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In this study, unsupervised and supervised machine learning techniques, principal component analysis 

and classification tree modelling which could be improved with additional input variables were applied 

on iodine oxidation voltammetric data in order to determine routes and extract information about the 

electrochemical conditions leading to different damaged starch ratios in flour. For this purpose a 

database of 3542 observations which was normalized and filtered from outliers was used. It was seen 

that although it was almost impossible to generalize information or determine correlations from 

voltammetric data at different conditions, principal component analysis indicate that on platinum 

electrode UCD values of 16.5 mostly seen at high potentials, optimized decision tree indicate that the 

impact of variables on UCD values can be ordered as current density > potential > electrode type > KI 

concentration and give routes to UCD values with high class membership leaf nodes. Therefore machine 

learning with decision tree modelling could open perspectives for practical and fast prediction of 

damaged starch ratio which would help food industry to speed up and economize costs for analysis in 

flour. 
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1. INTRODUCTION 

In the world and in our country, most important flour based nutritional products like bread are brought to our 

daily lives by highly technological processes. In addition, there is an increasing demand on high quality food 

products and on development of standards every day. Therefore, it is utmost important to launch food product 

on the market from correctly processed flour. 

During industrial flour production, one of the most important processing step is milling. In the milling process, 

the endosperm (nutritional tissue) is separated from the wheat bran and then the endosperm is ground as flour. 

The grinding process takes place in two stages as on gear and flat steel rollers, and the proper adjustment of 

the flat rolls during the grinding stage determines the damaged starch ratio in the ground wheat (Liu et al., 

2017). If the chemical structure of starch which is a critical component and quality indicator of flour is 

analyzed, it is seen that starch is composed of straight and branched chain structures as amylose and 

amylopectin. Studies demonstrate that the application of mechanical energy or milling process deteriorate 

mostly the crystal structure of amylopectin rather than straight chain amylose molecules (Dhital et al., 2011; 

Li et al., 2014). The change of amylopectin / amylose ratio during wheat milling also affects the texture of the 

final product. In general, the damage of the starch structure during the milling of wheat is not only due to the 

size of the molecules but also depends on the branching structure. High branching density and short branch 

length in starch is also more prone to damage. A study on corn starch has shown that; the amylopectin is 

damaged more than amylose during milling not only due to the size of molecule but more short branches of 
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amylopectin (Liu et al., 2010). In addition, studies on types of starches with different amounts of amylopectin 

(99%, 75%, 20%) indicate that, after 15 min milling process of starch, damaged starch ratio reaches to 40% 

for 99% amylopectin ratio and the amylose ratio increase (Liu et al., 2017). Therefore, from the structural point 

of view, high damaged starch ratio which is affected by milling process time means high amylose content in 

the final wheat product. Beside the effect on the chemical structure, since the high or low proportion of 

damaged starch could cause quality defects like low volume and low viscosity in dough due to inefficient 

amylolytic activity during and after grinding process, fast and accurate determination and continuous 

monitoring of damaged starch in flour from a wide variety of wheat is very important for the desired end 

product (Zhu, 2016; Liu et al., 2017).  

Today, for the determination of damaged starch, amperometric (or iodimetric) method (Medcalf and Gilles 

principle) which is based on the amount of iodine absorbed by starch granules is used (Medcalf & Gilles, 

1965). In the amperometry technique which is based on iodine absorption kinetics and which the iodine 

absorption index is recorded as units of UCD (Chopin Dubois Unit (UCD) scales the Ai % (percentage of 

iodine absorption)), residual current after iodine fixing on the damaged starch is determined which takes about 

7 to 10 minutes in a 120 ml electrolyte volume. Although the amperometry procedure and technique is well 

established, continuous and frequent analysis of damaged starch by this conventional method could bring 

burden of cost in the food industries in the world. At this point, in order to decrease analysis time and the 

amount of chemicals used for determination damaged starch during amperometry, it could be possible to use 

machine learning techniques based on the electrochemical data acquired by short electrochemical experiments 

like cyclic voltammetry of iodine oxidation in flour containing electrolyte. By the extraction of cyclic 

voltametric data performed on different type of electrodes, in different electrolyte concentrations and with 

different type of flours (with different UCD values), the degree of iodine absorption or UCD value can be 

modelled by supervised machine learning techniques like decision trees to determine routes and conditions 

leading to different damaged starch ratios. In addition, supervised learning procedure could help researchers 

to analyze damaged starch content with different experimental conditions easily and quickly.  

