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Abstract 

In urban sustainability researches, benchmarking methods have become the most needed ways to measure urban energy 

efficiency. Benchmarking the efficiency of urban energy with parametric and non-parametric methods are important cases 

within the energy field. Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) are ideal approaches to 

measure performance of various industries with multiple indicators. Stochastic method considers the noise in data and evaluates 

the critical success parameters of energy efficiency by separating noise from efficiency scores. This study evaluates urban 

energy efficiency by deterministic and stochastic ways with deploying DEA and SFA methodologies. The aim of the study is 

to show the effects and results of deterministic and stochastic approaches in urban energy efficiency measurement and to 

evaluate how Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) can be used to derive measures of 

efficiency and productivity change over time in complex multi‐input contexts in the production and consumption of energy 

services. Using data gathered from Turkish Statistical Institute (TURKSTAT) and Energy Market Regulatory Authority 

(EMRA) Development Reports. In the study, 30 cities, which are accepted as metropolitans of Turkey by government, are 

selected as Decision Making Units (DMUs) of both methods. As a result, different efficiency estimates are presented and 

evaluated within the scope of statistical noise, multiple inputs and outputs by DEA and SFA methods. 

Keywords: Urban Energy Efficiency; Urban Sustainability; Optimization for Energy Efficiency; Stochastic Frontier Analysis;  

Data Envelopment Analysis 

Öz 

Kentsel sürdürülebilirlik araştırmalarında, kentsel enerji verimliliğini ölçmek için en çok ihtiyaç duyulan yöntemler kıyaslama 

yöntemleridir. Kentsel enerji verimliliğinin parametrik ve parametrik olmayan yöntemlerle kıyaslanması, enerji alanındaki 

önemli ihtiyaçlardandır. Veri Zarflama Analizi (VZA) ve Stokastik Sınır Analizi (SSA), çeşitli endüstrilerin performansını 

çoklu göstergelerle ölçmek için ideal yaklaşımlardır. Stokastik yöntem, verilerdeki gürültüyü dikkate alır ve gürültüyü 

verimlilik puanlarından ayırarak, enerji verimliliğinin kritik başarı parametrelerini ortaya koyar. Bu çalışma, kentsel enerji 

verimliliğini VZA ve SSA metodolojilerini kullanarak deterministik ve stokastik yollarla değerlendirmektedir. Çalışmanın 

amacı, kentsel enerji verimliliği ölçümünde deterministik ve stokastik yaklaşımların sonuçlarını sunmak, VZA ve SSA etkinlik 

ölçümlerinin, zaman içinde çok çıktılı ve çok girdili enerji hizmetlerinin üretim ve tüketiminde, nasıl değişebileceğini 

göstermektir. Veri analizlerinde, Türkiye İstatistik Kurumu (TÜİK) ve Enerji Piyasası Düzenleme Kurumu (EPDK) Kalkınma 

Raporlarından faydalanılmıştır. Türkiye'nin 30 metropolitanı her iki yöntemde de Karar Verme Birimleri (KVB) olarak 

seçilmiştir. Sonuç olarak, VZA ve SSA yöntemleriyle, istatistiksel gürültü, çoklu girdiler ve çıktılar kapsamında farklı 

verimlilik tahminleri sunulmuş ve değerlendirilmiştir. 

Anahtar Kelimeler: Kentsel Enerji Verimliliği; Kentsel Sürdürülebilirlik; Enerji Verimliliğinde Optimizasyon; Stokastik   

Sınır Analizi; Veri Zarflama Analizi 

I. INTRODUCTION 
Metropolitans are centers of energy demand, investment and consumption centers in the World [1]. Since there is 

a very rapid urbanization, urban energy efficiency becomes an important concept of urban sustainability. 

Measuring urban energy sustainability is a case for metropolitans to realize more sustainable urban energy 

development and to take consideration important achievement metrics of energy efficiency. Urban energy 

efficiency requires using less energy to produce expected factors. High-energy efficiency will reduce high 

investments and increase the social urban sustainability, necessary investments and environmental protection of 

world cities. 

Realizing the needed determination of energy efficiency is critical to implement different approaches that 

maximize outputs and decrease investments [2]. Patterson who was the first researcher about energy efficiency, 

mentioned that there is no quantitative evaluation of efficiency which should be measured by a series of inputs and 
outputs [3]. 
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Previous researches have indicated deterministic and 

classical methods, which present limited insight on the 

randomness and complexity of urban energy efficiency. 

Hence, these studies failed to gain stochastic techniques 

to measure the noise and uncertainty in data. 

In recent years, more researches have been introduced 

different measuring methodologies to find solution for 

the complex questions of urban energy efficiency. 

Some of them studied economic situations depending 

on mathematical assumptions, the others implemented 

various kinds of models to see the high energy- 

consuming effect through critical and various 

parameters. 

Between the econometric models and mathematical 

programming, two critical differences are the 

formulation of a production frontier function and the 

measurement of efficiency. The stochastic econometric 

model recognizes the effects of statistical noise in 

imprecise data, but since it is parametric, it requires 

determining a functional structure according to the type 

of process to be measured. It also provides for a 

statistical testing of hypotheses and the results of 

confidence intervals [4]. The mathematical 

programming approach is deterministic and non- 

parametric as DEA, and does not take error of data into 

calculations. It is a detailed model of multiple input 

output evaluation [5]. 

In this study, data analysis and benchmarking were 

made between 2018 and 2019, for the urban energy 

efficiency performances of 30 metropolitans in 

Turkey. There is a comparison of different 

deterministic and stochastic results of Stochastic 

Frontier Analysis (SFA) and Data Envelopment 

Analysis (DEA) for measurement of urban energy 

efficiency. This paper shows the strengths and 

weaknesses in estimating urban energy efficiency of 

these methods through noisy in energy data. Technical 

efficiencies of cities differ between two methods. 

Because in deterministic DEA approach there is no 

consideration of the uncertainty in data on the frontier. 

On the other hand, the SFA method allows calculating 

error in data. These approaches can be classified as 

parametric and non-parametric methods. In the 

parametric SFA method a cost or production frontier 

formulation is estimated statistically, but in the 

nonparametric DEA method mathematical 

programming techniques are used. This study is the first 

study used to show the effects and results of 

deterministic and stochastic approaches in urban 

energy efficiency measurement within BCC, CCR and 

Cobb-Douglas implementations. 

