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ABSTRACT

Air pollution-induced issues involve public health, environmental, agricultural and so-
cio-economic aspects. Therefore, decision-makers need low-cost, efficient tools with 
high spatiotemporal representation for monitoring air pollutants around urban areas and 
sensitive regions. Air pollution forecasting models with different time steps and forecast 
lengths are used as an alternative and support to traditional air quality monitoring stations 
(AQMS). In recent decades, given their eligibility to reconcile the relationship between 
parameters of complex systems, artificial neural networks have acquired the utmost im-
portance in the field of air pollution forecasting. In this study, different machine learning 
regression methods are used to establish a mathematical relationship between air pollutants 
and meteorological factors from four AQMS (A-D) located between Çerkezköy and Süley-
manpaşa, Tekirdağ. The model input variables included air pollutants and meteorological 
parameters. All developed models were used with the intent to provide instantaneous pre-
diction of the air pollutant parameter NOx within the AQMS and across different stations. 
In the GMDH (group method of data handling)-type neural network method (namely the 
self-organizing deep learning approach), a five hidden layer structure consisting of a max-
imum of five neurons was preferred and, choice of layers and neurons were made in a way 
to minimize the error. In all models developed, the data were divided into a training (80%) 
and a testing set (20%). Based on R2, RMSE, and MAE values of all developed models, 
GMDH provided superior results regarding the NOx prediction within AQMS (reaching 
0.94, 10.95, and 6.65, respectively for station A) and between different AQMS. The GMDH 
model yielded NOx prediction of station B by using station A input variables (without us-
ing NOx data as model input) with R2, RMSE and MAE values 0.80, 10.88, 7.31 respectively. 
The GMDH model is found suitable for being employed to fill in the gaps of air pollution 
records within and across-AQMS.
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INTRODUCTION

Air pollutants can be categorized as primary (SO2, NOX, 
CO, hydrocarbons, particle matter) and secondary (ozone) 
pollutants. NOx can be represented by the most commonly 
found NO2 form generated as a result of reaction between 
combusted hydrocarbons due to industrial and traffic emis-
sions and atmospheric oxygen. NOx are responsible for the 
formation of tropospheric ozone (bad ozone). Nitrogen ox-
ides likewise SO2, ammonia and volatile organic carbons are 
responsible for the formation of PM2.5. and have been subject 
a to numerous research on the basis of monitoring, predic-
tion [1, 2] and mitigation methodologies development [3]. 
The spread and transport of air pollutants that are released 
into the atmosphere is influenced by weather and climatic 
factors [4, 5]. Interaction of meteorological factors, mainly 
wind speed and wind direction with the air pollutants bring 
along variations in spatial distribution, spatiotemporal vari-
ation of air pollutants. Numerous research have demonstrat-
ed regional transport of air pollutants interpretation with 
the main meteorological factors; Humidity, temperature, 
pressure, wind direction and wind speed, dew point [6].

Recently, a city air quality determination study has gained 
importance. Thus, the periodic and spatial dimensions of 
pollution necessitate accurate determination. In order to 
overcome observed deficiencies, higher maintenance and 
repair expenses in air quality monitoring stations (AQMS) 
and provide supplementary data, solutions including in-
creasing prevalence of AQMS, use of mobile AQMS and 
low cost sensors (LCS) are widely applied [7, 8]. Up to 
date, research have emphasized the modeling approaches 
for temporal and spatial prediction [9] and forecasting of 
air pollution [10].

Monitoring of air quality and air pollution parameters 
is performed by static, mobile AQMS and establishment 
of low cost sensors (LCS). Regulatory pollutants (carbon 
monoxide, nitrogen oxides, ozone and particulate matter 
are measured by certified reference instruments at static 
AQMS. Those stations and sensors are large and expensive, 
also necessitate strict calibration and maintenance routines 
in order to provide high quality data and comparability be-
tween different region and stations [7, 8, 11]. Sensors and 
low cost sensors are able to monitor a range of air pollutants 
but mostly they are unable to meet the Air Quality Directive 
- Data quality objectives criteria and under effect of chem-
ical interferences and environmental conditions [7, 12]. 
According to framework and legal requirements described 
in air quality directive 2008/50/EC for ambient air quality 
assessment and management, the reference measurement 
methods are applied in the stable AQMS in Europe. The 
data provided by LCS are usually less accurate than AQMS 
[11]. The Air Quality Directive also pave the way for alter-
native and supplementary techniques such as air quality 
models for air quality and air pollution management.

Recent research accordingly have hypothesized to estimate 
air pollutants concentrations through their association/
interpretation with meteorological parameters [13], land-
scape data, environmental information [14] and other mea-
sured air pollutants [15, 16]. Underlie the spatiotemporal 
correlations between air pollutants emission and diffusion 
mechanisms, mechanistic or a non-linear model must be 
considering those correlation and/or able to realize non-lin-
ear mechanism of air pollutants spread, diffusion, transport 
and interaction under environmental, meteorological and 
atmospheric conditions [16].

