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Abstract − Let 1 < p <∞, 1/p +1/p ′ = 1 and A = (a j k )∞j ,k=1 be a p-Hille-Tamarkin infinite matrix,

i.e.
∞∑

j=1

( ∞∑
k=1

|a j k |p
′
)p/p ′

<∞.

It is proved that the spectrum of A lies in the union of the discs{
z ∈C : |a j j − z| ≤

[ ∞∑
j=1

(
∞∑

k=1,k ̸= j
|a j k |p

′
)p/p ′

]1/p}
( j = 1,2, ...).

In addition, an application of that result to finite order entire functions is discussed. An illustrative

example is also presented.

Subject Classification (2020): 47A10; 47A11; 30B10.

1. Introduction and statement of the main result

Let 1 < p <∞, 1/p +1/p ′ = 1 and A = (a j k )∞j ,k=1 be a p-Hille-Tamarkin infinite matrix, i.e.

cp (A) :=
 ∞∑

j=1

( ∞∑
k=1

|a j k |p
′
)p/p ′1/p

<∞.

The paper is devoted to the localization of the eigenvalues of such matrices.

The literature on the localization of the eigenvalues of finite and infinite matrices is very rich, cf. [1, 3, 5, 9,

14, 15, 18, 19] and the references which are given therein. At the same time, to the best of our knowledge, the

location of the eigenvalues of Hille-Tamarkin matrices has not been considered in the available literature.

As is well-known, Hille-Tamarkin matrices represent numerous integral operators, arising in various ap-

plications, cf. [17]. About properties of Hille-Tamarkin matrices, see for instance, [17], [6],[7, Section 18].

In particular, in the well-known book [17], the convergence of the powers of the eigenvalues of these ma-

trices is investigated. The works [6, 7] deal with infinite matrices, whose upper-triangular parts are Hille-

Tamarkin matrices. Besides, the invertibility and positive invertibility conditions are explored, as well as
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upper bounds for the spectra have been derived.

Denote

τp (A) :=
 ∞∑

j=1

( ∞∑
k=1,k ̸= j

|a j k |p
′
)p/p ′1/p

.

Throughout the paper λk (A) (k = 1,2, ...) are the eigenvalues of A taken with their multiplicities and enu-

merated in the non-increasing way of the absolute values: |λk+1(A)| ≤ |λk (A)| (k = 1,2, ...), and σ(A) is the

spectrum of A as the operator in l p . Recall that l p is the Banach space of the sequences x = (xk )∞k=1 of

complex numbers with the finite norm

∥x∥l p =
∞∑

k=1
(|xk |p )1/p .

The following theorem is the main result of this paper.

Theorem 1.1. Let cp (A) <∞ for a finite p > 1. Then with the notation

U j ,p (A) := {z ∈C : |a j j − z| ≤ τp (A)} ( j = 1,2, ...),

one has

σ(A) ⊂∪∞
j=1U j ,p (A).

The proof of this theorem is presented in the next section.

For a positive integer n, let Cn×n be the set of n ×n-matrices and An = (a j k )n
j ,k=1 ∈ Cn×n . Recall that by the

Gershgorin theorem [15],

σ(An) ⊂∪n
j=1Û j (An),

where

Û j (An) := {z ∈C : |a j j − z| ≤
n∑

k=1,k ̸= j
|a j k |} ( j = 1, ...,n).

This result can be easily extended to the infinite dimensional case, provided

sup
j

∞∑
k=1

|a j k | <∞.

Thus, Theorem 1.1 can be considered as an extending of the Gershgorin theorem to a finite p > 1. Further-

more, the quantity ŝ(A) := sup j ,k |λ j (A)−λk (A)| is called the spread of A. In the finite dimensional case the

spread plays an essential role, cf. [15, Section III.4]. Since

|λ j (A)−λk (A)| ≤ |λ j (A)−a j j |+ |λk (A)−akk |+ |a j j −akk |,

for a p-Hille-Tamarkin matrix A Theorem 1.1 gives us the inequality

ŝ(A) ≤ sup
j ,k

|a j j −akk |+2τp (A). (1.1)

Similarly, let A = (a j k ) and B = (b j k ) be two p-Hille-Tamarkin matrices. Then the quantity s(A,B) := sup j ,k |λ j (A)−
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λk (B)| will be called the mutual spread of A and B . Since

|λ j (A)−λk (B)| ≤ |λ j (A)−a j j |+ |λk (B)−bkk |+ |a j j −bkk |,

Theorem 1.1 gives us the inequality

s(A,B) ≤ sup
j ,k

|a j j −bkk |+τp (A)+τp (B). (1.2)

Let rs(A) denote the spectral radius of A. Then clearly, |rs(A)−rs(B)| ≤ s(A,B). Now we can apply inequality

(1.2).