The structure of the paper is organized as follows: The 

relevant literature was reviewed in Section 2 as 

‘Literature review’. The proposed approaches are 

presented in Section 3 as ’Methodology’. The 

evaluation for urban energy efficiency of DMUs is 

implemented in Section 4 as ‘Case study’, and the paper 

is highlighted in Section 5 as ‘Conclusion’ and further 

research areas. 

II. LITERATURE REVIEW
The cities, which are economic and cultural activity 

centers, provide important life factors to both 

developed and developing countries [6], they are the 

consumer of energy and the determinants of urban 

energy efficiency. Urban energy consumption is also 

related with urban energy investments, climate, 

population density and economy. Hence local energy 

efficiency inspections, investment decisions and plans 

can increase global energy efficiency. 
 

Doherty et al. [9] has presented the energy consumption 

of cities into three categories as; operational, embodied 

and transport energy. 

 

World Energy Council [10], stated urban energy 

consumption through “economic improvement and the 

distribution of income, urban form and density profiles, 

urban culture and climate, demographic development, 

transition and age situation.” 

 

According to these definitions and perspectives, urban 

energy efficiency components in cities must be an 

integration of energy usage within lifecycle needs. 

Forsström, et al. [11] introduced energy efficiency as 

the ratio of energy output and the energy input of the 

related factors. In this study, complex energy 

measurement output indicators were defined for 

service, process, goods and consumption. Energy 

efficiency is an important component of environmental 

sustainability and urban sustainable development. 

Natural energy resources are the results of ecological 

efficiency that can be defined as a part of sustainability. 

Hence, they said that; energy efficiency is a subset of 

ecological efficiency and sustainable development 

encompasses both of them [11]. 

There are different input and output parameters as 

energy efficiency measurement indicators. Patterson 

[3] has stated general energy efficiency factors as 

“thermodynamic, physical-thermodynamic, economic- 

thermodynamic and economic” groups. However, 

each group has strengths and weaknesses and in each of 

them allows choosing alternative indicators. For 

instance, energy intensity as energy consumption per 

unit of Gross Domestic Product (GDP) indicator shows 

total industry sectors’ energy need to produce one unit 

of expected economic output. 

There are many researches in literature on energy 

efficiency measurements. Keirstead [8] implemented 

three different approaches to investigate urban energy 

efficiency in United Kingdom. Keirstead [8] used ratio 

calculation, regression residuals and DEA methods. 
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The input indicators of DEA model were total energy 

consumption, land area, climate and population, while 

the output indicators were life expectancy, carbon 

dioxide emissions as undesirable output and access 

time to services. 

Dizdarevic et al. [12] measured energy efficiency in the 

EU countries between 2000 and 2010. They 

implemented input-oriented CCR DEA model within 

capital, labour, and energy use as input parameters and 

gross domestic product as the output. Here, GDP was 

the most important factor because of the energy 

economy policies. 

Li et al. [2] made energy efficiency calculation of high 

energy using industry by discussing the models BCC 

and CCR methods of DEA and SFA. This study 

presented an overview of energy efficiency 

measurement in high energy using industries. 

Economy, environmental factors, energy consumption, 

GDP, energy price and employees can be considered 

as indicators of linear frontier models. On the other 

hand, as technological indicators energy demand, 

resources can be considered as variables of constraint 

models. According to this study different 

implementations of energy efficiency measurement, 

DEA models are best approaches for multiple factors. 

In addition, energy-economic models enable authorities 

to make decisions and plans for future energy policies. 

Yang et al. [13] represented a method of determining 

the energy intensive urban built environment for 

improving energy efficiency and understanding of how 

urban buildings consume energy. Building energy use 

may include imprecise, random error term shows 

unpredictable conditions like energy supply and 

demand imbalance, system faults, service quality, 

climate, weather uncertainty and data input failures. 

This randomness may have either positive or negative 

effect on measurement and can be interpreted as 

stochastic differences of energy efficiency. Since the 

random factors, uncertain situations and error in data 

have important impacts on building energy 

performance, this study utilized SFA to find out the 

efficiency frontier and to remove influences of random 

error [13]. 

Baycan and İlhan [14] aimed to measure urban energy 

efficiency by nonparametric DEA method and they 

calculated efficiency scores for 81 provinces of Turkey. 

They used population, area, energy 

consumption, heating and cooling degrees as input 

factors, annual income, CO2 emissions, average life 

expectancy as output factors. According to study; to 

make detailed and reliable studies in urban energy 

efficiency, there should be correct and high quality 

energy data, planned economical decisions and 

registered outputs, regular data evaluations of CO2 

emissions and energy efficient buildings in each city. 

Kuosmanen et al. [15] tried to show the best 

benchmarking method of energy efficiency with 

comparison of DEA, SFA and stochastic 

nonparametric envelopment of data (StoNED). They 

emphasized the importance of stochastic studies beside 

deterministic ones. Moutinho et al. [16] analyzed effect 

of urban air pollution in ecological efficiency through 

DEA and SFA in Germany. They found out that 

randomness and noisy in data like in climate change 

effects efficiency results. 

In summary, SFA methodology contains calculation 

errors and provides the random instability of variables 

[2]. It leads to succession of measurement errors. On 
the other hand, it is hard to understand the 

determination of the error structure [18]. 

The deterministic approach DEA is a nonparametric 

linear programming methodology, which obtains an 

efficiency frontier using convex linear combination of 

factors. Besides, SFA requires a parametric expression 

of efficiency frontier function and supposes a 

compound error term, which stands for deviations from 

the frontier function. The compound error term means 

the sum of the stochastic inefficiencies and stochastic 

noise that is data error. StoNED is similar to SFA and 

DEA methods, with a compound stochastic error term 

and with a nonparametric, piecewise linear frontier 

function [22]. Lopes and Mesquita [23] showed that 

these models are preferred among the energy efficiency 

calculations for benchmarking. 

In the study there are different measurement scores of 

urban energy efficiency with DEA and SFA models for 

30 metropolitans in Turkey. These cities accepted as 

metropolitans by government according to their 

number of districts, service limits, total population, 

physical settlement status and economic development 

levels [17]. 

As a summary of the literature review, researches on 

energy efficiency benchmarking with DEA and SFA 

methods is presented below with Table1. 
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Table 1. Literature review summary of the study. 

Author(s) Category Study Descriptions 

Moutinho et 

al. (2021) 

Effect of urban air pollution in ecological 

efficiency through DEA and SFA in 

Germany. 