Air quality management includes monitoring and timely 
application of foreseen preventions related to extreme air 
quality scenarios. Therefore, short and mid-term forecast-
ing of air pollution and air quality indexes became the focus 
of numerous research [2]. There are many gaps encountered 
in air pollution data series of stable AQMS, during their ob-
servation period [17]. The research method for predictive 
determination of air pollution parameters and air quality 
mainly based on statistical or deterministic approaches 
[16]. The emission and diffusion of pollutant is related both 
with interaction of pollutants and the meteorological fac-
tors. As a result it is prerequisite to use sufficient number 
of meteorological and air quality parameters in an air pol-
lution prediction model. Similar approach was applied via 
Pearson correlation, support vector regression (SVR) with 
or without principal component analysis, for the purpose of 
decision making on keeping the most correlated pollutant 
parameters in the data set [9, 16]. According to recent lit-
erature findings, modelling approaches including artificial 
neural network (ANN) methods were found eligible to be 
employed to fill in the gaps of air pollution records by deep 
learning based prediction of PM2.5, LSTM based estimation 
of air pollutant concentrations that cannot be directly mea-
sured by the air quality monitor and ANN based forecasting 
of the spatial–temporal profile of pollutant concentrations 
and air quality determinants in specific cases of power out-
ages, negative and wrong records of pollutants [11, 13, 16].

Most generally, machine learning (ML) methods and mostly 
ANN application are proposed to forecast the spatial-tem-
poral pollutant concentration profiles during extreme sce-
narios be it; power outage, maintenance, sensor repairmen 
and replacement, negative and faulty pollutant records. 
Also recent research have reported successful application 
of various modelling techniques developed with intent to 
eliminate high number of monitoring stations requirement 
and become an alternative for advanced representation of 
air pollution spatial variability; where Feed forward neu-
ral networks and Long short-term memory deep learning 
techniques were applied with intent to provide data at cur-
rently unmonitored locations [11, 18].

Traditional linear models or deterministic models de-
scriptive of chemical dispersion and transportation re-
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main limited as a result of the high degree of non-linearity 
between different air pollutants and weather conditions 
[2]. As it was reported in recent literature, the nonlinear 
mechanism of atmospheric phenomenon can be realized 
by ANN [17, 19] and excellent prediction performance 
can be achieved [16]. For the very reason air pollutant 
parameters prediction using ANN is found superior to 
multi-linear regression [17, 20].

Conventional recurrent neural networks (RNN) and long 
short-term memory (LSTM) is suitable option to be applied 
on time series thereby applied in various research topics 
from various disciplines [11]. These methods mostly con-
form with the cases where the values of concern are related 
to their previous situation like traffic flow prediction, air 
pollution prediction, solar irradiation scenarios [11]. For 
the case of interpolation and extrapolation based estima-
tion, model inputs are selected from a group of monitoring 
stations. Model training is performed by historical data of 
limited number of station with LSTM method, therefore 
the model was proposed to be suitable in small cities where 
only a few monitoring stations are established [11]. Besides 
the reported high performance of LSTM application in re-
search related to air pollution, concentration prediction is 
the common field of research area [16, 21].

Recently, soft computation artificial intelligence (AI) tech-
niques have been used successfully in the prediction of air 
pollution parameters such as NOx. Because of the many 
parameters that affect NOx, the results predicted from em-
pirical models do not match well with the measured results. 
Therefore, it is necessary to develop models that provide 
more accurate prediction of NOx under various air pollu-
tion and meteorological conditions. Group Method of Data 
Handling (GMDH), an AI-based method, is a self-organiz-
ing technique that can be used to solve complex problems 
in nonlinear system with large degrees of complexity. The 
GMDH technique, which is a multi-layered structure, uses 
only neurons that can provide the most effective and accu-
rate results unlike traditional machine learning methods. 
Thus, it is ensured that the most efficient input variables are 
used instead of using all input variables for the predictive 
model output. In this regard, the GMDH approach requires 
less data training compared to classical ANN methods and 
facilitates the interpretation of model input and output pa-
rameters. In air pollution prediction applications, it is very 
important to determine the pollutant (emission) sourc-
es and to determine the prevailing wind direction [19]. 
Demonstrated through preliminary research on AQMS of 
Tekirdağ and literature findings, deficiencies are observed 
in the AQMS data, with measurements either not being per-
formed or not being shared on numerous occasions during 
the course of the year [13, 18, 22]. In order to overcome 
these shortcomings, GMDH-type neural networks using a 
non-linear structure can be preferred for the estimation of 
the NOx parameter.

