𝑥0

𝑧

𝑥0

𝜏)𝑑𝜏, 

 

which immediately leads to (5). 

 

Notation. ||𝑔||∞ is a maximum norm for any continuous function 𝑔 on corresponding closed interval. 

 

Theorem 1. If 𝑎(𝑧), 𝑏(𝑧), 𝑓(𝑧) ∈ 𝐶(𝐼), 𝐾(𝑧, 𝑠) ∈ 𝐶( 𝐼  ×  𝐼) and  𝜑(𝑧) ∈  𝐶(𝐼0), then for the solution 𝑢(𝑧) 
of (1)-(2) holds the following stability inequality        

 

 ||𝑢||∞,𝑝 ≤ 𝑒
𝑟2𝑝𝐾(1 + 𝑟||𝑏||∞,𝐼 + 𝐾𝑟

2)𝑝||𝜑||∞,0 + 

 

  𝑟𝑒𝑟
2𝐾

𝑒𝑟
2𝑝𝐾(1+𝑟||𝑏||∞,𝐼+𝐾𝑟

2)𝑝−1

𝑒𝑟
2𝑝𝐾(1+𝑟||𝑏||∞,𝐼+𝐾𝑟

2)−1
||𝑓||∞,𝐼 ,     1 ≤ 𝑝 ≤ 𝑚,                                                                               (6) 
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where  

 

𝐾 = max
𝐼×𝐼

|𝐾(𝑧, 𝑠)|. 

 

Proof. For    

                                                                                                                                      

𝐹(𝑧) = 𝑓(𝑧) − 𝑏(𝑧)𝑢(𝑧 − 𝑟) − ∫ 𝐾(𝑧, 𝜍)𝑢(𝜍)𝑑𝜍
𝑧

𝑧−𝑟
      

                                                                              

we can write 

                                                                                                                                                   

|𝐹(𝑧)| ≤ |𝑓(𝑧)| + |𝑏(𝑧)||𝑢(𝑧 − 𝑟)| + ∫ |𝐾(𝑧, 𝜍)||𝑢(𝜍)|𝑑𝜍.
𝑧

𝑧−𝑟

 

 

Consider this on 𝐼𝑝, we have 

 

|𝐹(𝑧)| ≤ ||𝑓||∞,𝑝 + ||𝑏||∞,𝑝 ||𝑢||∞,𝑝−1 + 𝐾∫ |𝑢(𝜍)|𝑑𝜍
𝑡

𝑟𝑝−1
 +𝐾 ∫ |𝑢(𝜍)|𝑑𝜍     

𝑟𝑝−1

𝑡−𝑟
                                      

 

≤ ||𝑓||∞,𝑝 + (||𝑏||∞,𝑝 + 𝑟𝐾)||𝑢||∞,𝑝−1 + 𝐾∫ |𝑢(𝜍)|𝑑𝜍.
𝑡

𝑟𝑝−1

 

 

Therefore using Lemma 1 and Gronwall’s inequality we have 

 

||𝑢||∞,𝑝 ≤ 𝛽||𝑢||∞,𝑝−1 + 𝜌 

 

with 

  

𝛽 = 𝑒𝑟
2𝐾 (1 + 𝑟||𝑏||

∞,𝐼
+ 𝑟2𝐾) , 𝜌 = 𝑟𝑒𝑟

2𝐾||𝑓||∞,𝐼 . 

 

After using first-order difference inequality we get 

 

||𝑢||∞,𝑝 ≤ ||𝜑||∞,0𝛽
𝑝 +

𝛽𝑝 − 1

𝛽 − 1
𝜌, 

 

which implies the validity of (6). 

 

In order to illustrate the performance of the method proposed above, we give two particular problems. 