Therefore, in this study, it is aimed to apply a decision tree machine learning strategy on determination of UCD 

values by selection of electrochemical features like electrode type, iodine concentration in the electrolyte, 

oxidation current density and applied potential. It is believed that machine learning strategy in this study can 

be extended and developed with the addition of more experimental variables like the wheat type or with 

different electrochemical techniques to increase the applicability or performance of the decision tree model. 

2. MATERIAL AND METHOD 

In this study, cyclic voltammetry technique in a three-electrode system were used to extract electrochemical 

data for decision tree analysis. During cyclic voltammetry, two different working electrodes as polycrystalline 

platinum (Pt) and glassy carbon (GC) discs, platinum counter electrode and standard calomel reference 

electrode were used for iodine oxidation in a three-electrode set up. For the electrolyte, sulphuric acid and 1.5 

gr of boric acid (Merck Inc.) as an emulsifier, 1.5gr KI (Merck Inc.) as and iodine source and 60 ml of deionized 

water as a solvent were used in three neck glass electrochemical cell. In order to prevent formation of elemental 

iodine 1 drop of 0.1 M sodium thiosulphate (Merck Inc.) was added to the mixture. After stirring the electrolyte 

for 5 min, 15 ml electrolyte was transferred to a three-neck glass cell. Voltammetric scans were performed 

with and without flour addition to the electrolyte. After the first scan at 50 mV/sec between 0-1 V vs. SCE in 

flour free electrolyte, 0.5 gr of flour was added to the electrolyte and voltammetric scan was repeated. Cyclic 

voltammetric experiments were performed with different KI concentrations as 0.15M and 0.075M in the 

electrolyte with flour samples of three different UCD values of 16.5, 25 and 30 as well. Flour samples with 

different UCD values were collected from the local flour factories in central Anatolia region in Turkey. For 

the computations in machine learning only forward scan between 0-1V vs. SCE at different UCD values, KI 

concentrations and with different electrode types were used.  

2.1. Principle Component Analysis (PCA) of Voltammetry Data 

As a famous type of unsupervised machine learning where there is no training of the model with observed 

data, exploratory analysis and dimensionality reduction helps researchers to propose trends and provide initial 

insights in the data with less number of variables than during observations. At this point techniques like PCA 
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which is based on the covariance or correlation matrix can be used to assign latent variables that are linearly 

related with original variables with maximum variance (Comon, 1994). 

For PCA analysis, initially a dataset of n observations with p numerical input variables is needed. During PCA, 

linear combinations of p vectors that would give us maximum variance (how wide the experimental data is 

distributed around mean value) is searched. The variance of linear combinations of p vectors is represented by 

a’Sa where a is a coefficient vector with dimensions p, a’ is transpose of a and S is the covariance matrix (joint 

variability) between each pair of input variables which should be maximized (Jolliffe & Cadima, 2016). 

To allow for interpretation of voltammetry data, we have taken into account 4 input variables of potential, 

ln(1+current density), KI concentration and type of electrode (0 for glassy carbon, 1 for platinum electrode). 

Therefore, PCA identified new variables, principal components as linear combinations of these four 

electrochemical variables. In Matlab environment “score” together with “pca” command give principal 

components by centering each input variable to zero average level. For instance one principle component can 

be expressed as a11*potentialcentered + a12*ln(1+current density)centered + a13*KI concentrationcentered + 

a14*presence of Pt electrodecentered, where a11, a12, a13, a14 are coefficients for the first principal component 

(Ringnér, 2008). After determination of the percentage of variances, principal components with highest 

variances were used for explanatory analysis of the voltammetric data. 

2.2. Construction of Decision Tree 

A decision tree is a model that shows routes to output by the help of input variables or features partitioned and 

predicts new data based on the trained tree. In decision tree, the subsets that are formed in the leaves of the 

tree by splitting observed data set should have a desired purity. In order to have a desired purity the three main 

splitting criteria used in decision tree are information gain, gini index and node error. In the decision tree the 

partition value is selected based on maximum information gain, minimum gini index or minimum node error. 

Information gain is given in equation 1. 

InfoGain = Info(Parent node) − ∑ (pk)Info(Childnodek)k                                                                            (1) 

Info and pk in equation 1 is the information of the feature subspace (node), and the proportion of samples 

passed to the kth subspace (or node) as given in equation 2. 

𝐼𝑛𝑓𝑜 = − ∑ (
𝑁𝑗(𝑡)

𝑁(𝑡)
) ∙ ln

𝑁𝑗(𝑡)

𝑁(𝑡)𝑘                                                                                                                                  (2) 

In equation 2 where N(t) is the number of samples in node t, and Nj(t) is the number of class j samples in node 

t. The other split criterion Gini index is an indication of node impurity as given in equation 3. 

