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Abstract

In this study, we investigated the general convexity of functions which is named preinvexity. Firstly, we
generalized Hermite-Hadamard type integral inequality for two-dimensional preinvex functions. Then, we
obtained a generalization of Ostrowski type integral inequality for two-dimensional preinvex functions. Besides,
we derived some new generalized inequalities related to these functions.

Keywords: Preinvexity, Hermite-Hadamard type inequalities, Ostrowski inequality, Two-dimensional
preinvex functions.

iki-Boyutlu Preinveks Fonksiyonlara Iliskin Baz1 Yeni Genellestirilmis Esitsizlikler
Oz
Bu ¢aligmada, preinvekslik olarak adlandirilan fonksiyonlarin genel konveksligini inceledik. Ilk olarak, iki-
boyutlu preinveks fonksiyonlar i¢in Hermite-Hadamard tipi integral esitsizligini genellestirdik. Daha sonra, iki-
boyutlu preinveks fonksiyonlar icin Ostrowski tipi esitsizliginin bir genellestirmesini elde ettik. Ayrica bu
fonksiyonlarla ilgili baz1 yeni genellestirilmis esitsizlikleri sagladik.

Anahtar Kelimeler: Preinvekslik, Hermite-Hadamard tipi esitsizlikler, Ostrowski esitsizligi, Iki-boyutlu
preinveks fonksiyonlar.

1. Introduction

The famous Hermite-Hadamard type integral inequality ($€59) for convex functions is as
follows [4]:

B
a+p 1 fla) + f(B)
f( - )sﬁ_ajf(w)dws—z .

It should be known that preinvexity indicates a generalization of convexity. In other words, the
function f: 1 € R = R is known preinvex with respect to ¢, if the following inequality holds:

f(a) + xd (v, w)) <A-¥f(w)+¥f(v)
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for all w,v €1 and ¥ € [0,1]. In this place, the invex bifunction ¢:1 x 1 - R™ fulfills
following Condition C [11]

(v, v+ ¥d(w,v)) = —xd(w,v);
d(w,v+¥dp(w,v)) = (1 —¥)d(w,v)

for all w,v €1 and ¥ € [0,1]. [13] obtained F5J for the f:[u,u+ d(5,u)] = (0,0) as
follows:

u+d,u)

! f(w)dw <

; 2ut oW\ __ 1 fw) +£(8)
2 G 2

forall u,é6 €I’ with p < pu+ (68, u). He expressed that the sub-intervals of the preinvex
function are also preinvex.

The classical 3 J for every convex function on [a, ] was generalized by [1]. He proved also
some sharps Ostrowski’s type integral inequality (0FJ) for every positive convex function on
[a, B]. [3] got F€5 J for convex functions on the coordinates. Some generalizations of 59 and
053 on [a, B] x [&,9] were proved by [12].

Nowadays, [15] obtained some generalized inequalities for two-dimensional harmonically
convex functions and [20] verified some generalized inequalities about two-dimensional ¢-
convex functions. There are also many studies on preinvex functions (%) and $3J about
them (see [2], [5], [6], [7], [8], [14], [16], [17], [18], [21]). Based on the above mentioned
information, using by [1] and [12] methods, we verified some important generalized inequalities
for 2% on real number line and on the coordinates, respectively.

2. Preliminaries

In this section firstly, two-dimensional £ were introduced and #5J for these functions was
presented. Lately, some generalized inequalities for two-dimensional £ were verified.

2.1. Two-Dimensional 2% and Related #53
Let us give definitions about invexity and preinvexity of functions on the coordinates.

Definition 2.1 ([10]). Let the continuous functions ¢ :A=T xS — R"™ be invex on the
sets AC R™ x R™, respectively. Then A is called invex with respect to ¢, if

(,u +¥d(w,pn),d +¥o(v, 6)) €A
for all (w,v), (u,8) € A, ¥ € [0,1].

Definition 2.2 ([19]). Let A be called invex with respect to ¢. A function F: A— R is called
preinvex with respect to ¢ on A, if the following inequality holds
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Fwi + vd(wz, @1),01 + 52, v1)) £ (1 = ¥)F(wy,v1) + ¥F (02,0;)

forall (wy,v1), (w4, v,) € Aand ¥ € [0,1]. If the above inequality is reversed, then F is called
be a pre-concave with respect to ¢ on A.