Study found out that randomness and noisy in data like in 

climate change effects efficiency results. 

Yang et al. 

(2018) 

Energy efficiency and understanding of how 

urban buildings consume energy. 

Building energy use may include imprecise, random error 

terms and this randomness may have either positive or 

negative effect on measurement and can be interpreted as 

stochastic differences of energy efficiency. Since the 

random factors, uncertain situations and error in data 

have important impacts on building energy performance, 

this study utilized SFA to find out the efficiency frontier 

and to remove influences of random error. 

Gil et al. 

(2017) 
Brazilian energy distribution benchmarking. 

DEA efficiency scores of electricity distribution 

companies are calculated with higher scores than the 

original scores. 

Li et al. (2017) 

Energy efficiency calculation of high energy 

using industry by discussing the models BCC 

and CCR methods of DEA and SFA. 

According to this study different implementations of 

energy efficiency measurement, DEA models are best 

approaches for multiple factors. In addition, energy- 

economic models enable authorities to make decisions 

and plans for future energy policies. 

Baycan and 

İlhan (2015) 

Urban energy efficiency measurement by 

nonparametric DEA method. 

According to study; to make detailed and reliable studies 

in urban energy efficiency, there should be correct and 

high quality energy data, planned economical decisions 

and registered outputs, regular data evaluations of CO2 

emissions and energy efficient buildings in each city. 

Kuosmanen et 

al. (2013) 

Study on the best benchmarking methods of 

energy efficiency with comparison of DEA, 

SFA and stochastic nonparametric 

envelopment of data (StoNED). 

They emphasized the importance of stochastic studies 

beside deterministic ones. 

Lopes and 

Mesquita 

(2015) 

Study on benchmarking methods of energy 

efficiency with comparison of DEA, SFA and 

stochastic nonparametric envelopment of data 

(StoNED). 

Showed that DEA, SFA and stochastic nonparametric 

envelopment of data (StoNED) models are preferred 

among the energy efficiency calculations for 

benchmarking. 

Doherty et al. 

(2013) 
Energy consumption in urban environments. 

According to study; energy consumption of cities can be 

measured into three categories as; operational, embodied 

and transport energy 

Keirstead 

(2013) 
Benchmarking Urban Energy Efficiency 

Study used ratio calculation, regression residuals and 

DEA methods. The input indicators of DEA model were 

total energy consumption, land area, climate and 

population, while the output indicators were life 

expectancy, carbon dioxide emissions as undesirable 

output and access time to services. 
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Dizdarevic et 

al. (2012) 

Energy efficiency measurement in the EU 

countries. 

They implemented input-oriented CCR DEA model 

within capital, labour, and energy use as input parameters 

and gross domestic product as the output. Here, GDP was 

the most important factor because of the energy economy 

policies. 

Forsström, et 

al. (2011) 

Energy efficiency study through, complex 

energy measurement output indicators defined 

for service, process, goods and consumption. 

Energy efficiency is an important component of 

environmental sustainability and urban sustainable 

development. Natural energy resources are the results of 

ecological efficiency that can be defined as a part of 

sustainability. Hence, they said that; energy efficiency is 

a subset of ecological efficiency and sustainable 

development encompasses both of them 

Proposed 

Model 

In the paper, there are different benchmarking 

scores of urban energy efficiency 

measurement with deterministic and 

stochastic methods. 

Study compared different deterministic and stochastic 

results of Stochastic Frontier Analysis (SFA) and Data 

Envelopment Analysis (DEA) for measurement of urban 

energy efficiency. This paper shows the strengths and 

weaknesses in estimating urban energy efficiency of 

these methods through noisy on the frontier. Technical 

efficiencies of cities differ between two methods. 

III. METHODOLOGY
As mentioned and overviewed in the literature part, 

there are two fundamental approaches, which are 

parametric analysis and nonparametric methods, 

applied to calculation of frontiers. The flowchart of 

the models are presented in Figure 1. Here SFA is the 

parametric analysis, DEA is the nonparametric 

method. The aim of using DEA and SFA 

methodologies in urban energy efficiency problem is 

measuring inefficiency of a DMU as the distance 

between an efficient DMU frontier and actual 

performance of the DMU and showing the divergent 

efficiency results of stochastic and deterministic 

methods. However, the two methods had different 

advantages and disadvantages. DEA needs no 

assumptions about the probability density of inputs and 

outputs on frontier. It joins noise as part of the 

efficiency score and assumes no errors and deviations 

from the efficient frontier. SFA allows deviations from 

the efficient frontier into a random error term that is 

statistical noise and a one-sided error term representing 

inefficiency. SFA needs the determination of a 

functional form for the frontier and assumptions about 

the distributions of the random error and inefficiency 

error terms. SFA can separate random noise from 

frontier. 

3.1. Data Envelopment Analysis 

DEA is a mathematical analysis method that is used to 

evaluate the effectiveness of decision making units, that 

use multiple inputs to obtain multiple outputs. DEA was 

first presented by Farrell [19], then, the approach was 

introduced by Charnes et al. [20] who led the basis of a 

literature through operational research and economics. 

Charnes, Cooper and Rhodes 

[20] developed the first DEA application that was 

named the CCR model. Banker, Charnes and Cooper 

[21] studied the DEA to get a variable returns to scale 

formulation of the CCR model that was named BCC 

model. 

In this context, in our study a performance comparison 

was made by input oriented BCC and CCR DEA 

approaches. CCR model was used to analyze the set of 

DMUs that were using the production function with 

constant returns to scale. The reason for using CCR was 

to provide the possibility of separately calculating 

technical efficiency globally. 

Technical efficiency calculates the DMU’s overall 

success with related inputs. CCR model calculates the 

sector efficiency of a decision unit which contains 

technical and scale efficiency. In this approach the 

assumption is that outputs increase with an increase in 

inputs [2]. 

Mathematical equations of the input oriented and 

output oriented CCR models are given below. It is 

supposed that there are n homogenous DMUs ( j 

= 1,….n ) such that all of them use m inputs xij (i 

=1,2,…..m) to obtain s outputs yrj (r =1,2,…..s), 
   and 

which are nonnegative and nonzero vectors. The CCR 

model’s production possibility set suggested by 

Charnes, Cooper, Rhodes in 1978 [20] is as follows: 

TCCR={(X,Y)| ,   , 

 ≥ 0, j = 1,….n } 

CCR efficiency scores can be obtained by using the 

envelopment input-oriented and input-oriented 

equation (1), respectively where and represent 

the ith input and the rth output indicator  vector of 

 under calculation in models. 
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Figure 1. The flowchart of the models for performance benchmarking of DMUs. 