1 − ∑ 𝑝2(𝑖)𝑖                                                                                                                                                          (3) 

In equation 3 above, the sum is over the classes i at the node, and p(i) is the observed fraction of classes with 

class i that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise, the Gini index 

is positive, therefore minimum Gini index is desired for node purity. And finally, node error shows the fraction 

of misclassified observations at the node. p(j) in equation 4 below is the observed fraction of largest class (with 

largest number of observations). 

1 − 𝑝(𝑗)                                                                                                                                                                              (4) 

In Matlab environment, other than Gini (diversity) index, two different split criterions ‘twoing’ and ‘deviance’ 

are used similar to equations 1-4. The deviance of a node is given in equation 5 below where a pure node has 

deviance 0; otherwise, the deviance is positive. 

− ∑ (
𝑁𝑗(𝑡)

𝑁(𝑡)
) ∙ 𝑙𝑛

𝑁𝑗(𝑡)

𝑁(𝑡)𝑘                                                                                                                          (5) 
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As given in equation 6, twoing is expressed in terms of L(i) which denotes the fraction of members of class i 

in the left child node after a split, and R(i) which denotes the fraction of members of class i in the right child 

node after a split and P(L) and P(R) are the fractions of observations that are split to the left and right leaf 

nodes respectively. It is desired to maximize twoing to make child node purer.  

𝑃(𝐿)𝑃(𝑅)(∑ |𝐿(𝑖) − 𝑅(𝑖)|𝑖 )2                                                                                                                        (6) 

A very important point about the splitting criterions mentioned above is that the choice of the criterion may 

affect the choice of best features for the root or branch nodes which may lead to different decision trees. 

Therefore, it is necessary to compare decision tree models from different scoring criteria and to identify certain 

features with more or less significance. 

Since the decision tree algorithm is a recursive technique, running of algorithm continues until the selected 

criterion is optimized by selecting optimum partition of predictors (input variables) (Quinlan, 1986). Of course, 

there are different algorithms like ID3, CART, C4.5, C5.0 etc. in the computing history used for decision trees 

with different advantages of high classifying speed, strong learning ability and simple construction (Breiman 

et al., 1984). Although different algorithms exist, researchers still face difficulties during modeling like low 

accuracy and try to make improvements on the existing algorithms (Han et al., 2011). Matlab software 

environment (8.4.0.150421 (R2014b)) uses non-parametric CART (Classification and regression tree) 

algorithm (Breiman et al., 1984). This algorithm can canconstruct binary classification trees for categorical 

output variables. CART algorithm can be represented as a flow diagram as seen in Figure 1. In Matlab 

environment (8.4.0.150421 (R2014b)), binary decision trees for classification are built using “fitctree” 

command. 

 

Figure 1. Simple Representation of CART Algorithm in MATLAB Environment 
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In this study, binary classification tree was used for the determination of routes to UCD values with potential, 

current density, KI concentration and type of electrode (platinum or glassy carbon disc electrode) as input 

variables. For the decision tree, a testing procedure was used to observe the accuracy of the model. First the 

database was randomly separated into training and testing subsets after shuffling the observations of the 

database randomly. Shuffling of observations was done in order to sample observations from the database in 

a wide range of input variables during training of the decision tree. The testing subset included 10% of the 

total number of observations. After the selection of splitting criterion, testing and training errors were 

compared at different tree sizes by the pruning the decision tree incrementally. The pruned tree size with the 

minimum testing error was selected as the optimal tree (Larose & Larose, 2014; Tapan et al., 2016; Baysal et 

al., 2017; Günay et al., 2018). Since it is known that the choice of optimization criterion may affect the choice 

of best features for the root or branch nodes which lead to different decision trees and therefore may affect the 

testing error, the testing procedure mentioned in Figure 1 was repeated to compare testing accuracy with 

different splitting criterion (Myles et al., 2004). 

3. RESULTS AND DISCUSSION 

3.1. Cyclic Voltammetry 

As can be seen from the cyclic voltammetry experiments in Figure 2, oxidation and reduction peaks 

corresponding to triiodide/iodide redox couple (Boschloo & Hagfeldt, 2009) as given by the one step 

electrochemical reaction below in equation 7 appear close to 0.45 V and 0.25 V vs. SCE.  

I3
- + 2e- → 3I-                                                                                                                                                 (7) 

Upon performing cyclic voltammetric experiments on 2 different types of electrodes, in two different 

electrolyte concentrations and with three different values of UCD, it is clearly seen that it is not possible to 

separate and analyze the effect of electrochemical features on current density or applied potential or to observe 

electrochemical conditions leading to different UCD values.  

