
103

Journal of Research in Business : 7 (1), 103-122 June • Juni • Haziran: 2022 • ISSN: 2630-6255
DOI: 10.54452/jrb.1018901

RESEARCH ARTICLE • FORSCHUNGSARTIKEL • ARAŞTIRMA MAKALESİ

Submitted:Submitted: 04.11.2021		 Revised: Revised: 04.03.2022 
Accepted: Accepted: 10.03.2022		  PublishedPublished Online: Online: 27.06.2022

To cite this article: Söylemez, Y. & Gürsoy, S. (2022). An analysis of the causality relationship between bitcoin electricity 
consumption, price and volume. Journal of Research in Business, 7(1), 103-122.

“There is no requirement of Ethics Committee Approval for this study.”

AN ANALYSIS OF THE CAUSALITY RELATIONSHIP BETWEEN 
BITCOIN ELECTRICITY CONSUMPTION, PRICE AND VOLUME

BİTCOİN ELEKTRİK TÜKETİMİ İLE FİYATI VE HACMİ ARASINDAKİ 
NEDENSELLİK İLİŞKİSİNİN ANALİZİ

Yakup SÖYLEMEZ*
 1 

Samet GÜRSOY**
 2

Abstract
This study aims to analyze the causal relationship between electricity consumption, price and transaction 
volume of Bitcoin, which is the most important asset of the crypto money market in terms of both 
market capitalization and transaction volume. In this study, the Bitcoin electricity consumption variable 
is represented by Cambridge Bitcoin Electricity Consumption Index. As the data set, 1446 days of data 
between February 2017 and February 2021 were used. The causality relationship between the variables is 
analyzed using the Hatemi-J (2012) and Toda Yamamoto (1995) tests. In addition, this study is a rare study 
that examines the relationship between electricity and volume, together with the work done by Schinckus 
et al. (2020). According to the results of this study, the decrease in Bitcoin electricity consumption causes a 
decrease in the Bitcoin price. However, a negative relationship is detected Bitcoin electricity consumption 
and Bitcoin trade volume in this study, like the study by Schinckus et al. (2020), the relationship was found 
to be very weak.
Keywords: Bitcoin Electricity Consumption, Bitcoin Price and Bitcoin Trade Volume, Asymmetric 
Causality, Hatemi-J, Toda Yamamoto.
Jel Codes: C32, C58, D53.

Öz
Bu çalışma fiyat ve işlem hacmi açısından kripto para piyasasının en önemli enstrümanı olan Bitcoin’in 
elektrik tüketimi ile fiyatı ve işlem hacmi arasındaki nedensellik ilişkisini analiz etmeyi amaçlamaktadır. 
Çalışmada Bitcoin elektrik tüketimi değişkeni Cambridge Bitcoin Elektrik Tüketim Endeksi ile temsil 
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edilmektedir. Araştırmada Şubat 2017 ile Şubat 2021 tarihleri arasındaki 1446 günlük veri seti kullanılmıştır. 
Değişkenler arasındaki nedensellik ilişkisi Hatemi-J (2012) ve Toda Yamamoto (1995) testleri kullanılarak 
analiz edilmiştir. Ayrıca bu çalışma, Schinckus vd. (2020) tarafından yapılan çalışma ile birlikte Bitcoin 
elektrik tüketimi ile işlem hacmi asrasındaki ilişkiyi inceleyen ender çalışmalardan biridir. Bu çalışmanın 
sonuçlarına göre Bitcoin elektrik tüketimindeki düşüş Bitcoin fiyatında düşüşe neden olmaktadır. Ancak 
bu çalışmada Schinckus vd. (2020) tarafından yapılan çalışmaya benzer olarak zayıf ama negatif bir ilişki 
tespit edilmiştir.
Anahtar Kelimeler: Bitcoin Elektrik Tüketimi, Bitcoin Fiyatı ve İşlem Hacmi, Asimetrik Nedensellik, 
Hatemi-J, Toda Yamamoto.
Jel Kodlar: C32, C58, D53.

1. Introduction

Cryptocurrencies, shown as the most important example of blockchain technology reached 
significant dimensions in terms of transaction volume and market capitalization. Even though the 
highest transaction volume of cryptocurrency is Tether, Bitcoin maintains its importance among all 
cryptocurrencies in terms of market capitalization. Today, while the market capitalization of a total 
of 4,594 cryptocurrencies is $ 1,451 Billion, the fact that this market capitalization of Bitcoin alone is 
$ 877.93 Billion provides evidence that it could be take Bitcoin as a basis when examining the crypto 
money market (Table 1).