A DMU is named input oriented CCR efficient if its 

expected value in equation (1) is equal to unity. 

s.t. 

   = (1) 

  =0 

  ,            ,  i=1,2,….,m , 
r= 1,2,…….,s , j=1,2,……,n 

The BCC model was based on variable returns to scale 

and derived by including CCR model convexity 

constraint. The effective BCC frontier, expressed in a 

tighter envelope, is closer to the decision units than the 

CCR frontier [21]. The BCC model obtains the pure 

technical efficiency of decision making unit locally. In 

the model assumption of variable returns to 

scale means that the output indicators of model will not 

increase proportionally with an increase in input 

indicators [2]. 

The BCC production possibility set introduced by 

Banker, Charnes and Cooper in 1984 [21] is as follows: 

TBCC={(X,Y) |  ,   , 

 = 1,  ≥ 0, j = 1,….n } 

A unit is called input oriented BCC efficient if its 

expected efficiency value in equation (2) is equal to 1. 

s.t. 



Benchmarking Urban Energy Efficiency Int. J. Adv. Eng. Pure Sci. 2022, 34(1): 107-122

113 

= 

= 1 

, , 

𝑛=1 

𝑖 

=0 (2) 

understandable structure. Lau [33] has presented that, “this 

model makes computations easy and has the features of 

explicit representability, uniformity, parsimony and 

flexibility.” 

Cobb-Douglas production frontier function’s form is 

given as in equation (3): 

i=1,2,….,m , 

r= 1,2,…….,s , j=1,2,……,n 
ln(𝑦𝑖) = 𝛽0 + ∑𝑁 𝛽𝑛𝑙𝑛𝑥𝑛𝑖 − 𝑢𝑖 , 𝑖 = 1,2,… , 𝑁 (3)

Here the  represent structural variables, the , 

represent slacks  and ε > 0  is a ‘‘non-Archimedean 
infinitesimal’’ determined to be smaller than any 
positive real number. This means that ε is not a real 
number. 

where 𝑦𝑖   is the vector size of output that is produced by 

𝑖th DMU, 𝑥𝑛𝑖 is the vector size of nth input that is used 

by 𝑖th DMU, 𝛽 is unknown parameter and 𝑢𝑖 is positive 
random variable that indicates technical inefficiency. 
But the equation (3) is a deterministic frontier as 

𝑒𝑥𝑝⁡(𝛽0 +⁡∑ 𝛽𝑛𝑙𝑛𝑥𝑛𝑖)
𝑁

𝑛=1
.

3.2. Stochastic Frontier Analysis 

This section aims to introduce Stochastic Frontier 

Analysis, which is a parametric approach is used in 

efficiency and productivity measurement in the 

framework of mathematical and econometric 

assumptions. According to literature search, an 

overview of SFA models has been introduced in this 

part. 

Researchers tried improving urban energy efficiency by 

considering investment and production. Farrel [24] 

presented SFA model to fill the gap between theoretical 

and empirical searches. This approach showed us that 

there was a parametric relation between model’s input 

and output indicators. In 1970s, SFA was first 

implemented in the evaluation of production function 

frontier by Aigner et al. [25]. 

The main feature of SFA is the estimation of a 

conventional function and the determination of 

efficiency or inefficiency by calculating the distance 

of each decision unit to the curve created by this 

function. 

As emphasized before, the DEA method has 

deterministic structure so it ignores measurement 

errors. In SFA, frontier emphasizes the limit of 

production and stochastic term implies calculated error. 

Literature searches showed that the random indicators 

may affect production. Hence, the statistical error, 

which has normal and one sided distribution, included 

into the model. The SFA method fixes the 

disadvantages of measurement errors. 

Aigner et al. [25] used cross-sectional data to estimate 

a production frontier, that was named a Cobb-Douglas 

production frontier. The Cobb-Douglas form of SFA 

model is a generellay preferred functional form in 

stochastic frontier analysis studies. In SFA studies 

Cobb-Douglas production function is preferred because 

its various advantages such as its      

This deterministic frontier counts out the mathematical 

possibility of measurement error and statistical noises, and 

remarks all deviations from the frontier as only technical 

inefficiency [25]. Hence, stochastic production frontier 

function was presented by specifying random indicators that 

represented statistical noise. 

In 1977, Aigner et al. [26] defined the model’s 

production function in deterministic and stochastic 

ways. Broeck et al. [27] introduced a new stochastic 

production function. They included symmetric random 

error for calculation of statistical noise. The formula is 

as follows. 

𝑦𝑖 = 𝑓(𝑥𝑖, 𝛽𝑖 ) + 𝑣𝑖 − 𝑢𝑖 = 𝑓(𝑥𝑖, 𝛽𝑖 ) +⁡ℇ𝑖 , 𝑖 =⁡1,2,⁡…⁡,⁡𝑁    (4) 

where 𝑣𝑖   independent  random variable showing the 

𝑁(0, 𝜎2)     distribution and ℇ𝑖   ≤0. In the equation (4) 
it is assumed that ℇ𝑖 is a composite error parameter 
consisting of two independent parameters, 𝑣𝑖    and 𝑢𝑖 . 
𝑣𝑖 includes noisy, errors that occur in determining the 

production function and also omissions caused by the 
independent parameter x. 

If a DMU provides expected production with full 

efficiency, the technical efficiency is "1", but if it 

produces expected outputs under the optimal capacity 
its efficiency measure is less than 1, that is this DMU is 

inefficient. Another point to be considered is how the 
efficiency is calculated. If the problem is output 

maximization (production maximization), then the 

composite error term calculation is valid and it is 

ℇ𝑖 = 𝑣𝑖 − 𝑢𝑖 . If the efficiency problem is input 

minimization   (cost   function),   then   the   equation ℇ𝑖
= 𝑣𝑖 + 𝑢𝑖 is valid [26]. 

In the paper FRONTIER Version 4.1 software was used 

for stochastic frontier analysis that transforms equation 

(4) to a logarithmic function as below equation (5) as in 

Broeck et al. [27]. 
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ln⁡(𝑦𝑖) = 𝛽0 +⁡∑ 𝛽𝑛𝑙𝑛𝑥𝑛𝑖
𝑁
𝑛=1 + 𝑣𝑖 − 𝑢𝑖, 𝑖 = 1,2,… , 𝑁   (5) 

Equation (5) represents the logarithm of inputs and 

outputs. 