Definition 2.3 ([9]). A function F: A— R is said to be a preinvex with respect to ¢ on the
coordinates, if the following partial mappings are preinvex with respect to ¢, respectively,

E,:T - R, E,(u) == F(u,v); F,:S - R, E,(6) = F(w,0)
forallw e Tandv € S.

Let us consider #5J for related functions. Assume that

0: = [y, 1y + Sz, 1)1 X [81, 61 + $(8,,61)] € R, for all d(uy, pq) >0, $(8,,61) >0,
< Uz, 6; < 6.

Theorem 2.4 ([3]). Let F: 6 — R, be a preinvex function with respect to ¢ on the coordinates.
Then the following inequality holds

1 1
F (1 + 5 002,12, 81 + 5 0(6,,8)))
H1+d(pz,p1)

Sm f F(a),61+%cl>(62,61)>dw

251
61+9(82,61)

1 1
+— j F ( + = , ,v) dv
20(8,,8,) 251 > b (U, uy)
" pu1+PQuz,pq) 81+9(82,61)
< F(w,v) dvdw
S (p2, u1) (62, 61) j J

U1 81
U1+d(u2,u1)

< ; j (F(w, 61) + F(w, 62))dw
4 (pz, 1)
51+l$(52'51)
1
+ m J (F(yl, v) + F(uy, v))dv

< F(uq,61) + F(uq,8,) + F(up, 81) + F(uy, 6,)
< 7 .

3. Main Theorem and Proof

3.1. Generalized Inequalities for % on the Real Line
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Let us obtain the generalized #3539 for % on the real line:

Theorem 3.1. Let f:[u,u+ (6, 1)] = R, be a preinvex function and f € [u, u + &(5, w)].
Then the inequality holds

ut+d(S,u)

(8, 1) f <2wk—1 + (I)z(wkfwk—l)) - f £ (0)daw
6,
< 200 [f(u) +2 Z flwo) + f(6)] &

where w;, = u+k¢(5ﬂ) k=012,..,n;u<éneEN.

Proof. Because of preinvexity of f on each sub-interval [wy_q, Wx—1 + d(Wg, Wr_1)] E
[, u+ $5, w1, k =1,2,...,n, we can write

f@p—1 + 3P (W, wk-1)) < ¥f(wx) + (1 =) flwk-1) (2)
for all ¥ € [0,1]

Integrating (2) with respect to ¥ on [0,1], then

[ 0 + 50 0y < K= LT, )
0

Changing of variable w = wy_; + ¥d(wy, wk—-1) in (3), we find

Wi—1+d(Wp,wE-1)

j f(w)dw < M (f (@r—1) + f (@) (4)

Taking the sum over k from 1 to n on (4), we have

Wg-1+P(Wp,wE-1) u+d(s,u)

i | rwde= f f<w>dw<ZM(f( Wi-1) + F(@))

k=1

1
< 5 max( @i wx-1)) Z(f(wk_o + @)
(1)( 1)

[f( o)+f(w1)+Z(f(wk D+ flw)) + f(wn- 1)+f(wn)]
<1>( )

(5)

[f( ) +2 Z flwo) + )|
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Then we can write

20p-1 + Plwp, wg-1)\ _  (Wr-1 + ¥P(Wp, Wg—1) | W1 + FO(Wp, Wr—1)
4 ( 2 ) =7 ( 2 * 2 )
1
< 5 [f (@1 + ¥d(@p, Wg-1)) + f(@Wp-1 + ¥d(wWk, wk-1))]- (6)

Applying on (6) by using similar way in (2)-(4), we get

OB, 1) . (2wiq + b( y e
U Wp-1 Wk, Wg_1
f( ) < f (w)dw. 7)

From (5) and (7), we have (1).

Remark 3.2. If n =1 in Theorem 3.1, the inequalities in [13] are obtained.

Let us now obtain a generalized 059 for 2% on the real:

Theorem 3.3. Let be f:[u,u + $(5,u)] » R, be a preinvex function. Then the following

inequality holds

u+d(8,1)

é,
[ F@ao-o60r0 < 0.1
u

2n

n-—1
[f(u) +2) flw+ f(6)] (8)
k=1

forall ve[uu+ o6, )] wey=pu+ k@ yk=012,..,n; uyy <y, ne€N.