Table 1: A Brief of Market Information of the Top 10 Cryptocurrencies

No Name Symbol Market Cap Total Volume Total Supply Consensus 
Mechanism

1 Bitcoin BTC $877.93B 35.84% 18.64M PoW
2 Ethereum ETH $173.72B 16.15% 114.84M PoW
3 Cardano ADA $41.71B 15.09% 31.94B PoS
4 Binance Coin BNB $35.33B 2.16% 170.53M PoSA
5 Tether USDT $35.01B 73.63% 35.66B n/a
6 Polkadot DOT $31.92B 3.52% 1.04B NPoS
7 XRP XRP $20.26B 3.79% 99.99B Custom
8 Litecoin LTC $11.66B 3.95% 67.10M PoW
9 Chainlink LINK $11.08B 1.39% 1.00B n/a
10 Stellar XLM $10.14B 2.10% 105.44B Custom

Sources: investing.com; coindesk.com; coinmarketcap.com, Accessed Date: 28.02.2021.

Studies on Bitcoin focus on issues such as price, volume and volatility. However, the focus of discussions 
on the sustainability of Bitcoin trading is Bitcoin energy consumption (Taylor, 2018). Today, based 
on the estimation studies on Bitcoin energy consumption, annual Bitcoin electricity consumption 
has exceeded the annual electricity consumption of most countries (Figure 1). Moreover, Bitcoin 
electricity consumption tends to increase over the years (Figure 2). Krause & Tolaymat (2018)’s papers 
revealed that cryptocurrency mining needs more energy consumption than traditional aluminum, 
copper, gold, platinum, and rare earth oxide mining. This situation reveals the size of the amount 
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of electricity consumed in cryptocurrency mining. Moreover, Taylor (2018) argues that the increase 
in electricity consumption is independent of the value of Bitcoin and that an increase in the price of 
Bitcoin without innovation in mining hardware will increase electricity consumption. Taylor (2018) 
analyzes this relationship between Bitcoin price and electricity consumption by basing it on the hash 
rate. However, there are also opinions that the effect of the consensus protocols used on electricity 
consumption is limited (Sapkota & Grobys, 2019; Zade et al., 2019).

Graph 1: Annual Electricity Consumption (2019-most recent avaliable year) (Source: U.S. Energy Information 

Adminastration)

As stated in this context, various cryptocurrencies that differentiate the electricity consumption 
spent in cryptocurrency mining use different consensus protocols (Table 1). Among these consensus 
protocols, especially PoW (Proof of Work) and PoS (Proof of Stake) come to the fore. The PoW 
protocol consumes more electricity than the PoS protocol (Sedlmeir et al., 2020). Sapkota & Grobys 
(2019) presented evidence that there is no difference in mining returns between the two protocols. In 
addition, findings on the research of a hybrid model provides higher average returns compared to the 
other two models are also presented. However, in a study on the effect of differences in equipment 
used on energy consumption, Zade et al. (2019) encountered limited effect. Therefore, it can be 
concluded that the consensus mechanism is important in cryptocurrency mining, but it does not 
cause a serious differentiation in energy demand and efficiency.
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Graph 2: Bitcoin Electricity Consumption (Source: Cambridge Center for Alternative Finance)

However, due to the hardware used in Bitcoin mining activities, the computational algorithms are 
quite complex, and it is necessary to bear high costs due to significant energy consumption (Cocco 
et al., 2017; de Vries, 2020; Giungato et al., 2017; Küfeoğlu & Özkuran, 2019; Taylor, 2018). In 
addition, it is evaluated that the CO2 emissions, especially in the estimations about the size of the 
energy generated in mining activities, can increase the temperature by 20 0C in thirty years (Mora 
et al., 2018). However, Sedlmeir et al. (2020) have obtained evidence that there is no direct link 
between energy consumption and transaction volume, and therefore Bitcoin electricity consumption 
will not have a significant impact on climate change. Despite the excess of energy consumption, 
Bitcoin trading volume is expanding due to the opportunities it provides. Considering that one of 
the most important factors affecting Bitcoin electricity consumption is miner income (Das & Dutta, 
2020), the necessity of using cheap energy sources emerges. Therefore, it is necessary to focus on 
alternatives such as green energy (Bastian-Pinto et al., 2021; Baur, 2019; Das & Dutta, 2020; Mir, 
2020). It is estimated that 98% of Bitcoin in the markets will be produced by 2028. This situation also 
reveals the importance of evaluations on this issue (Küfeoğlu & Özkuran, 2019). In this context, this 
study fills the gap in the literature by analyzing the causality relationship between Bitcoin electricity 
consumption, Bitcoin prices and transaction volume.