According to Coelli et.al. [28], Cobb-Douglas 

stochastic frontier function is as below: 

ln(𝑦𝑖) = 𝛽0 + 𝛽1𝑙𝑛𝑥𝑖 + 𝑣𝑖 − 𝑢𝑖   , 𝑖 = 1,2, … , 𝑁 (6) 

𝑦𝑖 = exp( 𝛽0 + 𝛽1𝑙𝑛𝑥𝑖 + 𝑣𝑖 − 𝑢𝑖)   , 𝑖 = 1,2, … , 𝑁 (7) 

Since the study wants to use a production function and 

maximize our production, the usage of Cobb-Douglas 

production frontier function including cross-sectional 

data and supposing a half normal distribution is 

provided. In the urban energy efficiency study, the 

usage of the Cobb-Douglas production frontier is as 

below: 

ln(𝑦𝑖) = ln(𝑥𝑖, 𝛽 ) + 𝑣𝑖 − 𝑢𝑖   , 𝑖 = 1,2, … , 𝑁 (8) 

The SFA form of Cobb-Douglas production function 

is implemented for the years 2018-2019 and is modeled 

as follows. 

ln(𝑦𝑖) = 𝛽0 + 𝛽1(𝑙𝑛𝑥1) + 𝛽2(𝑙𝑛𝑥2) + 𝛽3(𝑙𝑛𝑥3) 

+𝛽4(𝑙𝑛𝑥4) + 𝑣𝑖 − 𝑢𝑖 (9) 

In equation (8), 𝑦𝑖 is the ith metropolitan’s outputs’ log, 
is the ith metropolitan’s inputs’ logs, 𝑢𝑖 is the ith 
metropolitan’s   inefficiency. In   equation   (9) 

𝑥1, 𝑥2, 𝑥3 implies respectively; invoiced consumption 

(MWh), total installed power (MW), line length (Km) 
and population. 

IV. CASE STUDY
Performance evaluation of urban energy efficiency 

includes the indicators of energy supply and demand 

balance, energy consumption, energy generation, 

energy investment components as installed power, line 

length and economy. With the optimal results of energy 

efficiency, GDP and investment are two important 

components. In energy efficiency studies, the 

importance of GDP had been realized by Hu and Wang 

[31]. 

Methodologies need to consider indicators to obtain the 

optimal outputs, Incomplete and uncertain data of 

energy industry is an important issue for efficiency 

measurement. Such that, according to deterministic 

models, the theory of probability is needed. As 

discussed widely in the literature, the major sources of 

uncertainty in the data used in the performance 

measurement of urban energy efficiency are costs, 

economy, data faults, energy demand and supply, 

regulatory issues such as unpredictability in the orders 

and laws. Deterministic solutions miss versatile 

decision-making and analysis processes. Because of 

these, in many industrial problems, managers deal with 

imprecise situations and random data. The noise 

and randomness in data usually causes errors in frontier 

function and efficiency results. In these cases, data 

analysts can consider imprecise data as random 

indicators. By working with random inputs and outputs 

and realizing the possibility of uncertain situations, 

different perspectives of the available information can 

be detected in energy efficiency studies to make right 

energy policy. The main utility of random data in SFA 

models is the prediction of efficiencies in future 

optimization problems. 

This study compares stochastic Cobb-Douglas 

production frontier including cross sectional data to 

maximize output, and input oriented deterministic CCR 

and BCC models. DEA and SFA are techniques that can 

be best measurement of urban energy efficiency of 

cities with multiple inputs and outputs. 

4.1. Indicators, Data Set and Data Statistics 

In this part of the study, there is implementation of 

dataset from 2018 to 2019 to evaluate urban energy 

efficiency of Turkey’s 30 metropolitans within 

stochastic and deterministic framework. Inputs are 

invoiced consumption (MWh), total installed power 

(MW), line length (Km) and population, while outputs 

are total generation (MWh), number of consumers and 

GDP per capita. 

Descriptive statistics of the input and output indicators 

are presented in Table 2. 

Table 3 and Table 4 show the logarithm of data that 

were added to Cobb-Douglas SFA model. 

In addition to data set and basic descriptive statistics, 

correlation coefficients between variables used in the 

models were also calculated with SPSS in Table 5. This 

shows us an idea about the direction and size of the 

relationship between inputs and outputs. 

Correlation coefficients of the data were obtained by 

using the averages of data indicators. According to 

Table 5, inputs and outputs have directly proportional 

relationship. It is also seen that all variables have a 

positive correlation with each other. 

4.2. Estimation of Results 

In this section, efficiency results of models are 

discussed. The results of deterministic CCR model of 

expression (1) and BCC model of expression (2) were 

implemented on General Algebraic Modeling System 

(GAMS) mathematical programming and optimization 

system and SFA model of (9) were obtained from 

FRONTIER 4.1. Deterministic and stochastic results 

are included in Table 6 and Table 7 as follows. 
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Table 2. Descriptive statistics of the indicators 

Inputs Mean Median Std. Deviation Minimum Maximum 

x1-Invoiced Consumption (MWh) 6.290.560,04 3.893.568,91 75.065.449,78 879.856 40.452.119 

x2-Total Installed Power (MW) 1.965,17 2.002,95 1.328,02 100 4.527 

x3-Line Length (Km) 24.853,73 20.782,00 14.186,71 10.593 71.709 

x4-Population 2.116.510,47 1.362.698,00 2.665.698,78 767.848 15.067.724 

Outputs 
Mean Median Std. Deviation Minimum Maximum 

y1-Total Generation (MWh) 6.388.647,71 5.690.800,06 5.434.535,62 16.639 18.584.686 

