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Abstract 
Processes in the atmosphere can be described by nonlinear approaches since they depend on a large number of independent 

variables. Even a slight change in initial conditions can cause unpredictable results. Therefore, long-term prediction is not 

possible to obtain. This is usually called “sensitive dependence on initial conditions”. In this study, average prediction times 
were determined for different meteorological variables by using a nonlinear approach. Daily values of relative humidity, air 

temperature, and wind speed in Sivas for the period 2006-2010 were used. To implement the method, the first step is to 

reconstruct the phase space. Phase space has two embedding parameters, namely time delay and embedding dimension. 

Mutual Information Function (MIF) can be used to determine the optimal value of the time delay. It considers both linear and 
nonlinear dependencies in a time series. To define phase space, embedding dimension, which is the number of state variables 

that define the dynamics of a system, must be identified correctly. The algorithm to describe the dimension is called False 

Nearest Neighbors (FNN). In the study, average prediction times of variables were calculated by using maximum Lyapunov 

exponents. Average prediction times for relative humidity, temperature, and wind speed were determined as 6.2, 5.8, and 2.5 
days, respectively. In addition, it is found that the sensitivity of measurements increases the prediction time. For relative  

humidity, the average prediction time can have a 50% increase with 10 times increase of sensitivity. 
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Öz 

Atmosferdeki süreçler çok sayıda bağımsız değişkene bağlı oldukları için doğrusal olmayan yaklaşımlarla tanımlanabilir. 

Başlangıç koşullarındaki küçük bir değişiklik bile, öngörülemeyen sonuçlara neden olabilir. Bu nedenle, uzun vadeli öngörü 
elde etmek mümkün değildir. Buna genellikle “başlangıç koşullarına hassas bağımlılık” denir. Bu çalışmada, doğrusal 

olmayan yaklaşım kullanılarak farklı meteorolojik değişkenler için ortalama öngörü süreleri belirlenmiştir. Çalışmada Sivas 

ilinde 2006-2010 dönemine ait günlük bağıl nem, hava sıcaklığı ve rüzgar hızı verileri kullanılmıştır. Yöntemi uygulamak 

için ilk adım, faz uzayının yeniden oluşturulmasıdır. Faz uzayının zaman gecikmesi ve embedding (gömme) boyutu olmak 
üzere iki gömme parametresi vardır. Zaman gecikmesinin optimum değerini belirlenmek için Karşılıklı Bilgi Fonksiyonu 

(MIF) kullanılabilir. MIF, bir zaman serisinde doğrusal ve doğrusal olmayan bağımlılıkları hesaba katar. Faz uzayını 

tanımlamak için, bir sistemin dinamiklerini tanımlayan durum değişkenlerinin sayısı olan gömme boyutu doğru bir şekilde 

tanımlanmalıdır. Bu boyutu tanımlayan algoritmaya Yanlış En Yakın Komşular (FNN) denir. Çalışmada maksimum 
Lyapunov üstelleri kullanılarak meteorolojik değişkenlerin ortalama öngörü süreleri hesaplanmıştır . Bağıl nem, sıcaklık ve 

rüzgar hızı için ortalama öngörü süreleri sırasıyla 6.2, 5.8 ve 2.5 gün olarak belirlenmiştir. Ayrıca ölçüm hassasiyetinin, 

öngörü süresini arttırdığı tespit edilmiştir. Bağıl nem için ortalama öngörü süresi, ölçüm hassasiyetinin 10 kat artmasıyla, 

%50 artışa sahip olabilmektedir. 
Anahtar kelimeler: Kaos, Lyapunov üsteli, Meteoroloji, Faz uzayı, Öngörü 

I. INTRODUCTION 
Prediction of atmospheric variables is an important issue all over the world. There are several approaches in the 

literature for the prediction of meteorological parameters. However, most of the approaches are linear. On the 

other hand, as a generally known fact that atmospheric processes have complexity and are controlled by many 

different mechanisms. The studies of chaotic analysis in atmospheric sciences are limited because of their 

abovementioned complexity. Some of the nonlinear approaches that are used in meteorology are artificial neural 

networks, support vector regression algorithms, and chaos theory. Among these approaches, chaos theory seems 

to be more practical than the other methods in terms of being easily applicable [1]. 
 