The calculation of Bitcoin energy consumption, which is used as the main data of this study, is 
extremely hard due to the difficulties in predicting the future value of Bitcoin prices and the constant 
development of the hardware used (Küfeoğlu & Özkuran, 2019). Studies predicting the Bitcoin 
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electricity consumption have been the subject of extensive research due to increasing importance 
of Bitcoin (de Vries, 2020; Küfeoğlu & Özkuran, 2019). Although it should be considered that the 
literature is heavily focused on Bitcoin, other cryptocurrencies constitute 1/3 of the total energy 
demand (Gallersdörfer et al., 2020). However, it is also seen that even Bitcoin energy demand is not 
sufficiently associated with the Bitcoin market. Moreover, the diversity of other cryptocurrencies 
makes it difficult to reveal meaningful relationships.

It has been provided that the hash algorithm is effective in estimating the energy consumption of 
cryptocurrencies and determining their efficiency (Li et al., 2019; Stoll et al., 2019; Taylor, 2018). 
However, the hash rate is not the only variable in the estimation studies on Bitcoin electricity 
consumption. In this study, Cambridge Bitcoin Electricity Consumption Index (CBECI) was used as 
Bitcoin electricity consumption data (https://cbeci.org, Accessed Date: 03.05.2021).

CBECI has compiled more than 60 different application-specific integrated circuits (ASIC) models 
since October 2014. It uses various mining equipment types and features within the framework of 
these compiled models. The mining efficiency for each type of machine used is expressed in Joules per 
Gigahash (J/Gh). CBECI develops the manufacturer specifications of these machines with the help 
of experts to measure the actual power usage. The model developed by CBECI assumes that miners 
will operate the equipment as long as they remain economically profitable. Various variables are used 
to determine the period that a particular type of equipment stays in the profit. These variables are 
the economic life of each machine, the total miner revenues, the total network hash rate, the energy 
efficiency of the hardware, and the electricity price per kWh that miners have to pay (Table 2). This 
situation can be expressed mathematically as in Formula 1:
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SRev − mining revenue per hash [USD/h]

Ultimately, this index establishes a link between the profitability of mining equipment and the 
energy efficiency of the equipment. The model uses the latest profitable equipment when none of the 
equipment is profitable. The link between profitability and efficiency can be expressed as in Formula 
3.
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The lower limit in Bitcoin energy consumption refers to the situation where energy efficiency is at 
the highest level. This situation is calculated under various assumptions and can turn into useful 
information at a certain level. However, it should be noted that the lower bound calculations are 
not realistic. The reasons for this are not all miners are using the most efficient equipment, not 
considering the installation time of newly released equipment, hardware supply shortages, and an 
optimistic PUE assumption. For all these reasons, lower bound calculations were not used in our 
study.
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CBECI also calculates the upper bound (Eupper) using a more complex calculation technique. The 
basic assumption in the upper bound calculation is that miners work with the least efficient hardware. 
Least efficient hardware refers to the least efficient option where miners are in profit. Because miners 
will not continue their activities when they are at a loss. Another assumption in the calculation 
of the upper limit is that the PUE value is assumed to be 1.20. Within the framework of all these 
explanations, the upper limit can be expressed mathematically as stated in Formula 5:
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Table 2: CBECI Model Parameters

Parameter Description Measure/Unit Source
Network hashrate, 
mean daily

The mean rate at which miners are 
solving hashes that day

Exahashes per second 
(Eh/s)

Dynamic: https://coinmetrics.io/

Bitcoin issuance 
value, daily

The sum USD value of all bitcoins 
issued that day

USD Dynamic: https://coinmetrics.io/

Miners fees, daily The sum USD value of all fees paid 
to miners that day

USD Dynamic: https://coinmetrics.io/

Difficulty, mean 
daily

The mean difficulty of finding a 
new block that day

Dimensionless Dynamic: https://coinmetrics.io/
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Bitcoin market 
price

The fixed closing price of the asset 
as of 00:00 UTC that day

USD Dynamic: https://coinmetrics.io/

Network hashrate, 
real-time estimate

The real-time estimate of the rate at 
which miners are solving hashes

Exahashes per second 
(Eh/s)

Dynamic: https://www.blockchain.
com/

Mining equipment 
efficiency

Measures the energy efficiency of a 
given mining hardware type

Joules per Gigahash 
(J/Gh)

Static: hardware specs from 60+ 
equipment types, taken from various 
sources

Electricity cost Average electricity cost incurred 
by miners

USD per kilowatt-
hour ($/kWh)

Static: estimate (assumption)

Data centre 
efficiency

Measures how efficiently energy is 
used in a data centre: expressed via 
power usage effectiveness (PUE)

Static: estimate (assumption)

Source: https://cbeci.org/cbeci/methodology, Accessed Date: 05.01.2021.