In this study, we hypothesize the employment of GM-
DH-type neural network as an alternative technique in 
prediction (forecast length equal to 0) of NOx air pollutant 
concentrations within the AQMS and spatial prediction of 
air pollutant concentration between different stations. The 
developed model provided prediction of NOx within a cer-
tain station by using data from a total number of four dif-
ferent weather stations and taking one station as reference. 
It has been observed that the GMDH-type neural network 
model minimizes the error rates under certain NOx predic-
tion states within a station and between different stations.

MATERIALS AND METHODS

Location of Interest
Tekirdağ is located at European part of Turkey, in the Thra-
ce region surrounded by Marmara Sea, Greece and Bul-
garia. The city is located within the Ergene basin and is the 
center of population growth (predominated by the indus-
trial development in the eastern part of the city, Çerkez-
köy and Çorlu districts) and air pollution as a result of 
heating, traffic and industrial activity. Tekirdağ constitutes 
the western border of İstanbul and the northern border 
of the Marmara Sea. Süleymanpaşa is the biggest district 
of Tekirdağ. There many organized industrial zones (OIZ) 
located at Çorlu, Çerkezköy, Kapaklı, Velimeşe, Ergene 
districts, as indicated in Figure 1. Tekirdağ host over 1100 
factories (with the frequency of occurrence; textile, paper, 
packaging, chemical and metal industries respectively). In 
Tekirdağ, there a total of 14 organized industrial zones, 
while 5 of them established around Çorlu district and its 
immediate surroundings. 4 of the organized industrial 
zones (OIZ) are lined up in the west-east direction along 
Çorlu, the Velimeşe OIZ is located between Çerkezköy and 
Çorlu (North south direction) and more than 500 facilities 
operate. Çorlu is the area where the new settlement is lo-
cated and the traffic is concentrated while Çerkezkoy host 
an OIZ under which more than 270 facilities operate and 
it one of Turkey's largest OIZs [23, 24]. The topographical 
properties of the location of interest (as indicated in Fig-
ure 1) can be described as land appearance in the form of 
wavy plains and is uneven, with low to mid slope values. 
Çorlu is under the influence of a transition type climate 
where Black Sea, Mediterranean and continental climate 
characteristics are encountered together. Cold air masses 
descending from the north and humid-warm air currents 
coming from the south, the Mediterranean and the Aege-
an affect the climate structure of the region. Typically, the 
wind blows at Tekirdağ dominantly from the directions of 
NNE-NE and rarely from the directions of SW-SSW [24].

Air Quality Monitoring Stations
In this study, urban and industrial AQMS located on 
the Çerkezköy-Çorlu-Tekirdağ line were selected as 
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data source. Air quality of Çorlu is monitored through 2 
AQMS; an urban AQMS located in town center (as a re-
sult of its distance from industrial activity) and an indus-
trial AQMS located between town center and Çerkezköy 
(Fig. 1). For the case of Tekirdağ (Suleymanpasa center 
city) air quality is monitored at two different stations. 
The exact location, coordinates and bird flight (BF) dis-
tance between selected stations in Tekirdağ-Suleyman-
pasa, Çorlu and Çerkezköy are described in Figure 1 and 
AQMS distances between stations are given in Table 1.

Between studied dates, northern winds were prevalent 
around station A. For station B and C, the direction of 
wind could be described as spreaded over a wider range 
(as a result of E-SE winds prevalence), as it is demon-
strated in Figure 2. Station B has distinctly strong winds 
where the average is above the meteorological upper 
limits reported for mild winds. Those strong winds are 
reported to trigger air pollutants transport and dispersal 
mechanisms [16]. Air pollutants at regions where moun-
tain-valley and land-sea breezes cycles are dominant 

Figure 1. AQMS locations for stations; A: Çerkezköy, B: Çorlu, C: Çorlu Center, D: Tekirdağ center.
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wind systems, are not easily transported from emission 
sources and accumulate. Also, WS over 5 m/s may create 
unstable weather conditions which increase PM and SO2, 
NOx distribution [4, 17].