 

Figure 2. Cyclic Voltammetry Experiments Performed with Pt and GC Disc Electrodes in Electrolytes with 

0.075 M and 0.15M KI and with Flours of 16.5, 25 and 30 UCD Values (Scan Rate:50 mV/sec) 

For the purpose of extracting some general information and better visualization of electrochemical data used 

for computational purposes, voltammetry experiments were also classified with respect electrode type, UCD 

values and KI concentration in the electrolyte by the use of data visualization tool, ggplot2 package in R 

environment as seen in Figure 3. It was seen that although it not possible to differentiate UCD values in 

voltammetric data , higher oxidation peak current densities were observed on glassy carbon electrode and drop 

in KI concentration decreases peak oxidation currents for UCD values of 16.5 and 25 on both electrodes and 

secondly at UCD value of 30 highest oxidation peak current densities were seen on GC electrode which is just 
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the opposite of platinum electrode and which may indicate the different oxidation mechanisms on the two 

electrodes. 

 

Figure 3. Visualization of Voltammetric Experiments by Classifying with Respect to Electrode Type, 

UCD Values and KI Concentration a) glassy carbon electrode, b) platinum electrode (Scan Rate:50 mV/sec) 

3.2. Construction, Filtering and Analysis of Electrochemical Database 

After cyclic voltammetry experiments, voltammetric data in the forward potential scan in range of 0 to 1V vs. 

SCE was filtered from outliers by analyzing box and whisker plots. In addition, in order to remove outliers 

from the voltammograms, Matlab code (MATLAB environment, version number 8.4; R2014b) was used and 

box and whisker plots (Walpole et al., 2012) before and after removal of outliers from the voltammetric data 

were compared as seen in Figure 4. After removal outliers from current density data, a filtered database of 

3542 observations was used for the construction of decision trees. In Figure 4 natural logarithm transformation 

of current density data (ln (1+current density)) was performed in order to normalize data as much as possible 

after filtering from outliers. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Box and Whisker Plots of Electrochemical Features Before and After Removal of Outlier from the 

Current Density Data. Current Density Analysis were performed as the Natural Logarithm of (1+current 

density) [ln (1+current density)] a) before, b) after potential; c) before d) after UCD values; 

e) before, f) after removal of outliers 
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(d) 

 
(e) 

 
(f) 

Figure 4. Continued 

It can be seen from Figure 4 that after removal of outliers which are the data points outside the whiskers, 

current density data was also normally distributed since the line in the box which shows the median of 

observations is almost in the middle of the box and the position of the box is almost in the center of upper and 

lower whiskers. Like current density, almost the similar behavior was observed for potential and UCD values. 

Therefore, after removal of outliers, no skewness in the filtered observations were observed. 
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In addition to filtering of electrochemical data, in order to search for any kind of correlation between each 

electrochemical feature, correlation matrix was constructed. Correlation coefficient matrix as dimensionless 

measure of linear dependence depends on the covariances (which is the joint variability between two random 

features) between any two features in the data set where covariance is divided by the product of standard 

deviation of selected two variables. The correlation matrix chart as shown in Figure 5 was constructed in 

Python 3 environment by importing “pandas” and “matplotlib” packages and using “corr ()” function. 

 

Figure 5. Correlation Coefficient Matrix Chart between Features in the Electrochemical Data Set 

(red box: negative correlation, blue box: positive correlation) 

As seen in Figure 5, there is no strong correlation other than between current density and applied potential and 

other than a weak positive correlation between current density and KI concentration, there is almost no 

correlation between UCD values and other features. 

3.3. Principal Component Analysis 

In order to see the effect of each principal component in total variance (eigen values of covariance matrix) and 

to decide how many principal components (PC) to keep for explanatory analysis, “explained” together with 

“pca” was used to determine percent variance of each principal component as seen in Table 1. 

Table 1. Percentage of the Total Variance Explained by Each Principal Component 

Principal Component Variance 

PC1 82.5 

PC2 10.1 

PC3 7.3 

PC4 0.08 

As can be seen from Table 1, the first two components have 92.6% of the original variance which is enough 

to retain all the original variance and dimensionality can be reduced to 2 without loss of information. In 

addition, Table 2 shows that among the coefficients of four input variables (or the weights of input variables) 

in the first two principal components, current density and type of electrode (1 for Pt electrode, 0 for GC 
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electrode) are dominant factors in the first principal component; and potential and current density are dominant 

factors for the second principal component. 