Prediction of meteorological parameters is crucial for a great number of different areas. For example, prediction 

of air temperature is important for climate change, agricultural purposes, epidemic diseases control, etc. [2-5]. In 

addition, the prediction of wind speed is substantial for energy production in the renewable energy sector [6, 7]. 
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Chaos theory was applied to a wide range of 

meteorological and hydrological variables such as 

streamflow [1, 8, 9], wind speed [10], 

evapotranspiration [11, 12], and temperature [13]. 

Most of the studies focused on fractal dimension and 

Lyapunov exponents which are the most important 
criteria of chaotic properties. The time series of the 

meteorological variables may be produced by a 

chaotic process since atmospheric variables can be 

controlled by many independent variables. If 

trajectories of dynamical systems merge in a specific 

subspace independent with initial conditions, it is 

called “attractor”. If it is not possible to make long-

term predictions, it can be said that there is a 

dependency on initial conditions [14, 15]. 

 

Although chaos is defined as complexity in the 

literature, chaotic systems are not complex systems. 

Complex systems are those whose behavior cannot be 

controlled under any circumstances because they are 

not dependent on initial conditions. However, chaotic 

systems are systems that can be analyzed and 

controlled. The most important property of chaotic 
systems is their sensitivity to initial conditions. The 

chaotic behavior of a system is not only dependent on 

external factors but also closely related to the system's 

own internal dynamics and initial conditions. Chaotic 

systems show irregular behavior in the time 

dimension. If the initial state of any deterministic 

system and its equations are known, the next behavior 

of the system can be defined. In chaotic systems, it is 

crucial to know the initial values with accurate 

precision to fully determine the development of any 

system over time. Since the chaotic systems are 

nonlinear, the error will increase exponentially over 

time [16]. 

 

This study aimed to define the average prediction 

times of three different meteorological variables 

(relative humidity, temperature, and wind speed) by 
using a chaotic approach. Firstly, the phase space was 

reconstructed for each variable by using their observed 

data. Then, the average prediction time of selected 

meteorological variables was determined using the 

Lyapunov exponent which is one of the most 

important chaos criteria. Finally, the possible changes 

in prediction sensitivity with changing measurement 

sensitivity were also investigated. 

II. MATERIAL AND METHOD 

2.1. Data and Study Area 
Before giving the properties of the study area, it is 

useful to explain the general characteristics of the 

climate of Turkey and the Central Anatolian Region. 

Turkey is affected by a subtropical climate regime that 

is called as “Mediterranean”. In summer, there are two 

dominant air masses (maritime polar (mP) and 

continental polar (cP)) in the country. On the other 

hand, northern and eastern parts of the country are 

affected by the Siberian high-pressure system in 

winter. In the Central Anatolian Region, continental 

climate character is observed because of the 

topographic effect [17, 18]. 

 

In the study, daily relative humidity, temperature, and 

wind speed data of Sivas station obtained from the 
Turkish State Meteorological Service (MGM in 

Turkish acronym) were used. The altitude of the 

station is 1294 m asl. The observation period was 

taken to be 2006-2010. The coordinates of the 

meteorological station in Sivas are 39°44'37.3''N and 

37°00'7.2''E (Figure 1). Figure 2 shows the time series 

of the variables used in the study. 
 

 
Figure 1. Location of the meteorological station used 

in the study 

 

 
Figure 2. Time series of daily (a) relative humidity, 

(b) temperature, and (c) wind speed for 2006-2010 
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2.2. Methodology 

2.2.1. Explanation of Lyapunov exponents 

The reason why chaotic systems exhibit aperiodic 

dynamics is that each phase space curve has different 

exponential growth rates at almost the same initial 

conditions. This is called “sensitive dependence on 

initial conditions”. The Lyapunov exponent, also 

called stability exponent, is a measure of sensitivity to 

initial conditions. It is defined as the average of the 

local degrees of separation of neighboring curves in 

the phase space [19]. Figure 3 represents the 

trajectories of two attractors starting with different 

initial conditions. 
 

 
Figure 3. Divergence of two orbits that have different 

initial points [20] 

 

Although the difference between initial conditions is 

too little, an apparent difference between the final 

forms of the attractor can be easily seen [21]. 