2. Literature Review

Measurements of the relationship between the Lightning Network (LN), a blockchain-based payment 
protocol, and market dynamics can be used to explain the effects of market conditions on payment 
protocols. However, it is considered that market dynamics do not have a significant effect on the 
topological configuration of the LN (Martinazzi et al., 2020).

The relationship between Bitcoin and asset classes such as gold, currency, commodities, stock 
indices, and bond indices has been frequently evaluated in the literature (Bhuiyan et al., 2021; Corbet 
et al., 2020; Jang et al., 2019; Jareño et al., 2020; Kang et al., 2020; Elsayed et al., 2020; Lahmiri & 
Bekiros, 2020; Maghyereh & Abdoh, 2020; Rehman & Apergis, 2019; Umar et al., 2021; Title, 2019). 
Some of these studies provide evidence that Bitcoin prices generally move independently and allow 
global investors to diversify (Bhuiyan et al., 2021; Lahmiri & Bekiros, 2020; Maghyereh & Abdoh, 
2020). Moreover, there is evidence in the literature that investors can use Bitcoin to optimize their 
investments in environments of global economic uncertainty (Qin et al., 2021; Su, Qin, Tao, & Umar, 
2020). This situation also shows that economic uncertainty processes can be predicted by taking 
advantage of Bitcoin returns. Corbet et al., (2020) argue that there is a stronger relationship between 
Bitcoin and financial assets than previously thought.

When the relationships between bitcoin returns and volatility spillover are examined, negative and 
significant relationships are observed between the variables (Jareño et al., 2020; Lahmiri & Bekiros, 
2020). Similarly, there are studies in the literature that have found significant relationships between 
geopolitical risks and Bitcoin prices (Jiang et al., 2020; Su et al., 2020). Gozgor et al., (2019) found 
that Bitcoin returns were significantly affected by US trade policy uncertainties. Wang et al., (2019) 
provide evidence that Bitcoin returns are not affected by economic uncertainty and volatility indices. 
The study evaluates that Bitcoin can be a haven for investors in times of economic uncertainty. 
Besides, there are studies (Gürsoy, 2021) in which there is no causal relationship with monetary 
policy uncertainties.
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Some studies have found a strong and positive relationship between bitcoin prices and gold prices 
(Bhuiyan et al., 2021; Corbet et al., 2020; Kang et al., 2020; Jareño et al., 2020; Kang et al., 2019; Su et al., 
2020). However, some studies provide evidence that there is no causal relationship between precious 
metals and cryptocurrencies and that cryptocurrencies can provide diversification opportunities 
for portfolios of precious metals (Lahmiri & Bekiros, 2020; Maghyereh & Abdoh, 2020; Rehman & 
Vinh Vo, 2020). However, studies have found significant and negative relationships between other 
financial assets such as oil prices, bond prices, and Bitcoin prices (Kang et al., 2020; Su et al., 2020).

Corbet et al. (2020) examined the relationship between Bitcoin prices and energy market returns and 
returns of energy firms. In the study, it has been determined that the use of cryptocurrencies has a 
significant effect on the returns of some firms. Corbet et al. (2020) state that the environmental effects 
of the increase in the use of cryptocurrencies should be analyzed in their study. In the literature, 
some studies examine the relationships between Bitcoin returns, volatility and transaction volume. 
Studies have presented evidence of a relationship between volume and Bitcoin returns (Balcilar et al., 
2017; Gemici & Polat, 2019; Sahoo et al., 2019). A similar situation was encountered when the causal 
relationships between cryptocurrencies were examined (Elsayed et al., 2020; Keskin & Aste, 2019).

The only study in the literature examining the relationship between energy consumption and Bitcoin 
data was conducted by Schinckus et al., (2020). In the study, besides the Bitcoin trade volume, 
buying and selling volumes of cryptocurrencies were also included in the analysis. The study found 
a positive relationship between the buying and selling volumes of cryptocurrencies and their energy 
consumption. The study provides evidence of an increasing correlation between cryptocurrency 
transaction volumes and energy consumption. However, the study conducted by Schinckus et al., 
(2020) covers the data between 2014-2017. Considering that the period in which the cryptocurrency 
transaction volume reached significant measures was the 2018-2021 period, it becomes important 
to reanalyze the relationship between energy consumption and transaction volume. In addition, our 
study expands the study by adding price data to energy consumption and transaction volume data. 
In this respect, our study also fills the gap in the literature by analyzing the relationships between 
Bitcoin transaction volume, price, and energy data.