Table 2. Coefficients of First Two Principal Components 

Predictor PC 1 PC 2 

Potential -0.03252 -0.6012 

ln(1+current density) -0.1771 0.7895 

KI Concentration 0.00364 -0.0142 

Pt Electrode (0 or 1) 0.9836 0.1223 

In order to understand whether the variation retained in the selected components contains relevant information 

about the level of output (UCD values), each sample is projected onto these principal components and separate 

levels of the output (separate clusters of output) were searched on these components as seen in the Figure 6 

below: 

 
(a) 

 
(b) 

Figure 6. Principal Component Analysis of Cyclic Voltammetry Data without Outliers and Distribution of 

UCD Values with Respect to the First Two Principal Components 

(red filled circles: UCD=16.5; green filled circles: UCD=25; blue filled circles: UCD=30; 

pure clusters were surrounded by black lines) 

Range of Principal Component Analysis with PC1 a) Between -0.64 and -0.46, b) Between 0.34 and 0.54 
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In Figure 6, by the representation of UCD values (output levels) with 2 dimensional plots, clusters of UCD 

values can be visualized. In Figure 6, it was also decided to split the principal component analysis into two 

regions of first principal component in order to see clearly pure clusters of UCD values. Therefore, from Figure 

6a at high current densities (negative PC1), UCD values of 30 and at high potentials and high currents, UCD 

values of 16.5; and from Figure 6b at high potentials on platinum electrode UCD values of 16.5 could be 

observed. 

3.4. Decision Tree Analysis 

For the construction decision tree, in order to see the effect of splitting criterion on the regions of overfit and 

underfit, initially, testing and training errors which are root mean square error of the difference between class 

predictions (from decision tree) and observations were compared at different pruning levels. As seen in Figure 

7, different splitting criterions (Figure 7a,b,c) exhibit different regions of overfit and underfit; and minimum 

testing error was achieved at a pruning level of 21 for “deviance” splitting criterion.  

 
(a) 

 
(b) 

 
(c) 

Figure 7. Testing and Training Errors at Different Pruning Levels for Different Splitting Criterions 

a) gdi, b) twoing, c) deviance, testing subset:10% of observations 
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After determination of training and testing errors for different pruning levels, fraction of misclassified 

observations were analyzed by determination of confusion matrices with Matlab command “confusionmat” 

for the three splitting criterion at the optimum pruning level. As seen in Table 3, deviance splitting criterion 

exhibit lowest number of misclassifications in the confusion matrix. 

Table 3. Confusion Matrix Charts of Testing Data for Different Splitting Criterions 

a) gdi, b) twoing, c) deviance (red box: misclassification, blue box: correct classification) 

 

After construction of binary decision tree with the optimum pruning level ,21, and optimum splitting criterion 

“deviance” based on minimum testing error and confusion matrix with minimum misclassifications, 

observations were split with 71 branch and 71 leaf nodes with these hyperparameters (splitting criterion and 

pruning level) as seen Figure 8. 

 

Figure 8. Binary Classification Tree Constructed by “Deviance” Splitting Criterion 
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The rules of branch nodes seen in Figure 8 is also presented in Table 4. As seen in Table 4, the decision tree 

grows with the root node which uses current density as a rule and the first two main branches are electrode 

type and current density again. In addition, Table 4 shows that most of the leaf nodes involve “current density” 

as a rule. It also important to note that branch nodes 7 and 13 are not taken into consideration for further 

analysis since “electrode type” is not used as a rule in these branch nodes.  

Table 4. Branch Node Rules Based on Binary Decision Tree with “Deviance” Criterion and 21 Pruning 