Data Acquisition
The air pollutant and meteorological data source is the offi-
cial Air Quality Monitoring Network website of the Minis-
try of Environment and Urbanization. Daily average values 
were used and taken as references all along the study. PM10, 
SO2, NOx data as air pollutant parameters and air tempera-
ture (T), wind direction (WD), wind speed (WS), relative 
humidity (RH) and Air pressure (AP) were used as meteo-
rological model variables for the period between December 
2017 – December 2018.
It can be figured out from the correlation coefficients (de-
picted in Figure 4) of 0.79, 0.26, 0.43 and 0.91 for stations 
A, B, C, and D between targets output NOx and input 
variable PM, the PM parameter will be effective in NOx 
prediction for all stations. The PM10 and SO2 are amongst 
the sole parameters continuously measured at each 
AQMS in common. Therefore, the choice of using PM10 
and SO2 as model inputs for NOX prediction could be rea-
soned based on theory; the relation between air pollutant 
parameters as a result of their complex and interacting 
formation mechanisms. Nitrogen oxides likewise SO2, 
ammonia and volatile organic carbons are responsible for 
the formation of particulate matter.
In the Nox prediction model, 174-day air pollution and 
meteorological data were used, which were recorded for 1 
year. The statistical distributions of these data are shown 
in Figure 2 and can be summarized as; PM10, SO2 and NOx 
data of station D shows a wider distribution compared to 
station A-
C. The distribution of annual temperature data did not 
differentiate between stations. Higher average wind-speed 
values were measured at Station C. A substantial difference 
of wind direction distribution was not observed at the sta-
tions. Average RH were reported to be the highest and low-

est for station A and B respectively. Average AP values were 
distinctively higher at station D.

Regression Methods
Various machine learning regression methods are used to es-
tablish a mathematical relationship between the inputs which 
are air pollutants (PM10, NOX and SO2) and meteorological 
parameters (T, WD, WS, RH and AP) and the target output. 
The predicted output is calculated by training the data in all 
models for different air quality measurement stations. In this 
study, various regression methods that provide a relationship 
between target NOX and inputs are given below.

Linear Regression
Linear regression is one of the simplest methods that pro-
vide a mathematical relationship between the input param-
eters and the target output. It is often preferred because of 
the simple and convenient mathematical structure. In this 
regression method, the mathematical equation of the target 
based on the inputs is obtained with a slope and intercept 
value. The relationship between the target NOX and the in-
put variables is expressed by linear regression as:

� (1)

where  is output,  are input variables and 
 are coefficients obtained from the model.

Random Forest Regression
Random forest (RF) regression is one of the machine learn-
ing models that can be effective in predictive analysis under 
conditions where the output and input parameters are in 
a non-linear relationship. In this method, which reduces 
over fitting in model training, the predictions of all deci-
sion trees are combined to obtain more accurate and stable 
results. The forest tree diversity increases the robustness of 
the model obtained by regression [25].

Multilayer Perceptron Regression
Multilayer perceptron (MLP) is an artificial neural net-
work method frequently used in regression. MLP method, 
which is also considered as the early stage of deep learning, 
consists of an input, multiple hidden and an output layer. 
In MLP neural networks, the first layer contains the input 
parameters and the output layer makes a prediction about 
the input. Hidden layers are used as a computational tool 
between the input and output layers [26].

MLP regression method is often used in supervised learn-
ing applications that involve the training phase for certain 
target and input parameters are used in all hidden layer 
neurons. In this method, which is based on the training of 
inputs and output, a model based on correlation between 
input and output is learned. In the training phase, the pa-
rameters and weight coefficients of the model that mini-
mize the error are obtained.

Table 1. AQMS distances for stations

	 BF Distances between AQMS of interest

AQMS # (stations separated by-)	 Distance in km

Ed A-B	 ≈21

A-C	 ≈23

A-D	 ≈54

B-C	 ≈3

B-D	 ≈34

C-D	 ≈31

Letter Code/Name of AQMS. A: Çerkezköy; B: Çorlu; C: Çorlu Center; D: 
Tekirdağ center.
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Figure 2. Boxplot data summary of PM10, SO2, NOX, T, WD, WS, RH and AP parameters for stations A-WD: Wind direc-
tion (degrees), WS: Wind speed (m/s), RH: relative humidity (%), AP: Atmospheric pressure (hPa).
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GMDH-type Neural Network Regression
Group Method of Data Handling (GMDH), which is a 
self-organizing network model that behaves according to 
the input data, is preferred in regression analysis applica-
tions, unlike MLP artificial neural network models where 
the inputs are used on all neurons in the hidden layer [27]. 
The use of input parameters in all neurons may cause over 
fitting and performance degradation in regression mod-
els. In addition, there are difficulties and shortcomings in 
adjusting the bias and weight coefficients for a small num-
ber of datasets.

GMDH-type neural networks are one of the best methods 
for model estimation in complex structured problems. This 
neural network model is a multi-layered structure and uses 
only neurons that can provide the most effective and ac-
curate results. Each layer consists of independent neurons 
and these neurons are used in pairs. In this network model, 
a quadratic polynomial function is used as the activation 
function. The neurons in the hidden layers work inde-
pendently and neuron outputs which minimize the error 
rate are used. Thus, a multilayer neural network model con-
sisting of optimal layers and neurons is designed instead of 
using all neurons in the layers [28]. Figure 3 shows the gen-
eral structure of GMDH-type neural network.

GMDH-type neural networks are defined as a relationship 
between input and output parameters expressed in the form 

of a stepwise complex Kolmogorov-Gabor polynomial 
function. This relationship is expressed as a nonlinear form 
of the Kolmogorov-Gabor function [29].