2. Proof of Theorem 1.1

Let An = (a j k )n
j ,k=1 ∈Cn×n , µ ∈σ(An) and x = (x j ) be the eigenvector of An corresponding to µ:

n∑
k=1

a j k xk =µx j ( j = 1, ...n).

Then

(µ−a j j )x j =
n∑

k=1,k ̸= j
a j k xk

and

|a j j −µ||x j | ≤
n∑

k=1,k ̸= j
|a j k ||xk | ( j = 1, ...,n).

So by the Hőlder inequality,

|a j j −µ|p |x j |p ≤ (
n∑

k=1,k ̸= j
|a j k |p

′
)p/p ′ n∑

i=1
|xi |p

and
n∑

j=1
|a j j −µ|p |x j |p ≤ τ

p
p (An)

n∑
i=1

|xi |p .

Here

τp (An) :=
 n∑

j=1

(
n∑

k=1,k ̸= j
|a j k |p

′
)p/p ′1/p

.

Consequently,

min
j

|a j j −µ| ≤ τp (An).

In other words, for any eigenvalue µ of An , there is an integer m ≤ n, such that |amm −µ| ≤ τp (An). We thus

have proved the following result.

Lemma 2.1. Let An ∈Cn×n . Then for any finite p > 1 we have

σ(An) ⊂∪n
j=1U j ,p (An),

where

U j ,p (An) = {z ∈C : |a j j − z| ≤ τp (An)}.
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Proof of Theorem 1.1: By the Hőlder inequality we have

∥A∥l p ≤ cp (A), (2.1)

where ∥A∥l p means the operator norm of A in l p . Since τp (An) → τp (A) as n → ∞, according to (2.1),

An → A in the operator norm and therefore, by the upper semicontinuity of spectra [11, Theorem IV.3.1], for

any finite k we have λk (An) →λk (A) as n →∞. Now Lemma 2.1 implies the required result. 2

3. Applications to entire functions

Let us consider the entire function

h(z) =
∞∑

k=0

ak zk

(k !)α
(0 <α≤ 1, z ∈C, a0 = 1, ak ∈C,k ≥ 1). (3.1)

Denote the zeros of h with the multiplicities in non-decreasing order of their absolute values by zk (h) :

|zk (h| ≤ |zk+1(h)| (k = 1,2, ...) and assume that for a p > 1/α,

θp (h) :=
∞∑

k=2
|ak |p

′ <∞ (1/p +1/p ′ = 1). (3.2)

Introduce the quantity

bp (h) := [θp/p ′
p (h)+

∞∑
j=2

1

jαp ]1/p = [θp/p ′
p (h)+ζ(αp)−1]1/p ,

where

ζ(z) =
∞∑

k=1
k−z (Re z > 1)

is the Riemann zeta function. Our aim in this section is to prove the following theorem.

Theorem 3.1. Let h be defined by (3.1) and condition (3.2) hold. Then for any zero z(h) of h we have either

|a1 − 1
z(h) | ≤ bp (h) or |z(h)| ≥ 1

bp (h) .

To prove this theorem introduce the polynomial

fn(z) =
n∑

k=0

ak zn−k

(k !)α

and n ×n-matrix

Fn =



−a1 −a2 ... −an−1 −an

1/(2α) 0 ... 0 0

0 1/(3α) ... 0 0

. . ... . .

0 0 ... 1/(nα) 0


.

Let zk ( fn) (k = 1, ...,n) be the zeros of fn with their multiplicities enumerated in non-increasing order of

their absolute values, and λk (Fn) be the eigenvalues of Fn taken with the multiplicities enumerated in the

non-increasing order of their absolute values.
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Lemma 3.2. One has λk (Fn) = zk ( fn) (k = 1, ...,n).