y2-Number of Consumers 1.114.852,00 705.365,00 1.411.251,58 282.108 7.883.441 

y3-GDP per capita 8.261,07 7.666,00 3.294,46 3.382 16.707 

Table 3. Estimated input and output parameters of 2018 

x1 x2 x3 x4 y1 y2 y3 

ADANA 15,71863 8,259919 10,23225 14,61307 16,72174 13,89078 8,838697 

ANKARA 16,47614 7,947527 11,00471 15,52098 16,2819 14,89265 9,450144 

ANTALYA 15,92878 7,550624 10,72322 14,7019 15,37748 14,34382 9,204825 

AYDIN 14,79935 7,213547 9,926813 13,90877 15,54773 13,45426 8,826294 

BALIKESİR 15,01754 7,949247 9,807362 14,01974 16,21013 13,76917 8,97221 

BURSA 16,28544 7,876471 9,857025 14,91229 15,98165 14,30661 9,305741 

DENİZLİ 15,0751 7,478481 9,965147 13,84291 15,57676 13,27341 9,116579 

DİYARBAKIR 14,82812 7,734121 9,807307 14,36502 15,36927 13,19688 8,360539 

ERZURUM 13,68751 6,202596 9,774233 13,55135 14,11538 12,81392 8,645762 

ESKİŞEHİR 14,90925 6,560125 9,411565 13,67761 13,85659 13,29199 9,221379 

GAZİANTEP 15,82764 6,528689 9,609787 14,52284 13,76599 13,5022 8,873608 

HATAY 15,33529 7,918425 9,806536 14,29166 16,52292 13,53636 8,780941 

İSTANBUL 17,51563 8,014197 11,18037 16,52807 15,94592 15,88028 9,696586 

İZMİR 16,61626 8,416362 10,44599 15,27889 16,73785 14,72486 9,34688 

KAHRAMANMARAŞ 15,211 8,417715 9,74373 13,95079 16,01713 13,08671 8,649974 

KAYSERİ 15,11067 6,818793 10,10135 14,14458 14,40703 13,47854 8,983565 

KOCAELİ 16,14421 7,651577 9,380421 14,46072 15,61601 13,73824 9,723583 

KONYA 15,66414 6,725058 10,74231 14,60651 13,96152 13,9752 8,932609 

MALATYA 14,31964 5,123369 10,07234 13,58866 12,56287 12,98026 8,583917 

MANİSA 15,34944 7,758163 9,980078 14,17294 16,05141 13,62902 9,149634 

MARDİN 14,37754 5,096018 9,338558 13,62821 9,719519 12,55005 8,485496 

MERSİN 15,30502 6,958306 9,93953 14,4113 15,09836 13,82598 8,956351 

MUĞLA 15,10634 7,74119 10,16439 13,78246 16,26748 13,34397 9,139703 

ORDU 14,0491 6,172869 10,10545 13,55665 13,96561 13,17894 8,596374 

SAKARYA 15,13731 7,838182 9,417111 13,82615 16,47421 13,18572 9,120525 

SAMSUN 14,97997 8,276003 10,23218 14,10498 15,76155 13,61079 8,781555 

ŞANLIURFA 15,3735 8,211953 10,29675 14,5264 15,56095 13,33635 8,129175 

TEKİRDAĞ 15,71038 7,374942 9,267949 13,845 14,8575 13,31559 9,393162 

TRABZON 14,22131 6,355013 9,94415 13,6022 14,21329 13,25662 8,929568 

VAN 13,77971 4,602567 9,776903 13,93221 12,05714 12,81033 8,126223 
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Table 4. Estimated input and output parameters of 2019 

x1 x2 x3 x4 y1 y2 y3 

ADANA 15,72576 8,26380 10,25171 14,62107 16,68923 13,91799 8,77550 

ANKARA 16,46120 7,91317 11,02580 15,54523 16,07575 14,91065 9,34991 

ANTALYA 15,96831 7,61494 10,75081 14,73647 15,42432 14,37155 9,12706 

AYDIN 14,80828 7,18267 9,95802 13,92075 15,67355 13,48459 8,76695 

BALIKESİR 15,03267 7,98557 9,81891 14,02140 16,06117 13,79342 8,92656 

BURSA 16,28476 7,89266 9,88466 14,93266 15,81965 14,33795 9,24257 

DENİZLİ 15,05028 7,52474 9,98806 13,85204 15,53683 13,31178 9,06347 

DİYARBAKIR 14,76965 7,74527 9,84776 14,37875 16,01321 13,24440 8,28864 

ERZURUM 13,69901 6,78294 9,77968 13,54378 14,05736 12,84174 8,60290 

ESKİŞEHİR 14,91706 6,50031 9,48189 13,69614 13,96560 13,32437 9,15011 

GAZİANTEP 15,88966 6,52258 9,63763 14,54275 14,02400 13,54389 8,83407 

HATAY 15,29485 7,91739 9,83162 14,30341 16,42892 13,56610 8,74715 

İSTANBUL 17,49228 7,94069 11,18238 16,55759 15,79041 15,90287 9,62791 

İZMİR 16,55707 8,58435 10,47813 15,28964 16,42709 14,75890 9,29779 

KAHRAMANMARAŞ 15,17722 8,42674 9,75063 13,95883 16,15144 13,12572 8,59841 

KAYSERİ 15,10096 6,81161 10,13539 14,15726 14,61633 13,51981 8,88784 

KOCAELİ 16,11513 7,62393 9,40179 14,48490 15,20160 13,77604 9,65778 

KONYA 15,63730 6,80549 10,78230 14,61858 14,33773 14,00989 8,84645 

MALATYA 14,30469 5,21602 10,08134 13,59257 13,02776 12,99926 8,51945 

MANİSA 15,28788 8,01597 10,01118 14,18058 16,32692 13,65599 9,13580 

MARDİN 14,36473 5,20872 9,36152 13,63970 11,34265 12,60175 8,42247 

MERSİN 15,34276 7,01728 9,97562 14,42551 15,33807 13,85243 8,88854 

MUĞLA 15,05618 7,75022 10,19062 13,79851 16,33687 13,37487 9,06843 

ORDU 14,02365 6,19644 10,11286 13,53341 14,11983 13,21284 8,58093 

SAKARYA 15,10651 7,84569 9,43052 13,84361 14,55491 13,22862 9,04674 

SAMSUN 14,92495 8,14014 10,24409 14,11453 15,64022 13,65184 8,72328 

ŞANLIURFA 15,36226 8,23454 10,32302 14,54480 16,28768 13,38375 8,07689 

TEKİRDAĞ 15,74325 7,36822 9,44668 13,86944 14,46854 13,35311 9,33061 

TRABZON 14,21124 6,39145 9,94228 13,60352 14,11226 13,27810 8,88672 

VAN 13,81124 4,86738 9,80797 13,94369 12,44851 12,85042 8,07372 

Table 5. Correlation coefficients between variables 
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Table 6. Estimated results of 2018 