� (2)

where  and α are predicted output and the coefficients of 
the quadratic polynomial, respectively. The number  is the 
degree of polynomial function and . In 
this study, the number  was chosen as 2. The polynomial 
operation is performed in three steps for ={0, 1 and 2}.

The Kolmogorov-Gabor polynomial, which has a nonlinear 
structure, is expressed in the form of a quadratic polynomi-
al consisting of two variables as follows:

� (3)

The GMDH-type neural network estimates the output for 
each set of input parameters (  and ) and is used to esti-
mate the  coefficients that minimize the mean squared error 
between the predicted and the actual output. This process is 
called self-organization of models, and neurons with mini-
mum error calculated by the least squares method are selected.

In the GMDG-type neural network model, the coefficient 
vector of the quadratic polynomial is calculated and the 
neurons that increase the error are eliminated. The objec-
tive function (OF), which is a selection criterion, is used for 
elimination process and OF is expressed as:

Figure 3. General structure of GMDH-type neural network.
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�
(4)

where ,  and  are the predicted, measured values 
and total number of dataset, respectively.

Evaluation of Models
The performance of a regression model is evaluated by 
calculating the error rate of the predicted output obtained 
by the model. In addition, the fit of the regression line to 
the data set is also used as a criterion in model evalua-
tion. The correlation coefficient (R2), root-mean square 
error (RMSE) and mean absolute error (MAE) are used 
to calculate between the predicted and actual values. The 
R2 value is between 0 and 1, and a larger value indicates a 
better fit between the predicted and the actual values. The 
R2 is a good measure to determine how well the model fits 
the dependent variables and is expressed as:

�
(5)

The RMSE is calculated as the sum of the square of the er-
ror by subtracting the predicted from the actual value, then 
divided by the total number of data and the square root is 
taken. The RMSE, which is widely used in the evaluation of 
models, is expressed as follows:

�
(6)

The mean absolute error (MAE), a measure similar to the 
mean squared error (MSE), is defined as the sum of the ab-
solute value of the error and is expressed mathematically 
as follows:

�
(7)

where , ,  and  represent the measured, predict-
ed, the average of measured values and the total number of 
dataset, respectively. 

Model Development Setup
Many empirical models have been developed to esti-
mate the air pollution parameter NOX values using air 
pollution and meteorological parameters. Recent re-
search have focused on instant prediction of target pol-
lutant parameter value [13]. Machine learning regres-
sion methods are extensively used to derive empirical 
equations. However, the application of ANN models in 
larger spatial dimensions would bring along a significant 
decline in the model’s performance for places far away 
from the station (data of which was used for model train-
ing), as was hypothesized in recent studies [9, 11, 30]. 
This study aims to develop empirical models based on 

not only pollution conditions, but also depend on mete-
orological conditions for NOx prediction. In this study, 
different regression methods such as linear, RF, MLP, and 
GMDH-type NN were analyzed for the NOx prediction 
model. The influences of different parameters, including 
air pollutants (PM10, SO2) and meteorological parame-
ters (T, WD, WS, RH, and AP), on the prediction of NOx 
within station and across different stations were investi-
gated. In the experimental setup, the parameters of the 
regression methods were set as follows: the number of 
forest trees was taken as 500 for RF, five hidden layer 
structures consisting of 20 neurons was established for 
MLP and 0.01 learning rate, rectified linear unit activa-
tion function, Adam optimization were chosen. In the 
GMDH-type neural network, a five hidden layer struc-
ture consisting of a maximum of five neurons was pre-
ferred and, layers and neurons that minimized the error 
were used. In all developed models, the data were split 
into a training (80%) and a testing set (20%). R2, RMSE, 
and MAE values were calculated to obtain the most ef-
fective and accurate empirical model that can be used in 
the prediction of NOX.

RESULTS AND DISCUSSIONS

In this study, pollution and meteorological parameters 
were used as input variables in different regression meth-
ods for the NOx prediction model and it was aimed to 
obtain a model that provides the best prediction. Figure 
3 shows the correlation between the parameters used as 
input variables and the output NOx, and the correlation 
values between these parameters. As can be seen from 
Figure 4, it has been observed that target output NOx has 
a high correlation with PM and SO2 parameters at all sta-
tions. It can be said that the obtained correlation results 
are compatible with the literature. A similar hypothesis 
was proposed in recent research in the Marmara region; 
were correlations between SO2 and PM10 values reported 
for residential areas (with solid fuel use) were higher than 
it is determined for industrial areas [31]. 