Proof. Let v € wlwy_q, wr_1 + d(wy, wr_1)], k = 1,2,...,n. Owing to preinvexity of f on
[Wi—1, Wi—1 + (v, wx_1)], k = 1,2, ...,n, then

Wi—1+dV,wk_1)

[ rwao <2, )+ rw) 9

Wr—1

Using preinvexity of f on [v,v + ¢(wy,v)], k = 1,2, ...,n, we have

v+d(wg,v)

j f(w)dw <

v

cl)(wk’ U)
2

(f@) + f(wp)- (10)

Adding the inequalities (9) and (10), we have
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Wi-1+0V,wE—1) v+d(wg,v) Wi—1+P(wr,wk—1)
f f(w)dw + f f(w)dw = f f(w)dw
q’(”—“”‘l)(f( ) + £ @) + 22 (1) 4 £w)

—‘1’(‘“"’“’" D ) + flw k>}+‘1’( 1.

f@). (11)
Taking the sum over k from 1 to n on (11), we obtain (8).

3.2. Some Generalized Inequalities for Two-Dimensional 2%

Now, let us prove the following generalized $JJ for two-dimensional $%:

Theorem 3.4. Let F: 8 — R, be a preinvex function with respect to ¢ on 6. Then the following
inequality holds

n Batduzpg)

(52, 51) z f F <cu, 2up_4 + d;(vk' Uk—1)> do

( ) n 51+¢(5251) 5 ( )
) Wy_1 + Wi, Wi —
+¢ﬂzﬂ1z j F k-1 T d(wg 1) aw (12)
2n 2
k=1 851

pu1+dQuz,pq) §1+¢(82,61)

: <1><u2,u1>1c1><62,61) J |

H1 81
U1+ (u2,uq)

j [F(w,8,) + F(w,8,)]do

U1
(l)( )51"'(1)(52'51)
Hp,
+ 2B R Gu,0) + PG )y

&1
—1 B1t+duz,u1) n—1 61+6(62,61)

(52,51 Z J F(w,v)dw + (l)(llz'lh)z j F (0, v)dv,

+k d(uz, H1)
n

F (wq,v1)dwdv

< (:1)(621 61)
o 4n

where w; =y, + , Up =01 + k@, k=0,12,..,n,n€ N.

Proof. By using Theorem 3.1, we have

81+$(82,61)

085,61 N ( 2vk_1+c1><vk,vk_1))
— ) Flo, < F (w,v)dv
) |

2
81
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n—-1
5,,6
< MZ;nl) [F(a), 6)+F(w,b,) +2 kZlF (w,vk)].

Consequently,

81+9(62,61)

c])(S:l, 61) ; F <w, 201 + O(vy, Uk—1)> < f F (w,v)dv (13)

2
61
(82, 81)
< T[F(a), 6)+F(w,b,) + 2 ;F (w, vk)].

Integrating all sides of (13) over [uq, u; + &1z, 1)), We get

n Batduzpg)

$(82,61) < 2up_4 + ¢(Uk'Uk—1)>
_— Fl| w, dw

2

U1+ (p2,u1) 81+$(82,61)

< j j F (w,v)dvdw (14)
H1 61
i+ (pe,uq) U1+ (p2,uq)
f F (w,6;)dw + f F (w,d,)dw

< (:1)(621 61) n1 "1

- 2n n—1 H1+d2,u1)

+2 z f F (w,v)dw
k=1 251

Similarly,

n 611+9(82,61)

d(uz, 1) <2wk—1 + d(wg, w—1) >
_— F ,U | dvu
n ; 6[ 2

p1+duz,uq) §1+¢(82,61)

< f f F(w, s)dwdv (15)
U1 1
[61+9(52,61) 81+9(82,61) T
[ Fawawr [ Fawaw
< (1)(.“2’ Ml) 61 61
- 2n n—101+$(82,61)
+2 Z J F (wg,v)dv
k=1 5,1

Adding (14) and (15), we Have (12). That completes the proof.

Remark 3.5. If n = 1 in Theorem 3.4, the inequalities in [3] are obtained.
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Corollary 3.6. Under the assumptions of Theorem 3.4, we have the following inequalities

zn: F (2111 + duz, 1) 2054 + ¢(Uk:Uk—1)>
2 ’ 2

F <2wk—1 + d(wy, we—1) 26, + d(5, 51))

k=1
n

+
k

4 2 ’ 2
81+9(82,61)

n 21 + ¢z, 1)
or i B O

(16)

1
p1+duz,uq)

U1

)

F <a), 26, + 42(52,51)> d

§1+$(62,61)

L f [F (v + F (i, )]

(l) (62; 61)
1
u1+d(pz,uq)

n f [F(w,6,) + F(w, 8,)]dw

+—
b (p2 py) .