CCR BCC SFA 

ADANA 0.8994 1.0000 0.7225 

ANKARA 0.9802 1.0000 0.7806 

ANTALYA 1.0000 1.0000 0.8963 

AYDIN 0.9824 0.9859 0.7243 

BALIKESİR 1.0000 1.0000 0.6466 

BURSA 1.0000 1.0000 0.7985 

DENİZLİ 0.8548 0.8752 0.8538 

DİYARBAKIR 0.6529 0.8149 0.3987 

ERZURUM 1.0000 1.0000 0.4585 

ESKİŞEHİR 1.0000 1.0000 0.8429 

GAZİANTEP 0.8059 0.9255 0.8599 

HATAY 1.0000 1.0000 0.6701 

İSTANBUL 1.0000 1.0000 0.7444 

İZMİR 0.9929 1.0000 0.8140 

KAHRAMANMARAŞ 0.6627 0.8072 0.6908 

KAYSERİ 0.7822 0.7848 0.8049 

KOCAELİ 1.0000 1.0000 0.8803 

KONYA 0.8941 0.9042 0.8992 

MALATYA 1.0000 1.0000 0.8870 

MANİSA 0.8958 0.9117 0.7936 

MARDİN 1.0000 1.0000 0.6797 

MERSİN 0.9772 0.9941 0.7210 

MUĞLA 1.0000 1.0000 0.8948 

ORDU 1.0000 1.0000 0.6904 

SAKARYA 1.0000 1.0000 0.7734 

SAMSUN 0.8111 0.8267 0.5942 

ŞANLIURFA 0.4435 0.5172 0.5698 

TEKİRDAĞ 1.0000 1.0000 0.9281 

TRABZON 1.0000 1.0000 0.6991 

VAN 1.0000 1.0000 0.4699 

Table 7. Estimated results of 2019 

CCR BCC SFA 

ADANA 0.9508 1.0000 0.7135 

ANKARA 0.9204 1.0000 0.7387 

ANTALYA 0.9994 1.0000 0.8849 

AYDIN 1.0000 1.0000 0.7480 

BALIKESİR 1.0000 1.0000 0.5371 

BURSA 1.0000 1.0000 0.7641 

DENİZLİ 0.8602 0.8785 0.7684 

DİYARBAKIR 1.0000 1.0000 0.3407 

ERZURUM 1.0000 1.0000 0.2405 

ESKİŞEHİR 1.0000 1.0000 0.7561 

GAZİANTEP 0.8436 0.9461 0.9203 

HATAY 1.0000 1.0000 0.6447 
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İSTANBUL 1.0000 1.0000 0.7011 

İZMİR 0.9694 1.0000 0.6517 

KAHRAMANMARAŞ 0.9614 1.0000 0.4940 

KAYSERİ 0.8142 0.8142 0.7132 

KOCAELİ 1.0000 1.0000 0.8444 

KONYA 0.8784 0.9023 0.8290 

MALATYA 1.0000 1.0000 0.9035 

MANİSA 1.0000 1.0000 0.6817 

MARDİN 1.0000 1.0000 0.3925 

MERSİN 0.9994 0.9994 0.7631 

MUĞLA 1.0000 1.0000 0.9997 

ORDU 1.0000 1.0000 0.5616 

SAKARYA 0.9212 1.0000 0.3825 

SAMSUN 0.8551 0.9016 0.3762 

ŞANLIURFA 0.7385 0.7396 0.4742 

TEKİRDAĞ 1.0000 1.0000 0.9520 

TRABZON 1.0000 1.0000 0.5284 

VAN 1.0000 1.0000 0.3729 

Table 8. Analysis results of Cobb-Douglas production function model 

Parameter Coefficient Standard Error 
T Ratio 

𝜷𝟎 2.283 1.930 1.182 

𝜷𝟏 0.320 0.205 1.563 

𝜷𝟐 -0.399 0.138 -2.884 

𝜷𝟑 1.126 0,148 7.610 

𝜷𝟒 -0.072 0.131 -0.548 

𝝈𝟐 0.202 0.103 1.954 

γ 0.850 0.243 3.497 

Log-likelihood -6.064 

LR test of the one-sided error 3.768 

The average results of Table 6 and Table 7 are 

presented and discussed under Table 9. In Table 8 the 

Cobb-Douglas production function analysis results can 

be observed. According to Table 8 the parameter 

γ=0.850 is represents statistical significance at the 1% 

level. That means most sources of inefficiency, in 

combined error term (ℇ) caused with 85% of technical 

inefficiency and 15% of random errors. In this context, 

although the technical inefficiency has a high rate 

within the combined error term, the existence of 

random errors cannot be ignored. The likelihood ratio 

test shows that inefficiency scores are statistically 

significant according to urban energy efficiency among 

metropolitans were identified. In Table 8 parameter 

coefficients of independent variables are also 

significant. The one-sided error LR test to evaluate the 

technical efficiency of DMUs can be taken into 

consideration. LR ratio was found to be approximately 

3.768 and this value should be 

compared with the table value of 2.706 in the Kodde- 

Palm with a restriction of 1 at 0.05 significance level 

[32]. 

𝐻𝟎 ∶ 𝛾 = 0 
𝐻𝟏 ∶ 𝛾 ≠ 0 

Since 3.768 score is bigger than the table value of 2.706 

in the Kodde-Palm, 𝐻𝟎 hypothesis is rejected. This 

situation implies that, there is a statistically significant 
technical inefficiency in the model. The analyzed 
coefficients are also consistent with results from 
literature studies; for example, economically and 
socially underdeveloped cities inefficient according to 
developed ones. 

Table 9 and Figure 1 show us average estimated 2018 

and 2019 results and ranks of the CCR, BCC and SFA 

models. 
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Table 9. Average efficiency estimated results of models 