3. Methodology

This study investigates the relationship between bitcoin prices, the energy consumption of bitcoin, 
and bitcoin transaction volume. Then, Hatemi-J (2012) Asymmetric Causality and Toda and 
Yamamoto (1995) tests were run using daily data (1466) observations between February 2017 
and February 2021. In the study, econometrical models are established to evaluate all variables in 
equations. The data belonging to the 3 variables used in this study were obtained from different 
sources, a wide range of data available was selected. Bitcoin energy consumption data was obtained 
from digiconomist.net, the data of the bitcoin price and bitcoin transaction volume were obtained 
from investing.com, which includes the total data of 7 major crypto exchanges (Binance, GDAX, 
Bitfinex, BitStamp, Kraken, Poloniex, itBit). In addition, the abbreviations of the variables in the 
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study are used for bitcoin energy consumption (BENERG), bitcoin price (BPRICE), and bitcoin 
transaction volume (BTRANS). First, the unit root tests of the data are performed, and the Zivot-
Andrews Unit Root Test, which considers the structural breaks, is used for this test.

Many tests have been developed to investigate the relationship between two variables in time series. 
These tests are sometimes built based on an economic theory between variables, or they search 
for a hidden relationship. In asymmetric causality analysis tests, it is argued that there is a hidden 
relationship between two-time series, which cannot be correlated at first glance, and that there is no 
relationship between them, and that these hidden relationships can only be found by considering the 
asymmetry between the components. The asymmetric causality test, which was first introduced to 
the literature by Granger and Yoon (2002), was developed by Hatemi-J (2012), examines the variables 
by separating them into positive and negative components. Causality analysis aims to find hidden 
relations that will help to understand the dynamics of the series and allow to development of possible 
predictions for the future. Causality relationship of two integrated variables y1t and y2t can be written 
as follows (Hatemi-J, 2012: 449-450).
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Here, 𝑦𝑦𝑡𝑡
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+ , the causality relationship between the positive 

components is tested through the p delayed vector autoregressive model (VAR). VAR (p) model 

is expressed as in equation (12). 

𝑦𝑦𝑡𝑡
+ = 𝑣𝑣 + 𝐴𝐴1𝑦𝑦𝑡𝑡−1

+ + ⋯ + 𝐴𝐴𝑝𝑝𝑦𝑦𝑡𝑡−1
+ + 𝑢𝑢𝑡𝑡

+                                                                                                                               (12) 

Here, 𝑦𝑦𝑡𝑡
+ indicates a variable vector of size 2x1, 𝑣𝑣 is constant variable vector of size 2x1, 𝑢𝑢𝑡𝑡

+ is 

error term size of 2x1, and Ap is expressed as a parameter matrix of "p" order, which is 

determined using 2x2 size delay length information criteria. The following equation is used to 

determine the optimal lag lengt: 

𝐻𝐻𝐻𝐻𝐻𝐻 = ln(|Ω̂𝑗𝑗|) + 𝑗𝑗 (𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑛𝑛2 ln(ln𝑇𝑇)
2𝑇𝑇 ) ,           𝑗𝑗 = 0, . . . , 𝑝𝑝                                                               (13) 

 and 

11 
 

by considering the asymmetry between the components. The asymmetric causality test, which 

was first introduced to the literature by Granger and Yoon (2002), was developed by Hatemi-J 

(2012), examines the variables by separating them into positive and negative components. 

Causality analysis aims to find hidden relations that will help to understand the dynamics of the 

series and allow to development of possible predictions for the future. Causality relationship of 

two integrated variables 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  can be written as follows (Hatemi-J, 2012: 449-450). 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦10 + ∑ 𝜀𝜀1𝑖𝑖

𝑡𝑡

𝑖𝑖=1
                𝑣𝑣𝑣𝑣                  𝑦𝑦2𝑡𝑡 =  𝑦𝑦2𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 =  𝑦𝑦20 + ∑ 𝜀𝜀2𝑖𝑖

𝑡𝑡

𝑖𝑖=1
         (7) 

Here, 𝑡𝑡 = 1, 2, … 𝑇𝑇, denotes the constant terms, 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  denotes initial values, 

𝜀𝜀1𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀2𝑖𝑖 error terms. Positive and negative shocks are expressed as in equation (8). 