 
Figure 4 shows the development of phase space for 

two weather predictions in a specific period. For initial 

conditions given in Figure 4(a), the predictions were 

stable and the reliability was very high. According to 

Figure 4(b), it can be said that a slight difference in 

initial conditions leads to larger differences in 

prediction. Predictions spread very wide areas in 

phase space. Thus, the atmosphere behaves chaotically 

and in this condition, it is hard to make a reliable 

prediction [22]. 

 

 

Figure 4. Time evolution of phase space for different 

weather predictions 

 

Lyapunov exponents present the amount of 

convergence or divergence of nearby trajectories). 

Positive Lyapunov exponents exhibit divergence of 

the trajectories and chaotic process. In addition, the 

bigger Lyapunov exponent is an indicator of the 

shorter prediction time [23]. 
 

Lyapunov exponent represents the divergence degree 

of two nearby points in trajectory. The distance 

between two points is d0 in t=0, and change of 

distance with time can be expressed by using Equation 

(1): 

 

𝑑0(𝑡) = 𝑑0𝑒
𝜆𝑡                                                           (1) 

 

where λ parameter is named as Lyapunov exponent 

[24]. If any Lyapunov exponent of a system is greater 

than zero, this system is accepted to be chaotic. It was 

said that the higher positive Lyapunov exponent leads 

to lower future prediction reliability. 

 

2.2.2. Reconstruction of phase space 

Phase space reconstruction is a crucial process in time 

series prediction. Reconstructing a phase space of any 

system from observed data is a common procedure in 

nonlinear time series analysis [25]. Attractors of any 

dynamical system can be reconstructed by using the 

measured data. In order to reconstruct the phase space 

from any observed data, attractor information should 
be estimated from a given time series [14]. The time 

delay (τ) and embedding dimension (m) are the two 

key parameters in the above-mentioned reconstruction 

process [26]. 

 

It is important to define the time delay accurately. If 

the time delay is chosen smaller than the typical 

period of the time series, x[n] and x[n+τ] values are 

almost equal and the system does not have enough 

time to change its dynamics. On the other hand, if the 

time delay is defined as bigger, the difference between 

x[n] and x[n+τ]. Thus, this leads to randomly 

distributed situations in the phase space. In order to 

obtain the optimum time delay, the mutual 

information function which was proposed by Fraser 

and Swinney [27] was applied to time series. Mutual 

information is defined as a quantity that measures the 
nonlinear interdependence between two random 

variables [10]. 

 

After obtaining the optimum time delay, the 

embedding dimension can be defined. The embedding 

dimension is the number of state variables that define 

the dynamics of any system. The most common 

method to obtain embedding dimension is the False 

Nearest Neighbors (FNN) approach. If any attractor is 

embedded in a phase space that has a lower 

dimension, some no-neighboring points of any single 

point seem like a neighbor. Besides, since the 

dimension is increasing, the percentage of false 

neighbors decreases. By plotting percentages of false 



Int. J. Adv. Eng. Pure Sci. 2022, 34(1): 101-106               Using Chaos Theory   

104 
 

neighbors and embedding dimensions, the minimum 

percentage value is defined as the optimum 

embedding dimension [28]. 

2.2.3. Obtaining average prediction time by using 

Lyapunov exponent 

As mentioned before, at least one of Lyapunov 
exponents must be greater than zero for a chaotic 

system. It will be hard to make a forward prediction 

while the Lyapunov exponent is getting bigger. The 

average prediction time of any meteorological variable 

can be given as Equation (2) below [29]: 

 

𝑇 = 1/𝜆𝑚𝑎𝑥ln⁡(𝐿/𝜀)                (2) 

 

where T is the prediction time, L is the attractor 

dimension, ε is the measurement sensitivity. In the 
measurement system of our country, sensitivity can be 

accepted as 0.1. The dimension of an attractor is 

derived from the time series itself. Firstly, the original 

time series (x-axis) and lagged time series (y-axis) are 

plotted. The time lag is found by using the mutual 

information function algorithm. After plotting the 

original time series vs. lagged time series, the y-axis 

gives the attractor dimension of the parameter. 

 

The embedding parameters, namely time delay (τ) and 

embedding dimension (m) were computed by using 

TISEAN (TIme SEries ANalysis) program [30]. 

Maximum Lyapunov exponents for each variable were 

calculated by using Nonlinear Dynamics Toolbox 

(NDT) program [31]. 