There are correlation coefficients of 0.79, 0.26, 0.43 and 
0.91 for stations A, B, C, and D between targets output 
NOx and input variable PM, respectively. These results 
show that the PM parameter will be effective in predic-
tion the output NOx for stations A and D. Similarly, the 
correlation between output NOx and SO2 is 0.83, 0.73, 
0.11 and 0.89 for stations A, B, C, and D, respectively. It 
is concluded that the SO2 parameter will have a negative 
effect on the prediction of the NOX parameter for station 
C. In addition, it can be said that there is no high correla-
tion between meteorological parameters and NOx for all 
stations. However, the use of meteorological parameters 
in the prediction of target output NOX is important to ob-
tain a more robust model.
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The Prediction Approach
Due to the non-linear relationship between NOX and input 
parameters, linear regression methods were found ineligi-
ble for modelling. All the cells in the layers are used in MLP 
neural network-based modelling, resulting in an excessive 
training problem and a recession in model performance. 
RF modelling is one of the machine learning models that 
can be efficient in predictive analysis even in non-linear re-
lations, have lower regression and higher error rates com-
pared to the GMDH method. GMDH neural network pre-
fer the most appropriate cells and pathways that minimize 
the error rate in the estimation. 

As a result the GMDH method performed better for esti-
mating NOX as compared to other methods. In this meth-

od, the number of hidden layers and the number of cells 
in those layers are optimally obtained based on the in-
put parameters. The NOX prediction within a certain sta-
tion by the GMDH-type neural network model resulted 
with regression coefficients (Table 2) ranging from 0.87 
to 0.94. For the case of using meteorological and air pol-
lution data of station A as model inputs; the regression 
coefficient of NOx prediction by the GMDH-type models 
were found to be 0.85, 0.54, and 0.65 for station B, C, D 
(as shown in Table 4), respectively. 

In another research, it was emphasized to use ANN algo-
rithms for predicting hourly concentrations of O3, NO2, 
PM10, PM2.5, SO2, CO with correlation coefficient (R2) 
between measured and predicted values and root-mean-

Figure 4. Pearson’s correlation coefficients of air pollutant and meteorological parameters for stations A, B, C, D.
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square (RMSE) values of 0.87 and 59.5 respectively [13]. It 
was reported by another research group that, using the WS, 
WD, and temperature as input variables, and ANN, AN-
FIS models have provided SO2 prediction with R2 values 
between 0.20 and 0.50 [32], and in another study with R2 
>0.70 [33]. Recent research have proposed using both the 
meteorological factors and air pollutant parameters as in-
put variables and reported that the ANN model produced a 
PM2.5 prediction with R2>0.92 [34]. Another study revealed 
that the use of NOX and meteorological parameters as input 
variables and the ANFIS model provided O3 predictions 
with R2>0.94 [35]. Based on findings of a recent study, using 
weather factors and air visibility as input variables is feasi-
ble for the ANFIS model and CO-NO2, PM10, SO2 – O3 were 
predicted with R2 between 0.65–0.89 [10].

Prediction of NOx Parameter Within a Station
In this study, the NOX prediction was obtained by various 
regression methods using the PM10, SO2, T, WD, WS, RH, 
and AP of each station as input factors. Table 2 shows the 
calculated R2, RMSE, and MAE values of linear, RF, MLP 

and GMDH-type regression algorithms for all stations. Re-
garding R2, RMSE and MAE values, the prediction of NOX 
within a certain station by the GMDH-type neural network 
have provided better results.

NOx prediction at station A has been provided by the GM-
DH-type neural network with the design demonstrated in 
Figure 5a. This designed network structure consists of an 
input layer with 7 neurons, two hidden layers with 5 and 3 
neurons, respectively, and an output layer with a single neu-
ron. In this network structure, neuron outputs that min-
imize the error rate between predicted and actual output 
were selected. As a result, at station A the NOX was predict-
ed with R2=0.94, RMSE=10.95, and MAE=6.65, (Fig. 5b). 
Similarly, prediction of NOx in stations B, C, and D by the 
GMDH-type neural network model have ended up with 
regression coefficients of 0.87, 0.88, and 0.93, respectively.

The prediction of NOX is formulated using the optimal 
neuron outputs of the network structure shown in Figure 
5. Each polynomial equation obtained with active neuron 
outputs and finally the NOX prediction equation is given in 
Table 3. Relative humidity (RH), one of the input layer pa-

Table 2. Prediction of each station's NOX for input parameters (PM10, SO2, T, WD, WS, RH and AP)

Station						      Machine learning techniques

		  Linear regression			   Random forest regression		  MLP regression			   GMDH regression