𝜀𝜀1𝑖𝑖
+ = max  (𝜀𝜀1𝑖𝑖, 0) , 𝜀𝜀2𝑖𝑖

+ = max  ( 𝜀𝜀2𝑖𝑖, 0), 𝜀𝜀1𝑖𝑖
− = min (𝜀𝜀1𝑖𝑖, 0)   𝑣𝑣𝑣𝑣   𝜀𝜀2𝑖𝑖

− = min  (𝜀𝜀2𝑖𝑖, 0)                               (8) 

Error terms are expressed as  𝜀𝜀1𝑖𝑖 =  𝜀𝜀1𝑖𝑖
+ + 𝜀𝜀1𝑖𝑖

−   ve 𝜀𝜀2𝑖𝑖 =  𝜀𝜀2𝑖𝑖
+ + 𝜀𝜀2𝑖𝑖

−   Based on these, it is possible 

to rewrite equations (7) and (8) as follows: 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦1,0 + ∑ 𝜀𝜀1𝑖𝑖
+

𝑡𝑡

𝑖𝑖=1
+ ∑ 𝜀𝜀1𝑖𝑖

−
𝑡𝑡

𝑖𝑖=1
,                                                                                               (9) 

𝑦𝑦2𝑡𝑡 =  𝑦𝑦2𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 =  𝑦𝑦2,0 + ∑ 𝜀𝜀2𝑖𝑖
+

𝑡𝑡

𝑖𝑖=1
+ ∑ 𝜀𝜀2𝑖𝑖

−
𝑡𝑡

𝑖𝑖=1
.                                                                                            (10) 

Lastly, the positive and negative shocks in each variable are expressed in cumulative form as 

𝑦𝑦1𝑡𝑡
+ = ∑ 𝜀𝜀1𝑖𝑖

+  ,
𝑡𝑡

𝑖𝑖=1
                𝑦𝑦1𝑡𝑡

− = ∑ 𝜀𝜀1𝑖𝑖
−  ,

𝑡𝑡

𝑖𝑖=1
                𝑦𝑦2𝑡𝑡

+ = ∑ 𝜀𝜀2𝑖𝑖
+  ,

𝑡𝑡

𝑖𝑖=1
                 𝑦𝑦2𝑡𝑡

− = ∑ 𝜀𝜀2𝑖𝑖
−  ,

𝑡𝑡

𝑖𝑖=1
                      (11) 

Then, assuming that is 𝑦𝑦𝑡𝑡
+ = 𝑦𝑦1𝑡𝑡 

+ , 𝑦𝑦2𝑡𝑡
+ , the causality relationship between the positive 

components is tested through the p delayed vector autoregressive model (VAR). VAR (p) model 

is expressed as in equation (12). 

𝑦𝑦𝑡𝑡
+ = 𝑣𝑣 + 𝐴𝐴1𝑦𝑦𝑡𝑡−1

+ + ⋯ + 𝐴𝐴𝑝𝑝𝑦𝑦𝑡𝑡−1
+ + 𝑢𝑢𝑡𝑡

+                                                                                                                               (12) 

Here, 𝑦𝑦𝑡𝑡
+ indicates a variable vector of size 2x1, 𝑣𝑣 is constant variable vector of size 2x1, 𝑢𝑢𝑡𝑡

+ is 

error term size of 2x1, and Ap is expressed as a parameter matrix of "p" order, which is 

determined using 2x2 size delay length information criteria. The following equation is used to 

determine the optimal lag lengt: 

𝐻𝐻𝐻𝐻𝐻𝐻 = ln(|Ω̂𝑗𝑗|) + 𝑗𝑗 (𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑛𝑛2 ln(ln𝑇𝑇)
2𝑇𝑇 ) ,           𝑗𝑗 = 0, . . . , 𝑝𝑝                                                               (13) 

 error terms. 
Positive and negative shocks are expressed as in equation (8).

11 
 

by considering the asymmetry between the components. The asymmetric causality test, which 

was first introduced to the literature by Granger and Yoon (2002), was developed by Hatemi-J 

(2012), examines the variables by separating them into positive and negative components. 

Causality analysis aims to find hidden relations that will help to understand the dynamics of the 

series and allow to development of possible predictions for the future. Causality relationship of 

two integrated variables 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  can be written as follows (Hatemi-J, 2012: 449-450). 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦10 + ∑ 𝜀𝜀1𝑖𝑖

𝑡𝑡

𝑖𝑖=1
                𝑣𝑣𝑣𝑣                  𝑦𝑦2𝑡𝑡 =  𝑦𝑦2𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 =  𝑦𝑦20 + ∑ 𝜀𝜀2𝑖𝑖

𝑡𝑡

𝑖𝑖=1
         (7) 

Here, 𝑡𝑡 = 1, 2, … 𝑇𝑇, denotes the constant terms, 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  denotes initial values, 

𝜀𝜀1𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀2𝑖𝑖 error terms. Positive and negative shocks are expressed as in equation (8). 