Proof.

Clearly, fn is the characteristic polynomial of the matrix

B =



−a1 − a2
2α ... − an−1

((n−1)!)α − an
(n!)α

1 0 ... 0 0

0 1 ... 0 0

. . ... . .

0 0 ... 1 0


.

Following [8, Lemma 5.2.1, p. 117], put

mk = 1

kα
and ψk = 1

(k !)α
= m1m2 · · ·mk (k = 1, ...,n).

Then

Fn =



−a1 −a2 ... −an−1 −an

m2 0 ... 0 0

0 m3 ... 0 0

. . ... . .

0 0 ... mn 0


and

B =



−a1 −a2ψ2 ... −an−1ψn−1 −anψn

1 0 ... 0 0

0 1 ... 0 0

. . ... . .

0 0 ... 1 0


.

Let µ be an eigenvalue of B , i.e. for the eigenvector (xk )n
k=1 ∈Cn , we have

−a1x1 −a2ψ2x2 − ...−an−1ψn−1xn−1 −anψn xn =µx1,

xk =µxk+1 (k = 1, ...,n −1).

Since ψ1 = 1, substituting xk = yk /ψk , we obtain

−a1 y1 −a2 y2...−an−1 yn−1 −an yn =µy1

and
yk

ψk
=µ

yk+1

ψk+1
(k = 1, ...,n −1).

Or

mk+1 yk = ykψk+1

ψk
=µyk+1 (k = 1, ...,n −1).

These equalities are equivalent to the equality Fn y = µy with y = (yk ). In other words T BT −1 = Fn , where



Michael Gil / IKJM / 4(1) (2022) 9-16 14

T = diag (1,ψ2, ...,ψn) and therefore

T −1 = diag (1,
1

ψ2
, ...,

1

ψn
).

This proves the lemma. 2

The simple calculations show that

τp (Fn) = [(
n∑

k=2
|ak |p

′
)p/p ′ +

n∑
j=2

1

jαp ]1/p .

Due to Lemmas 2.1 and 3.2, for any zero z( fn) of fn either

|a1 − z( fn)| ≤ τp (Fn), or |z( fn)| ≤ τp (Fn). (3.3)

With

hn(z) = zn fn(1/z) =
n∑

k=0

ak zk

(k !)α
,

we obtain

zk (hn) = 1

zk ( fn)
= 1

λk (Fn)
(k = 1, ...,n).

Here zk (hn) are the zeros of hn with their multiplicities enumerated in non-decreasing order of their abso-

lute values. According to (3.3) for any zero z(hn) of hn either

|a1 − 1

z(hn)
| ≤ τp (Fn), or |z(hn)| ≥ τp (Fn). (3.4)

Proof of Theorem 3.1: Clearly, τp (Fn) → bp (h) as n →∞. In each compact domain Ω ∈ C, we have hn(z) →
h(z) (n →∞) uniformly inΩ. Due to the Hurwitz theorem [16, p. 5] zk (hn) → zk (h) for zk (h) ∈Ω. Now (3.4)

prove the theorem. 2

From Theorem 3.1 it follows

inf |z j (h)| ≥ 1

|a1|+bp (h)

So the disc |z| < 1
|a1|+bp (h) is a zero-free domain.

Note that the classical results on the zeros of entire functions are presented in [13]; the recent investigations

on localization of the zeros of entire functions can be found, for instance, in the works [2, 4, 8, 10, 12] and

the references which are given therein.

4. Example

The following example characterizes the sharpness of Theorem 1.1.

Let A = diag (B j )∞j=1, where

B j =
(

1
j

p
3

2 jp
3

2 j
1
j

)
( j = 1,2, ...).
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Under consideration we have

τ2(A) = [2
∞∑

j=1

3

4 j 2 ]1/2 =
√

3ζ(2)/2 ≈
p

3 ·1.645/2 ≤ 1.570.

By Theorem 1.1

σ(A) ⊆∪∞
j=1{z ∈C : |z − 1

j
| ≤ 1.570}.

Simple calculations show that λ1(B j ) = 3
2 j , λ2(B j ) = 1

2 j ( j = 1,2, ...).
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