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ABSTRACT  
 

Experimental studies are very important in designing a new product. In 
aerodynamic designs, wind tunnel tests are commonly used in experimental 

studies. In experimental studies, accuracy is the most critical point to verify 
the results. Laminar flow is preferred in the test section to obtain accurate 
results. Turbulence intensity is the main drawback of wind tunnel tests. 

Hence in this study, turbulence intensity of the hexagonal, square, and 
circular sectioned honeycomb is investigated. In numerical studies, a circular 

sectioned subsonic wind tunnel is used. The computational fluid dynamic 
(CFD) analysis of three-dimensional (3D) flow in a circular sectioned desktop 
size wind tunnel is used for comparison. 
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1. INTRODUCTION 
 

In aerodynamic designs, wind tunnel tests are commonly used in experimental 
studies. In experimental studies, accuracy is the most critical point to verify 
the results. Experimental setup directly affects the accuracy, to obtain more 

accurate results setup must be optimized. In aerodynamic designs, wind 
tunnel tests are commonly used in experimental studies. Turbulence intensity 

is the main drawback of wind tunnels. It must be minimized to improve the 
accuracy of the experiments. Honeycombs are used to decrease the turbulence 
intensity of the wind tunnels. Different shaped honeycombs can be used such 

as hexagonal, square, and circular. 
 

In the literature, many different studies exist about the honeycombs, wind 
tunnels, and flow effect on temperature and surfaces. Some different 
applications exist for the effect of the honeycomb tip and orientation on the 

cooling of turbines [1, 2, 3, 4, and 5]. Many different aerodynamic 
experimental studies are performed with aerodynamics concepts and wind 
tunnels to verify the numerical results [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

and 17].  Also, many different experimental applications exist in the literature 
about the flow effect on surface abrasion and erosion [18, 19, and 20].  
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2. ANALYSIS  
 
In this section, the turbulence intensity of the hexagonal, square, and circular 

sectioned honeycombs (in figure 1) are investigated. In the analyses, the 
SolidWorks Flow Simulation tool is used. A Circular sectioned desktop size 
wind tunnel model (in figure 2) with 0.03 m2 section area and 0.8 m length is 

used. Each cell area of the honeycomb is 78.5 mm2 and the length of the 
honeycomb is 0.2 m. Inlet velocity is applied as 6 m/s. element number of 
mesh model is 375000. Flow simulation results are given in 7 sections (in 

figure 3). 
 

 

 
(a)                                                           (b)                                                        

(c)        . 

 
Figure 1. (a) hexagonal, (b) square, and (c) circular sectioned honeycomb 

models 
 
 

 
 

Figure 2. Wind tunnel model 
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Figure 3. Section lines  
 

 

3. ANALYSIS RESULTS  
 

Analysis results of the hexagonal, square, and circular sectioned honeycombs 
are given in this section. In the aerodynamic analyses, pressure distribution 
(figure 4), velocity distribution (figure 5), and turbulence intensity distribution 

(figure 6) are important parameters. Hence for the comparison, these 
parameters are used as performance parameters. Also, velocity distribution at 

different sections is given for hexagonal, square, and circular honeycomb in 
Figures 7, 8, and 9 respectively. In the literature, the test section is selected 
between the honeycomb and the fan. Hence, section 5 in figure 3 is defined as 

the test section. 
 

 
(a) Hexagonal  

 
(b) Square  
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(c) Circular  

 
Figure 4. Pressure distribution at section 0 

 
 

 
(a) Hexagonal  

 
(b) Square  

 
(c) Circular  

 
Figure 5. Velocity distribution at section 0 
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(a) Hexagonal  

 
(b) Square  

 
(c) Circular  

 
Figure 6. Turbulence intensity distribution at section 0 

 

 
(a) Velocity distribution at section 1 

 
(b) Velocity distribution at section 2 
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(c) Velocity distribution at section 3 

 
(d) Velocity distribution at section 4 

 

 
(e) Velocity distribution at section 5 

 
(f) Velocity distribution at section 6 

 

       
Figure 7. Velocity distribution of hexagonal honeycomb      

                    

 

 
(a) Velocity distribution at section 1 

 
(b) Velocity distribution at section 2 
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(c) Velocity distribution at section 3 

 
(d) Velocity distribution at section 4 

 

 
(e) Velocity distribution at section 5 

 
(f) Velocity distribution at section 6 

 

 
Figure 8. Velocity distribution of square honeycomb 

 

 

 
(a) Velocity distribution at section 1 

 
(b) Velocity distribution at section 2 
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(c) Velocity distribution at section 3 

 
(d) Velocity distribution at section 4 

 

 
(e) Velocity distribution at section 5 

 
(f) Velocity distribution at section 6 

 

 

Figure 9. Velocity distribution of circular honeycomb 
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Figure 10. Velocity values at section 5 
 
When the Figure 10 is examined, it is seen that when compared in terms of 

velocity, it has been determined that a more uniform velocity profile is 
obtained from the hexagonal honeycomb structure compared to other 
structures. 
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Figure 11. Turbulance intensity values at section 5 
 

When the Figure 11 is examined, it is seen that when compared in terms of 
turbulence intensity, it has been determined that a more smooth flow profile 

is obtained from the hexagonal honeycomb structure, especially in the 
measurement region, compared to other structures. 

 

 

4. CONCLUSION  
 

Honeycombs are used to decrease the turbulence intensity of the wind 
tunnels. Different shaped honeycombs can be used such as hexagonal, 
square, and circular. In this study, the turbulence intensity of the hexagonal, 

square, and circular sectioned honeycomb was investigated. In the numerical 
studies, a circular sectioned subsonic wind tunnel was used. The 
computational fluid dynamic (CFD) analysis of three-dimensional (3D) flow in 

a circular sectioned desktop size wind tunnel was used for the comparisons. 
The flow characteristic of these there shaped honeycombs were given in figure 
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6. This figure showed that a square-sectioned honeycomb gives a better flow 
regime than the circular one. And the hexagonal sectioned honeycomb gives a 
better flow regime than the others.   

This result is directly related to the cell corners and solid-fluid interaction 
surfaces. Optimum corner shape and surface area are at the hexagonal-

shaped honeycomb so it can give more accrued experimental results. 
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