Level 

Node# Rule Node# Rule 

1 current density (A/cm2)<10350.33 36 potential (V) <0.545 

2 electrode type (Pt=1,GC=0)=0 37 current density (A/cm2)<8392.39 

3 current density (A/cm2)<12066.73 38 current density (A/cm2)<9761.56 

4 potential (V) <0.515 39 current density (A/cm2)<9735.43 

5 current density (A/cm2)<9020.36 40 current density (A/cm2)<10320.25 

6 electrode type (Pt=1,GC=0)=0 41 potential (V) <0.815 

7 potential (V) <0.49 42 potential (V) <0.85 

8 current density (A/cm2)<9794.22 43 potential (V) <0.675 

9 current density (A/cm2)<6638.42 44 current density (A/cm2)<8992.97 

10 potential (V) <0.895 45 potential (V) <0.625 

11 potential (V) <0.515 46 current density (A/cm2)<9817.96 

12 current density (A/cm2)<11122.55 47 current density (A/cm2)<7841.63 

13 potential (V) <0.965 48 current density (A/cm2)<8439.36 

14 current density (A/cm2)< 8940.69 49 current density (A/cm2)<8189.17 

15 potential (V) <0.815 50 potential (V) <0.845 

16 current density (A/cm2)<8180.00 51 potential (V) <0.615 

17 current density (A/cm2)<9867.47 52 potential (V) <0.665 

18 current density (A/cm2)<9842.83 53 potential (V) <0.845 

19 KI concentration (M) =0.075 54 potential (V) <0.765 

20 potential (V) <0.735 55 potential (V) <0.635 

21 current density (A/cm2)<9219.37 56 current density (A/cm2)<10671.97 

22 current density (A/cm2)<9846.87 57 current density (A/cm2)<10606.54 

23 current density (A/cm2)<7362.86 58 current density (A/cm2)<8139.77 

24 potential (V) <0.765 59 potential (V) <0.745 

25 potential (V) <0.765 60 current density (A/cm2)<9115.58 

26 potential (V) <0.735 61 current density (A/cm2)<9443.80 

27 current density (A/cm2)<9995.90 62 current density (A/cm2)<9833.28 

28 current density (A/cm2)<11652.13 63 current density (A/cm2)<9167.23 

29 current density (A/cm2)<10901.09 64 current density (A/cm2)<9254.28 

30 potential (V) <0.895 65 potential (V) <0.835 

31 potential (V) <0.885 66 current density (A/cm2)<9009.81 

32 potential (V) <0.925 67 current density (A/cm2)<9240.23 

33 potential (V) <0.925 68 potential (V) <0.785 

34 current density (A/cm2)<6922.94 69 potential (V) <0.675 

35 potential (V) <0.805 70 potential (V) <0.69 

  71 current density (A/cm2)<8844.20 

In order to determine the significance of input variables in the decision tree model, importance of the input 

variables were also determined by “predictorImportance” function in Matlab environment. In Matlab, predictor 

importance function sums up changes in the risks of the nodes related to each predictor in the pruned decision 

tree and divides the sum by the number of branch nodes. The change in the node risk is the difference between 

the risk for the parent node (related with specific predictor) and sum of risks of child nodes as given in equation 

8 where Rp, Rc and Nbranch is the is parent risk, child node risk and total number of branch nodes. The risk of a 

node is defined as multiplication of node impurity (equation 3) by the probability of the node which is the ratio 

of observations that are classified in that node to total number of observations. 

(Rp – Rci)/Nbranch                                                                                                                                                                                                                                   (8) 
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Table 5 shows the importance of the predictors used in the pruned decision tree where current density has the 

highest impact on UCD. The importance of the predictors can be ordered as current density (J) > potential > 

electrode type > KI concentration in Table 5. 

Table 5. Importance of Predictors in the Optimum Decision Tree 

Predictor (or Input Variable) Importance 

Current Density (J) 1.03x10-3 

Potential 7.25x10-4 

Electrode Type (Pt or GC Electrode) 9.57x10-5 

KI Concentration 8.78x10-5 

Table 6 shows leaf node number, highest class membership and the leaf node rules for the optimized binary 

decision tree. High class memberships in the leaf nodes indicate that voltammetric data with different electrode 

types, damaged starch content flour (UCD values) and electrolyte concentration (KI concentration) can be 

successfully modeled by classification tree. If the rules in Table 6 are examined based on different UCD values 

on the same electrode type, it is seen that although rules indicate same potential ranges maximum current 

density (J) increase with UCD values on the GC electrode and UCD values of 30 give highest current ranges 

for both GC and platinum electrode. At UCD value of 16.5 and 25, higher currents were seen on GC electrode 

compared to platinum electrode.  

As a final word, although it is difficult to extract physical interpretation from the rules of binary decision tree, 

performance indicators like confusion matrix and highclass memberships in the leaf nodes demonstrate the 

high accuracy of predicted UCD values just from voltammetric experiments. 