CCR BCC SFA Rank 

ADANA 0.9251 1.0000 0.7180 22 

ANKARA 0.9503 1.0000 0.7596 18 

ANTALYA 0.9997 1.0000 0.8906 5 

AYDIN 0.9912 0.9929 0.7361 10 

BALIKESİR 1.0000 1.0000 0.5918 24 

BURSA 1.0000 1.0000 0.7813 7 

DENİZLİ 0.8575 0.8768 0.8111 19 

DİYARBAKIR 0.8265 0.9074 0.3697 29 

ERZURUM 1.0000 1.0000 0.3495 26 

ESKİŞEHİR 1.0000 1.0000 0.7995 6 

GAZİANTEP 0.8248 0.9358 0.8901 14 

HATAY 1.0000 1.0000 0.6574 12 

İSTANBUL 1.0000 1.0000 0.7227 9 

İZMİR 0.9812 1.0000 0.7328 11 

KAHRAMANMARAŞ 0.8121 0.9036 0.5924 27 

KAYSERİ 0.7982 0.7995 0.7590 25 

KOCAELİ 1.0000 1.0000 0.8623 4 

KONYA 0.8863 0.9032 0.8641 13 

MALATYA 1.0000 1.0000 0.8952 3 

MANİSA 0.9479 0.9558 0.7376 15 

MARDİN 1.0000 1.0000 0.5361 21 

MERSİN 0.9883 0.9967 0.7420 8 

MUĞLA 1.0000 1.0000 0.9472 1 

ORDU 1.0000 1.0000 0.6260 16 

SAKARYA 0.9606 1.0000 0.5779 20 

SAMSUN 0.8331 0.8641 0.4852 28 

ŞANLIURFA 0.5910 0.6284 0.5220 30 

TEKİRDAĞ 1.0000 1.0000 0.9400 2 

TRABZON 1.0000 1.0000 0.6137 17 

VAN 1.0000 1.0000 0.4214 23 

Figure 2. Average efficiency estimated ranks of models for each metropolitan. 
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As seen in Table 9 in which average results and ranks 

of DMUs are included, Balıkesir, Bursa, Erzurum, 

Eskişehir, Hatay, İstanbul, Kocaeli Malatya, Mardin, 

Muğla, Ordu, Tekirdağ, Trabzon, Van are permanently 

efficient metropolitans in both the deterministic input-

oriented CCR and BCC models. That is, they are 

technical efficient under constant returns to scale 

conditions when data errors are ignored. On the other 

hand, in deterministic framework Adana, Ankara, 

Antalya, İzmir, Sakarya are BCC efficient but, CCR 

inefficient DMUs. CCR model evaluates global and 

technical efficiencies of units according to the 

efficiency frontier. BCC model evaluates local and pure 

technical efficiencies. In summary, while the CCR 

model calculates both technical and scale efficiency 

scores, the BCC model estimates pure technical 

efficiency of units against the efficiency production 

function. Therefore, technical efficiency results of the 

BCC results are either higher than or equal to the CCR 

results. As can be seen from the deterministic results, it 

is easier for a decision making unit to be BCC efficient 

than CCR efficient. Therefore, CCR efficient DMUs 

are also efficient in BCC model. The opposite is not 

always true for input oriented models. According to the 

results of the study, the efficiency values in the BCC 

model were equal to or greater than the CCR model. 

Since there is no significant difference between 

deterministic CCR and BCC technical efficiency 

results, Turkey's metropolitans have urban energy 

efficiency in scale except Aydın, Denizli, Diyarbakır, 

Gaziantep, Kahramanmaraş, Kayseri, Konya, Manisa, 

Mersin, Samsun, Şanlıurfa. These cities are inefficient 

in both models. 

According to results of Cobb-Douglas output 

maximization stochastic frontier Tekirdağ and Muğla 

have the best performance. Diyarbakır, Erzurum, 

Samsun, Van have the lowest scores, and the other 

energy efficiency performances are higher than fifty 

percentages in stochastic framework. In addition, 

Erzurum and Van are locally and globally efficient in 

deterministic CCR and BCC models but their 

performance is under fifty percentages in stochastic 

framework. This confirms the situation of our γ 

parameter in which most sources of stochastic 

inefficiency, caused with technical operations and some 

sources caused with random errors. Consequently, 

study can inference that reliable urban energy 

efficiency evaluation highly relates with stochastic 

models. 

Considering the inputs and outputs of models, the 

number of customers, population, total generation, 

invoiced consumption that impact unregistered energy 

usage because of loss-leakage ratio and energy supply- 

demand imbalance, GDP that impacts the correct 

investment decisions, line length that impacts the low 

amount of energy distribution issues seem to be the 

cause of inefficiency, but it can be said that the 

inefficiency will be eliminated by increasing the values 

of these parameters. 

V. CONCLUSION 
Evaluation of urban energy efficiency performance has 

different forms, aims and implementations. It can be 

seen from literature, there is no definite methodology 

to evaluate energy efficiency on urban researches. To 

the best of our knowledge, this is the first study 

estimating the urban energy efficiency of Turkey’s 

metropolitans with both parametric and nonparametric, 

deterministic and stochastic models. 

The CCR model compares companies that have 

operations in homogenous or non-homogeneous way 

and creates an overall/global efficiency scores, while 

the BCC model compares companies with operations in 

homogeneous way and creates local efficiency scores. 

By the study, it has been shown that the uncertainty of 

the data causes stochastic inefficiency. These results 

suggest that more attention should be paid to error 

levels to evaluate stochastic efficiency. 

According to the results, permanently inefficient cities 

need agricultural irrigation in large areas due to the 

regions where they are located. This situation causes 

excessive waste due to unregistered electricity use in 

agricultural irrigation. The wasteful consumption 

leads excessive load on power lines and transformers. 

There is also loss-leakage in energy usage in these 

cities. Loss-leakage ratio, causes unregistered 

electricity use and this means high load on power lines 

also. The other inefficiency reasons are; insufficient 

line lengths in large areas, investment that is not well 

planned and not on time, supply-demand imbalance due 

to the excess number of subscribers and loss- leakage 

ratio. 

The issues that causes inefficiency can be overcame 

with; increasing investments in networks through 

inspection, directing the audits in a way that minimizes 

the inputs and maximizes the outputs of the cities, 

making legal and deterrent regulations in combating 

unregistered electricity use, increasing service quality 

by renewing network infrastructures and 

commissioning new technology projects and facilities, 

taking into account the parameters as area, line length, 

population and number of subscribers while making the 

investment decision. 

As a result; examining the effect of uncertainty with a 

high tendency in societies such as our country, 

avoiding uncertainty is important in terms of predicting 

reactive or proactive approaches of organizations in 

uncertain environments. This study shows us that, 

stochastic models, which take into account 

uncertainties and random variables, can be used to 

measure the urban energy efficiency for reliable 

decision making in energy policies. Study can offer for 

policy implications; using remote, smart electricity 
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meters, e-invoice applications, taking into account the 

loss ratios differences of electricity consumption, 

gaining available and beneficial data because of 

registering the accurate consumption. In future studies, 

the application of random variables to other stochastic 

models for the urban energy efficiency of decision 

making units and the effect of changes in input and 

output parameters on modeling can be examined. 
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