 

3. ILLUSTRATIVE EXAMPLES 

 

Example 1. Consider the following problem: 

 

𝑢′(𝑧) + 𝑧2𝑢(𝑧) + (1 + 𝑒−𝑧)𝑢(𝑧 − 0.5) + ∫ √𝑧 + 𝑠
𝑧

𝑧−0.5

𝑢(𝑠)𝑑𝑠 = 𝑠𝑖𝑛𝜋𝑧,      0 < 𝑧 ≤ 2 

 

𝑢(𝑧) = 1 + 𝑧, −0.5 ≤ 𝑧 ≤ 0. 
 

Since 

 

𝑟 = 0.5,      𝑇 = 2,      1 ≤ 𝑝 ≤ 4,     ||𝑏||∞,𝐼 = max[0,2]
(1 + 𝑒−𝑧) = 2, 
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||f||∞,𝐼 = 1, 𝐾 = 2, ||φ||∞,0 = 1, 

 

then the inequality (6) leads to following bounds for the solution 𝑢(𝑧) 
 

||𝑢||∞,1 ≤ 𝑒
0,25×1×2(1 + 0,5 × 2 + 2 × 0,25) 

 

+0,5𝑒0,25×2
𝑒0,25×1×2(1+0,5×2+2×0,25)−1

𝑒0,25×2(1+0,5×2+2×0,25)−1
= 4,94, 

 

||𝑢||∞,2 ≤ 𝑒
0,25×2×2(1 + 0,5 × 2 + 2 × 0,25)2 

 

+0,5𝑒0,25×2
𝑒0,25×2×2(1+0,5×2+2×0,5)2−1

𝑒0,25×2(1+0,5×2+2×0,25)−1
= 21,21, 

 

||𝑢||∞,3 ≤ 𝑒
0,25×3×2(1 + 0,5 × 2 + 2 × 0,25)3 

 

+0,5𝑒0,25×2
𝑒0,25×3×2(1+0,5×2+2×0,5)3−1

𝑒0,25×2(1+0,5×2+2×0,25)−1
= 88,25, 

 

||𝑢||∞,4 ≤ 𝑒
0,25×4×2(1 + 0,5 × 2 + 2 × 0,25)4 

 

+0,5𝑒0,25×2
𝑒0,25×4×2(1+0,5×2+2×0,5)4−1

𝑒0,25×2(1+0,5×2+2×0,25)−1
= 364,59. 

 

 
Figure 1. Bound for the exact solution 

 

 

Example 2. Our second example is 

 

𝑢′(𝑧) + 4𝑢(𝑧 − 1) − ∫ 𝑢(𝑧)𝑑𝑧
𝑧

𝑧−1

= 𝑧,     0 < 𝑧 ≤ 2 

𝑢(𝑧) = 1,     − 1 ≤ 𝑧 ≤ 0 . 

The solution is given by 
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𝑢(𝑧) =

{
 
 

 
 
1,                                                                                                   − 1 ≤ 𝑧 ≤ 0 
−𝑒𝑧 + 2𝑒−𝑧,                                                                                      0 < 𝑧 ≤ 1   

(
5

2
𝑒−1𝑧 −

7

4
𝑒−𝑧 − 1)𝑒𝑧 + (−3𝑒𝑧 +

13

4
𝑒 + 2) 𝑒−𝑧 − 1,    1 < 𝑧 ≤ 2.

 

Since 

 

𝑟 = 1,      𝑇 = 2,      1 ≤ 𝑝 ≤ 2,     ||𝑏||∞,𝐼 = 4, 

 

||f||∞,𝐼 = 2, 𝐾 = 1, ||φ||∞,0 = 1, 

 

the bounds given by Theorem 1 will be 

||𝑢||∞,1 = 4,71 

||𝑢||∞,2 = 36,12. 

 

 
Figure 2. Bound for the exact solution 
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Figure 3. Bound for the exact solution 

 

4. CONCLUSION 

 

In this work, we establish the stability inequalities for the linear nonhomogeneous VDIDE. We shown that 

the solution continuously depends on the right side and initial data expressed by the inequality (6). Finally, 

examples are performed and illustrate the theoretical result (See: Figure [1-3]). 

 

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the author. 