 

III. RESULTS AND DISCUSSION 

Table 1 represents the required parameters found in 
the study to define average prediction time. It is seen 

in Table 1 that embedding dimensions for relative 

humidity, temperature, and wind speed were obtained 

as 8, 12, and 10, respectively. Time delays of these 

three variables were attained as 6, 3, and 3, as well. 

 

Table 1. Parameters required to calculate average 

prediction time 

Variable 
m 

(Embedding 
dimension) 

τ 
(Time 
delay) 

λmax 
(Maximum 

value of 
Lyapunov 

exponent) 

L 
(Attractor 
dimension) 

Relative 
Humidity 

8 6 1.03 62 

Air 
Temperature 

12 3 1.04 43 

Wind Speed 10 3 1.45 3.5 

 

Figure 5 illustrates the mutual information function of 

wind speed values. The x-value of the first minimum 

of the mutual information function is accepted as the 

optimum time delay. Thus, it is clearly said that the 

time delay of wind speed can be accepted as 3. 

 

 
Figure 5. Mutual information function of wind speed 

values 

 

Figure 6 shows the optimum embedding dimension of 

relative humidity values. The x-value of the first 

minimum of false nearest neighbor percentage can be 

accepted as embedding dimension. Therefore, the 

embedding dimension for relative humidity can be 

accepted as 8, as can be seen in Figure 6. After finding 

embedding parameters, maximum Lyapunov 

exponents for relative humidity, air temperature, and 

wind speed were 1.03, 1.04, and 1.45, respectively. 

 

 
Figure 6. Embedding dimension vs false nearest 

neighbor for relative humidity values 
 

Figure 7 represents the Lyapunov spectrums for air 

temperature. While looking at Figure 7, it is easily 

specified that the maximum Lyapunov value is fixed 

at a certain value. For air temperature, this value was 

obtained as 1.04. 
 

 
Figure 7. Maximum Lyapunov exponent for air 

temperature values 
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Using Equation (2), it is possible to obtain the average 

prediction time for any variables. Table 2 represents 

the average prediction time for all variables. By using 

the findings above, the average prediction time for 

relative humidity, temperature, and wind speed was 

found as 6.2, 5.8, and 2.5 days, as well. 
 

According to Table 2, relative humidity has the 

longest prediction time with nearly one week. A good 

relationship between maximum Lyapunov exponent 

value and average prediction time has been observed. 

While the Lyapunov exponent value is increasing, the 

average prediction time is decreasing, as well. 

 

Table 2. Average prediction time for all variables 

Variable λmax L T 

Relative Humidity 1.03 62 6.2 days 

Air Temperature 1.04 43 5.8 days 

Wind Speed 1.45 3.5 2.5 days 

 

Finally, the average prediction time for different 

sensitivity was calculated while changing the 

sensitivity step by step. Figure 8 shows the average 

prediction time in relative humidity for different 

sensitivity values. As the sensitivity of the 
measurement system decrease, long-term prediction 

becomes more impossible. 

 

The average prediction time is 6.2 days in 0.1 

sensitivity for relative humidity, although that is 4.01 

days in a 1.0 sensitivity value. 

 

 
Figure 8. An example of average prediction time for 

different measurement sensitivity (relative humidity) 

 

IV. CONCLUSION 
As a generally known fact, long-term weather 

prediction is not possible because of the uncertainties 

in meteorological variables. Most of the variables in 

the atmosphere are controlled by a lot of independent 

variables. Thus, it is not easy to make a long-term 

prediction. A small difference in initial conditions of a 

variable produces higher differences in increasing 

time. This property is one of the most obvious criteria 

for chaotic behavior. Lyapunov exponent is a key 

element to determine predictability in any variable. 

The results obtained from the study will contribute to 

decision-makers for planning and managing data-

based sectors such as energy production, weather 

forecast, agricultural areas, etc. The findings obtained 

from this study might be helpful for a long-term 

prediction of any meteorologic variable. The 

magnitude of the positive Lyapunov exponent can be a 
good indicator for prediction time length. Besides, 

other factors such as measurement sensitivity should 

not be ignored for making an accurate prediction, as 

well. Finally, detailed studies should be conducted 

with more stations and more meteorological variables 

since the atmosphere has chaotic properties. As a 

future study, it is planned to apply the given method 

for other stations and other meteorological variables to 

obtain regional results all over the country. 
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