	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE

A	 0.85	 15.16	 10.72	 0.91	 11.61	 8.03	 0.82	 16.32	 10.76	 0.94	 10.95	 6.65

B	 0.59	 16.52	 8.18	 0.52	 17.92	 9.21	 0.57	 32.48	 20.69	 0.87	 8.99	 6.10

C	 0.46	 12.96	 10.00	 0.77	 8.40	 5.68	 0.64	 22.57	 16.75	 0.88	 7.19	 5.44

D	 0.89	 17.42	 13.26	 0.84	 21.45	 15.23	 0.83	 22.08	 17.03	 0.93	 18.68	 13.60

Figure 5. The prediction of NOX in station A. (a) structure of double hidden GMDH layers; (b) actual and predicted NOX 
by GMDH model.
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rameters, is deactivated because it increases the error rate 
in the NOX prediction model. The output of PM10 and WD 
polynomial pair in the first hidden layer, and the output of 
SO2 and WD polynomial pair and Y1 output in the second 
hidden layer are not included in the model because they 
increase the error rate in the NOX prediction. Thus, the NOX 
prediction is modelled as a polynomial function using the 
selected optimal neuron outputs.

Prediction of NOX Across Stations
The NOX prediction of stations located at different distanc-
es and directions were performed using station A data as 
input parameters via various machine learning regression 
methods. Table 4 shows the NOX prediction results of sta-
tions B, C, and D. The NOX values are also used as input 
data of station A which is accepted as a source station. The 
results show that the GMDH-type neural network provides 
higher R2, lower RMSE, and MAE values than other meth-
ods for all stations. It has been observed that the prediction 
performance of the proposed model is more successful at 
station B than at other stations. This result is due to the fact 
that reference station A, whose data is used as input, is clos-
er to station B than to other stations.

The GMDH-type neural network model designed for the 
prediction of NOX values at station B using data from sta-
tion A and the regression fit line of this model are shown 
in Figure 6. In the double hidden layer model designed in 
Figure 6a, the input parameters WD and RH were deacti-

vated because they increased the error between the predict-
ed and actual output. The PM10 and NOX polynomial pair 
output from the data of station A in the first hidden layer 
and output polynomial pair Y1 and Y2 in the second hidden 
layer were not used because they adversely affected the NOX 
prediction of station B.

The NOX prediction at station B is modelled as a polynomi-
al function via the remaining optimal neuron outputs and 
the fit line of model is shown in Figure 5b. The model equa-
tions were obtained by using the optimal neuron outputs of 
the GMDH-type neural network. The design is demonstrat-
ed in Figure 5a, and the equations are given in Table 5. As 
a result, Eq. (9) is obtained for the case that neuron outputs 
are used as polynomial pairs in the NOX prediction model 
of station B.

Prediction of NOX Across Stations without Using NOx as 
Input Variable
The NOX prediction across stations that are located at dif-
ferent distances and directions was performed using mete-
orological and air pollution data of station A data (the NOX 
is excluded) as input parameters via linear, RF, MLP and 
GMDH-type neural network regression methods. The R2, 
RMSE and MAE results of these regression methods in-
cluding all stations were listed in Table 6. According to the 
analysis of NOX prediction results of stations B, C and D 
(without using the NOX data of station A, that was taken 
as the reference station). It is apparent that GMDH-type 

Table 4. Prediction of B, C and D station's NOX for input parameters (PM10, SO2, NOX, T, WD, WS, RH and AP) of station A

Station						      Machine learning techniques

		  Linear regression			   Random forest regression		  MLP regression			   GMDH regression

	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE

B	 0.56	 17.25	 9.31	 0.63	 15.83	 8.44	 0.55	 17.36	 9.69	 0.85	 9.45	 6.16

C	 0.11	 16.66	 9.78	 0.22	 15.54	 9.54	 0.08	 16.92	 10.30	 0.54	 13.24	 8.19

D	 0.29	 44.85	 33.44	 0.38	 41.94	 28.62	 0.25	 46.25	 32.66	 0.65	 38.63	 29.15

Table 3. Parameters and coefficients used in neuron equations for the prediction of 
NOX in station A

Equation	 No.

(8)
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neural network has higher R2 values; 0.80, 0.48 and 0.71 for 
stations B, C, and D compared to other methods, respec-
tively. Therefore, empirical models for prediction of NOX 
were obtained via GMDH-type neural networks.

The GMDH-type neural network model designed for 
the prediction of NOX values at station B using station 
A data (not including NOx) and the regression fit line of 
this model are shown in Figure 7. In the double hidden 

Figure 6. The prediction of NOX in station B using NOX of station A. (a) structure of double hidden GMDH layers; (b) 
actual and predicted NOX by GMDH model.

Table 5. Parameters and coefficients used in neuron equations for the prediction of 
NOX in station B using NOX of station A

Equation	 No.