1
< F(uy,61) + F(uq,62) + F(up, 61) + F (3, 63)

-1

+ ) [F(ug,vi) + F(uz,vp) + F(wy, 61) + F(wg, 62)].

(17)

S

&
Il

Let us generalize 093 for two-dimensional £%:

Theorem 3.7. Let F:0 — R, be a preinvex function with respect to ¢ on 6. Then

U1+, pq) 81+§(52,61)

J

U1

J F (w,v)dvdw
61

r61+$(82,61)

- Sz, )+ 1| 4,
- 4n

S

2

+(n+1)

=
1l

1

6

f F (uq,v)dv + f

1

8§1+$(62,61)

F (,le, U)dU
81

—161+d(82,61)

F (wy,v)dv

(18)
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g +d(Uz, 1) u1+duz,mq)
f F(w,6;)dw + f F (w,6,)dw
+ $(82,61)(n+ 1) L fh
4n 5 n—1 B1+duz,uq) ¢
F(w,v,)d
+(n+1)z f (w,v)dw
k=1 M1

where w;, and v;, are defined as in Theorem 3.4.

Proof. By using Theorem 3.3 for E,(w) = F(w,v) at w = u,, we get

p1+duz,pq)
j F (w,v)dw — &g, ug)F (Uz,v)

U1

Cl)(llz,lh)
- 2n

F(i,v) +2 Z F(wi0) + F v)] (19)

Integrating all of (19) with respect to v on [64, 8; + $(5,, 61)], we have

pU1+dug,uq) §1+6(82,61)

f f F (w,v)dwdv

251 81
[61+0(62,61) 81+d(82,61)
j F (uy,v)dv + (1 + 2n) f F (u,,v)dv
2n n—1 61+$(82,61)
+2 z f F (wg,v)dv
k_

Similarly, for F,(w) = F(w,v) at w = yq,

U1+ duz,11) 81+0(52,61)

J J F (w,v) dwdv

U1 81
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81+9(82,61) 81+9(82,61)
(1+2n) f F (uqy,v)dv + f F (uy,v)dv
$(uz 1) 81 81
=L 1 61+6(62,61) - (@D
+2 Z f F (wg,v)dv
k=1 4,

Adding (20) and (21), we can write

U1+ duz,uq) §1+6(82,61)

j J F (w,v)dwdv

U1 61
81+d(84,81) 81+3(84,81)
n+1) f F(u,v)dv+ (n+1) f F (u,,v)dv
d(uz, ) 81 84
= 2n n—101+t$(82,61) (22)
+2 Z f F (vg,v)dv
k=1 &
Using the similar way as Theorem 3.3 for F,(v) = F(w,v) at v = §, and v = §,, then
u1+duz,pg) 81+0(82,61)
f f F (w,v) dwdv
251 81
u1+dua,ug) p1+duz,ug)
n+1) f F(w,8)dw+ (n+1) f F(w,8,)dw
$ (62, 61) f H1
= n n—1 H1+da,u) (23)
+2 z f F (wy,v)dv
k=1 281

By adding (22) and (23), the inequality (18) is obtained.
Corollary 3.8. Under the assumptions of Theorem 3.7, for n = 1,2 we obtain the following

inequalities.

pu1+duz,pq) §1+¢(82,61)

f f F (w,v) dwdv

U1 81
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p1+duz,mq)

< m f [F(w,6;) + F(w,d,)]dw
51+l3>1(52,51)
+M f [F(‘lll,U) + F(/'LZ'U)]dU;

81

1+, uq) 81+¢(82,61)

f f F (w,v) dwdv

251 81
U1 +d(ua,uq)

SO 3F(w,51)+2F<o),261+(l;(62'61)>+317(w:52)ldw

251
81+9(82,61)

) 2 + )
+w f 3F(uq,v) + 2F < e Cl;(llz lil),v) + 3F(,u2,v)l dv.
51 B
4. Conclusion

In this paper, we obtained some generalized inequalities for % on the real line and on the
coordinates. Similar results for various classes of these functions can be verified. Applying
some type of inequalities for functions is another promising direction for future research.
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