Table 6. Leaf Node Rules in the Optimum Decision Tree  

Leaf 

Node # 

Class 

Membership 
Branch Nodes 

2 UCD 16.5=93/105 Glassy carbon electrode, potential >0.515V, J(A/cm2) <8940.69 

10 UCD 16.5=40/43 Glassy carbon electrode, 0.925>potential (V) >0.815, 9794.22<J (A/cm2) <9846.87 

14 UCD 16.5=14/16 Glassy carbon electrode, potential (V) >0.925, 9846.87<J (A/cm2) <10350.33 

60 UCD 25=89/121 Glassy carbon electrode, 0.815>potential (V) >0.515, 10671.97<J (A/cm2)<11652.13, KI concentration (M) =0.15 

61 UCD 25=109/115 Glassy carbon electrode, potential (V) >0.815, 10350.33<J (A/cm2)<11652.13, KI concentration (M) =0.15 

7 UCD 25=88/90 Glassy carbon electrode,0.625<potential (V) <0.885, 9794.22>J (A/cm2)>9219.37 

62 UCD 25=39/39 Glassy carbon electrode, 0.515<potential (V) <0.85, 11652.13<J (A/cm2)<12066.73, KI concentration (M) =0.15 

3 UCD 25=11/14 Glassy carbon electrode, 0.895V>potential >0.515V, 8992.97>J (A/cm2)>8940.69 

5 UCD 25=13/13 Glassy carbon electrode, 0.895V<potential, 8992.97>J(A/cm2) >8940.69 

63 UCD 30=25/26 Glassy carbon electrode, potential (V) >0.85, 11652.13<J (A/cm2)<12066.73, KI concentration (M) =0.15 

58 UCD 30=16/17 Glassy carbon electrode, potential (V) >0.515, 10350.33<J (A/cm2)<12066.73,KI concentration (M) =0.075 

59 UCD 30=12/13 Glassy carbon electrode, 0.515<potential (V) <0.815, 10350.33<J (A/cm2)<10671.97, KI concentration (M) =0.15 

15 UCD 16.5=69/80 Platinum electrode, J (A/cm2) <6638.42 

20 UCD 16.5=43/58 Platinum electrode, potential (V) >0.805, 8139.77> J(A/cm2) >7841.63 

25 UCD 16.5=43/56 Platinum electrode,0.675>potential (V) >0.545, 9009.81>J (A/cm2) >8439.36 

24 UCD 16.5=44/51 Platinum electrode,0.545<potential (V) <0.765, 8180.00<J (A/cm2) <8439.36 

45 UCD 16.5=36/39 Platinum electrode,0.765<potential (V) <0.845, 9167.23<J (A/cm2)<9735.43 

44 UCD 16.5=15/15 Platinum electrode,0.785<potential (V) <0.845, 9020.36<J (A/cm2)<9167.23 

30 UCD 16.5=12/14 Platinum electrode, potential (V) >0.765, 8189.17>J (A/cm2) >8180.00 

18 UCD 25=89/110 Platinum electrode, potential (V) <0.805, 7362.86<J(A/cm2)<8180.00 

17 UCD 25=25/35 Platinum electrode, 6922.94<J (A/cm2)<7362.86 

27 UCD 25=16/18 Platinum electrode, 0.675<potential (V) <0.745, 8844.20<J (A/cm2) <9009.81 

28 UCD 25=12/16 Platinum electrode, 0.545<potential (V) <0.745, 9009.81<J (A/cm2) <9020.36 

65 UCD 25=13/14 Platinum electrode, 0.675<potential (V) <0.735, 10606.54>J (A/cm2) >10350.33 

66 UCD 25=13/14 Platinum electrode, 0.675<potential (V) <0.735, 10606.54<J (A/cm2) <10901.09 

55 UCD 25=12/13 Platinum electrode, potential (V) >0.895, 9842.83<J(A/cm2)<9995.90 

69 UCD 30=72/92 Platinum electrode, 11122.55<J (A/cm2)<12066.73 

68 UCD 30=46/47 Platinum electrode, Potential>0.735V, 11122.55<J (A/cm2)<12066.73 

38 UCD 30=23/24 Platinum electrode, 0.615<potential (V) <0.765, 9240.23<J (A/cm2)<9443.80 

67 UCD 30=12/14 Platinum electrode, potential (V) <0.735, 10901.09<J (A/cm2)<11122.55 
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4. CONCLUSION 

In this study, classification tree was successfully applied on iodine oxidation voltammetric data. High class 

memberships and testing error in the pruned tree indicate that UCD values (damaged starch ratio) can be 

predicted from the selected electrochemical variables during voltammetric study. The machine learning 

strategy can be extended to other electrochemical techniques or with higher number of electrochemical 

variables for further studies. 

ACKNOWLEDGEMENT 

We would like to thank Gazi University Scientific Research Projects, BAP #: 06/2018-12 for the financial 

support. 

CONFLICT OF INTEREST  

The authors declare no conflict of interest. 