(9)

Table 6. Prediction of NOx for station B, C and D station's by using (PM10, SO2, T, WD, WS, RH and AP) input parameters of station A

Station						      Machine learning techniques

		  Linear regression			   Random forest regression		  MLP regression			   GMDH regression

	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE	 R2	 RMSE	 MAE

B	 0.49	 18.58	 9.01	 0.54	 17.64	 9.68	 0.50	 18.27	 10.19	 0.80	 10.88	 7.31

C	 0.17	 16.04	 9.71	 0.23	 15.50	 9.63	 0.16	 16.14	 10.16	 0.48	 13.69	 8.51

D	 0.34	 43.38	 32.45	 0.38	 41.91	 29.35	 0.20	 47.62	 35.10	 0.71	 35.90	 26.13
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layer model shown in Figure 7a, the AP input parame-
ter was not used because it increases the error between 
the predicted and actual NOX values. The T and WD 
polynomial pair output was not used in the first hidden 
layer. In the second hidden layer, as they may pose an 
adverse effect on NOx prediction, the polynomial pair 
output and the polynomial output formed by the Y3 out-
put were not used.

The NOx prediction of station B is modelled in terms of 
polynomial function by using the optimal neuron outputs 
and the data fit line is shown in Figure 7b. The equations of 
the model obtained by using the optimal neuron outputs of 
the GMDH-type neural network, are given in Table 7. And 
the network structure was demonstrated in Figure 7a. As 
a result, Eq. (10) is obtained for the case that the neuron 
outputs are used as polynomial pairs in the NOX prediction 
model of station B.

The results show that the predicted NOx output at stations 
B, C and D varies depending on the distance and direction 
from the source station A. The stations B, C and D are locat-
ed 21, 23 and 54 km from source station A, respectively. The 
correlation coefficient R2 of the GMDH model proposed 
for stations B, C and D is 0.85, 0.54 and 0.65, respectively 
when source station A NOx parameter is used. The station 
B, which is closest to the source station, has the highest 
correlation coefficient. Similarly, when the source station 
A station NOx parameter is not used, the correlation co-
efficient R2 of the GMDH model proposed for the stations 
B, C and D is 0.80, 0.48 and 0.71, respectively (prediction 
accuracy negatively affected for station D). Although the 
station D is at the farthest distance from source station A, 
the correlation coefficient results of the prediction model 
are higher than station C. That can be interpreted to the 
influence of local air pollution sources (point and/or linear 

Figure 7. The prediction of NOX in station B without NOX of station A. (a) structure of double hidden GMDH layers; (b) 
actual and predicted NOX by GMDH model.

Table 7. Parameters and coefficients used in neuron equations for the prediction of 
NOX in station B without NOX of station A

Equation	 No.

(10)
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sources like industry and traffic) on measured NOX values 
rather than the level of effect ascribed to near surrounding 
environment. In order to carry out an ascendant evaluation 
and sort out such entangled issues, air pollution trajecto-
ry and dispersion model and their outputs can be used as 
helpful tools and useful source of information for specific 
periods of time [4, 36].

The developed model provided prediction of NOx within 
a certain station by using data from a total number of four 
different weather stations and taking one station as refer-
ence. For the specific cases of NOx prediction within a sta-
tion and across different stations, the GMDH like neural 
network model results have been increased as a means of 
enhancing accuracy and minimizing error rates (lower er-
ror rates obtained).

CONCLUSIONS

This study presents a case study of application of machine 
learning algorithms to predict NOX concentrations using 
both air pollution and meteorological parameters. To ac-
curately predict the NOX parameter, data of a certain sta-
tion and across different stations were compiled and new 
models were derived. The GMDH model produced a pre-
cise prediction of NOX within stations and across stations 
(station to station) with/without using NOX as the model 
input variable. The key findings can be emphasized below:

(1)	The results show that meteorological parameters signifi-
cantly affect the NOX air pollution parameter and that 
the effects of meteorological parameters change with 
distance between stations.

(2)	The proposed empirical models provide a rapid as-
sessment of air quality and the prediction of NOX with 
an acceptable range of accuracy (R2={0.94, 0.85, 0.80} 
within station A, B via source station data and B via 
source station not including NOX).

(3)	 Results obtained through GMDH models exhibit a high 
degree of accuracy for NOX prediction values and sig-
nificantly outperform conventional methods. The pro-
posed model provides the opportunity to evaluate the 
effect of each input parameter on the model output. It 
has been observed that relative humidity (RH) increases 
the error rate and is disabled in the derivation of empiri-
cal models.

(4)	The proposed GMDH-type neural network model uses 
air pollution parameters (PM10 and SO2) and meteoro-
logical parameters (T, WD, WS, RH and AP) as inputs 
to estimate NOX air pollution values. 

(5)	The obtained model is region specific, but for a wide 
range of spatial representations and validity, data can be 
gathered from multiple stations at certain distance.

(6)	As a future scope, GMDH-type neural network and 

proposed approach can be used to support decision 
makers and engineers in planning stages including but 
not limited to optimization of total number and spatial 
distribution of AQMS to be set-up in a specific region.
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