 

REFERENCES 

 

[1]  Arino, O., Hbid, M.L., Dads, E. A., “Delay Differential Equations and Applications”, Springer, 

(2002). 

 

[2]  Bellen, A., Zennaro, M., “Numerical Methods for Delay Differential Equations”, Oxford: Oxford 

University Press, (2003). 

 

[3]  Driver, R. D., “Ordinary and Delay Differential Equation”, Springer, (1977). 

 

[4]  Yapman, Ö., Amiraliyev, G. M., Amirali, I., “Convergence Analysis of Fitted Numerical Method for 

a Singularly Perturbed Nonlinear Volterra Integro-Differential Equation with Delay”, Journal of 

Computational and Applied Mathematics, 355: 301-309, (2019). 
 
[5]  Dix, L. G., “Asymptotic Behavior of Solutions to a First-Order Differential Equation with Variable 

Delays”, Computers and Mathematics with Applications, 50: 1791-1800, (2005). 



868  Ilhame AMIRALI/ GUJ Sci 36(2): 862-868 (2023) 

 
 

 

[6]  Amirali, I., Cati, S., Amiraliyev, G. M., “Stability Inequalities for the Delay Pseudo-Parabolic 

Equations’’, International Journal of Applied Mathematics, 32(2): 289-294, (2019). 

 

[7]  Bellour, A., Bousselsal, M., “Numerical Solution of Delay Integro-Differential Equations by Using 

Taylor Collocation Method”, Mathematical Methods in Applied Science, 37: 1491-1506, (2013). 

 

[8]  Zhang, C., Niu, Y., “The Stability Relation Between Ordinary and Delay-Integro-Differential 

Equations”, Mathematical and Computer Modelling, Issues, 12, 49: 13-19, (2009). 

 

[9]  Kudu, M., Amirali, I., Amiraliyev, G. M., “A Finite Difference Method for a Singularly Perturbed 

Delay Integro-Differential Equation”, Journal of Computational and Applied Mathematics, 308: 379-

390, (2016). 

 

[10]  Xiao-yong, Z., “A New Strategy for The Numerical Solution of Nonlinear Volterra Integral 

Equations with Vanishing Delays”, Applied Mathematics and Computation, 365: 124-608, (2020). 

 

[11]  Durmaz, M. E., Amiraliyev, G. M., “A Robust Numerical Method for a Singularly Perturbed 

Fredholm Integro-Differential Equation’’, Mediterranean Journal of Mathematics, 18(24): 1-17, 

(2021). 

 

[12]  Wu, S., Gan, S., “Analitical and Numerical Stability of Neutral Delay Integro-Differential Equations 

and Neutral Delay Partial Differential Equations”, Computers and Mathematics with Applications, 

55: 2426-2443, (2008). 

 

[13]  Laib, H., Bellour, A., Bousselsal, M., “Numerical Solution of High-Order Linear Volterra Integro-

Differential Equations by using Taylor Collocation Method’’, International Journal of Computer 

Mathematics, 96 (5): 1066-1085, (2019). 

[14]  Darania, P., Pishbin, S., “High-Order Collocation Methods for Nonlinear Delay Integral Equations”, 

Computational and Applied Mathematics, 326: 284-295, (2017). 

 

[15]  Panda, A, Mohapatra, J., Amirali, I., “A Second Order Post-Processing Technique for Singularly 

Perturbed Volterra Integro-Differential Equation”, Mediterranean Journal of Mathematics, 18(231): 

1-25, (2021). 

[16]  Mohapatra, J., Natesan, S., “Uniform Convergence Analysis of finite Difference Scheme for 

Singularly Perturbed Delay Differential Equation on an Adaptively Generated Grid”, Numerical 

Mathematics: Theory, Methods and Applications, 3(1): 1-22, (2010). 

 

[17]  Amiraliyeva, I. G., Amiraliyev, G. M., “Uniform Difference Method For Parameterized Singularly 

Perturbed Delay Differential Equations”, Numerical  Algorithms, 52(4): 509-521, (2009). 

 

 

javascript:void(0)
javascript:void(0)