REFERENCES 

Baysal, M., Günay, M. E., & Yıldırım, R. (2017). Decision tree analysis of past publications on catalytic steam 

reforming to develop heuristics for performance: A statistical review. International Journal of Hydrogen 

Energy, 42(1), 243-254. doi:10.1016/j.ijhydene.2016.10.003 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. 

Chapman and Hall/CRC. doi:10.1201/9781315139470 

Boschloo, G., & Hagfeldt, A. (2009). Characteristics of the Iodide/Triiodide Redox Mediator in Dye-

Sensitized Solar Cells. Accounts of Chemical Research, 42(11), 1819-1826. doi:10.1021/ar900138m 

Comon, P. (1994). Independent component analysis, A new concept?. Signal Processing, 36(3), 287-314. 

doi:10.1016/0165-1684(94)90029-9 

Dhital, S., Shrestha, A. K., Flanagan, B. M., Hasjim, J., & Gidley, M. J. (2011). Cryo-milling of starch granules 

leads to differential effects on molecular size and conformation. Carbohydrate Polymers, 84(3), 1133-1140. 

doi:10.1016/j.carbpol.2011.01.002 

Günay, M. E., Türker, L., & Tapan, N. A. (2018). Decision tree analysis for efficient CO2 utilization in 

electrochemical systems. Journal of CO2 Utilization, 28, 83-95. doi:10.1016/j.jcou.2018.09.011 

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed.). Elsevier. 

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 

20150202. doi:10.1098/rsta.2015.0202 

Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining (2nd 

ed.). John Wiley & Sons. 

Li, M., Hasjim, J., Xie, F., Halley, P. J., & Gilbert, R. G. (2014). Shear degradation of molecular, crystalline, 

and granular structures of starch during extrusion. Starch‐Stärke, 66(7-8), 595-605. 

doi:10.1002/star.201300201 

Liu, W-C., Halley, P. J., & Gilbert, R. G. (2010). Mechanism of Degradation of Starch, a Highly Branched 

Polymer, during Extrusion. Macromolecules, 43(6), 2855-2864. doi:10.1021/ma100067x 

Liu, X., Xiao, X., Liu, P., Yu, L., Li, M., Zhou, S., & Xie, F. (2017). Shear degradation of corn starches with 

different amylose contents. Food Hydrocolloids, 66, 199-205. doi:10.1016/j.foodhyd.2016.11.023 

Medcalf, D. G., & Gilles, K. A. (1965). Determination of Starch Damaged by Rate of Iodine Absorption. 

Cereal Chemistry, 42, 546-557.  

Myles, A. J., Feudale, R. N, Liu, Y., Woody, N. A., & Brown, S. D. (2004). An Introduction to Decision Tree 

Modeling. Journal of Chemometrics, 18(6), 275-285. doi:10.1002/cem.873 

http://www.doi.org/10.1016/j.ijhydene.2016.10.003
https://doi.org/10.1201/9781315139470
http://www.doi.org/10.1021/ar900138m
http://www.doi.org/10.1016/0165-1684(94)90029-9
http://www.doi.org/10.1016/j.carbpol.2011.01.002
http://www.doi.org/10.1016/j.jcou.2018.09.011
http://www.doi.org/10.1098/rsta.2015.0202
http://www.doi.org/10.1002/star.201300201
http://www.doi.org/10.1021/ma100067x
http://www.doi.org/10.1016/j.foodhyd.2016.11.023
http://www.doi.org/10.1002/cem.873


450 
Nilufer YILDIRIM, Niyazi Alper TAPAN 

GU J Sci, Part A, 8(4): 435-450 (2021) 
 

 

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1, 81-106. doi:10.1007/BF00116251 

Ringnér, M. (2008). What is Principal Component Analysis?. Nature Biotechnology, 26(3), 303-304. 

doi:10.1038/nbt0308-303 

Tapan, N. A., Günay, M. E., & Yildirim, R. (2016). Constructing Global Models from Past Publications to 

Improve Design and Operating Conditions for Direct Alcohol Fuel Cells. Chemical Engineering Research and 

Design, 105, 162-170. doi:10.1016/j.cherd.2015.11.018 

Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability & Statistics for Engineers & Scientists 

(9th ed.). Prentice Hall, Boston.  

Zhu, F. (2016). Buckwheat Starch: Structures, Properties and Applications. Trends in Food Science & 

Technology, 49, 121-135. doi:10.1016/j.tifs.2015.12.002 

http://www.doi.org/10.1007/BF00116251
http://www.doi.org/10.1038/nbt0308-303
http://www.doi.org/10.1016/j.cherd.2015.11.018
http://www.doi.org/10.1016/j.tifs.2015.12.002