𝜀𝜀1𝑖𝑖
+ = max  (𝜀𝜀1𝑖𝑖, 0) , 𝜀𝜀2𝑖𝑖

+ = max  ( 𝜀𝜀2𝑖𝑖, 0), 𝜀𝜀1𝑖𝑖
− = min (𝜀𝜀1𝑖𝑖, 0)   𝑣𝑣𝑣𝑣   𝜀𝜀2𝑖𝑖

− = min  (𝜀𝜀2𝑖𝑖, 0)                               (8) 

Error terms are expressed as  𝜀𝜀1𝑖𝑖 =  𝜀𝜀1𝑖𝑖
+ + 𝜀𝜀1𝑖𝑖

−   ve 𝜀𝜀2𝑖𝑖 =  𝜀𝜀2𝑖𝑖
+ + 𝜀𝜀2𝑖𝑖

−   Based on these, it is possible 

to rewrite equations (7) and (8) as follows: 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦1,0 + ∑ 𝜀𝜀1𝑖𝑖
+

𝑡𝑡

𝑖𝑖=1
+ ∑ 𝜀𝜀1𝑖𝑖

−
𝑡𝑡

𝑖𝑖=1
,                                                                                               (9) 

𝑦𝑦2𝑡𝑡 =  𝑦𝑦2𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 =  𝑦𝑦2,0 + ∑ 𝜀𝜀2𝑖𝑖
+

𝑡𝑡

𝑖𝑖=1
+ ∑ 𝜀𝜀2𝑖𝑖

−
𝑡𝑡

𝑖𝑖=1
.                                                                                            (10) 

Lastly, the positive and negative shocks in each variable are expressed in cumulative form as 

𝑦𝑦1𝑡𝑡
+ = ∑ 𝜀𝜀1𝑖𝑖

+  ,
𝑡𝑡

𝑖𝑖=1
                𝑦𝑦1𝑡𝑡

− = ∑ 𝜀𝜀1𝑖𝑖
−  ,

𝑡𝑡

𝑖𝑖=1
                𝑦𝑦2𝑡𝑡

+ = ∑ 𝜀𝜀2𝑖𝑖
+  ,

𝑡𝑡

𝑖𝑖=1
                 𝑦𝑦2𝑡𝑡

− = ∑ 𝜀𝜀2𝑖𝑖
−  ,

𝑡𝑡

𝑖𝑖=1
                      (11) 

Then, assuming that is 𝑦𝑦𝑡𝑡
+ = 𝑦𝑦1𝑡𝑡 

+ , 𝑦𝑦2𝑡𝑡
+ , the causality relationship between the positive 

components is tested through the p delayed vector autoregressive model (VAR). VAR (p) model 

is expressed as in equation (12). 

𝑦𝑦𝑡𝑡
+ = 𝑣𝑣 + 𝐴𝐴1𝑦𝑦𝑡𝑡−1

+ + ⋯ + 𝐴𝐴𝑝𝑝𝑦𝑦𝑡𝑡−1
+ + 𝑢𝑢𝑡𝑡

+                                                                                                                               (12) 

Here, 𝑦𝑦𝑡𝑡
+ indicates a variable vector of size 2x1, 𝑣𝑣 is constant variable vector of size 2x1, 𝑢𝑢𝑡𝑡

+ is 

error term size of 2x1, and Ap is expressed as a parameter matrix of "p" order, which is 

determined using 2x2 size delay length information criteria. The following equation is used to 

determine the optimal lag lengt: 

𝐻𝐻𝐻𝐻𝐻𝐻 = ln(|Ω̂𝑗𝑗|) + 𝑗𝑗 (𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑛𝑛2 ln(ln𝑇𝑇)
2𝑇𝑇 ) ,           𝑗𝑗 = 0, . . . , 𝑝𝑝                                                               (13) 

				               (8)

Error terms are expressed as 

11 
 

by considering the asymmetry between the components. The asymmetric causality test, which 

was first introduced to the literature by Granger and Yoon (2002), was developed by Hatemi-J 

(2012), examines the variables by separating them into positive and negative components. 

Causality analysis aims to find hidden relations that will help to understand the dynamics of the 

series and allow to development of possible predictions for the future. Causality relationship of 

two integrated variables 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  can be written as follows (Hatemi-J, 2012: 449-450). 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦10 + ∑ 𝜀𝜀1𝑖𝑖

𝑡𝑡

𝑖𝑖=1
                𝑣𝑣𝑣𝑣                  𝑦𝑦2𝑡𝑡 =  𝑦𝑦2𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 =  𝑦𝑦20 + ∑ 𝜀𝜀2𝑖𝑖

𝑡𝑡

𝑖𝑖=1
         (7) 

Here, 𝑡𝑡 = 1, 2, … 𝑇𝑇, denotes the constant terms, 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  denotes initial values, 

𝜀𝜀1𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀2𝑖𝑖 error terms. Positive and negative shocks are expressed as in equation (8). 

𝜀𝜀1𝑖𝑖
+ = max  (𝜀𝜀1𝑖𝑖, 0) , 𝜀𝜀2𝑖𝑖

+ = max  ( 𝜀𝜀2𝑖𝑖, 0), 𝜀𝜀1𝑖𝑖
− = min (𝜀𝜀1𝑖𝑖, 0)   𝑣𝑣𝑣𝑣   𝜀𝜀2𝑖𝑖

− = min  (𝜀𝜀2𝑖𝑖, 0)                               (8) 

Error terms are expressed as  𝜀𝜀1𝑖𝑖 =  𝜀𝜀1𝑖𝑖
+ + 𝜀𝜀1𝑖𝑖

−   ve 𝜀𝜀2𝑖𝑖 =  𝜀𝜀2𝑖𝑖
+ + 𝜀𝜀2𝑖𝑖

−   Based on these, it is possible 

to rewrite equations (7) and (8) as follows: 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦1,0 + ∑ 𝜀𝜀1𝑖𝑖
+

𝑡𝑡

𝑖𝑖=1
+ ∑ 𝜀𝜀1𝑖𝑖

−
𝑡𝑡

𝑖𝑖=1
,                                                                                               (9) 

𝑦𝑦2𝑡𝑡 =  𝑦𝑦2𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 =  𝑦𝑦2,0 + ∑ 𝜀𝜀2𝑖𝑖
+

𝑡𝑡

𝑖𝑖=1
+ ∑ 𝜀𝜀2𝑖𝑖

−
𝑡𝑡

𝑖𝑖=1
.                                                                                            (10) 

Lastly, the positive and negative shocks in each variable are expressed in cumulative form as 

𝑦𝑦1𝑡𝑡
+ = ∑ 𝜀𝜀1𝑖𝑖

+  ,
𝑡𝑡

𝑖𝑖=1
                𝑦𝑦1𝑡𝑡

− = ∑ 𝜀𝜀1𝑖𝑖
−  ,

𝑡𝑡

𝑖𝑖=1
                𝑦𝑦2𝑡𝑡

+ = ∑ 𝜀𝜀2𝑖𝑖
+  ,

𝑡𝑡

𝑖𝑖=1
                 𝑦𝑦2𝑡𝑡

− = ∑ 𝜀𝜀2𝑖𝑖
−  ,

𝑡𝑡

𝑖𝑖=1
                      (11) 

Then, assuming that is 𝑦𝑦𝑡𝑡
+ = 𝑦𝑦1𝑡𝑡 

+ , 𝑦𝑦2𝑡𝑡
+ , the causality relationship between the positive 

components is tested through the p delayed vector autoregressive model (VAR). VAR (p) model 

is expressed as in equation (12). 

𝑦𝑦𝑡𝑡
+ = 𝑣𝑣 + 𝐴𝐴1𝑦𝑦𝑡𝑡−1

+ + ⋯ + 𝐴𝐴𝑝𝑝𝑦𝑦𝑡𝑡−1
+ + 𝑢𝑢𝑡𝑡

+                                                                                                                               (12) 

Here, 𝑦𝑦𝑡𝑡
+ indicates a variable vector of size 2x1, 𝑣𝑣 is constant variable vector of size 2x1, 𝑢𝑢𝑡𝑡

+ is 

error term size of 2x1, and Ap is expressed as a parameter matrix of "p" order, which is 

determined using 2x2 size delay length information criteria. The following equation is used to 

determine the optimal lag lengt: 

𝐻𝐻𝐻𝐻𝐻𝐻 = ln(|Ω̂𝑗𝑗|) + 𝑗𝑗 (𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑛𝑛2 ln(ln𝑇𝑇)
2𝑇𝑇 ) ,           𝑗𝑗 = 0, . . . , 𝑝𝑝                                                               (13) 

 Based on these, it is possible to rewrite 
equations (7) and (8) as follows:

11 
 

by considering the asymmetry between the components. The asymmetric causality test, which 

was first introduced to the literature by Granger and Yoon (2002), was developed by Hatemi-J 

(2012), examines the variables by separating them into positive and negative components. 

Causality analysis aims to find hidden relations that will help to understand the dynamics of the 

series and allow to development of possible predictions for the future. Causality relationship of 

two integrated variables 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  can be written as follows (Hatemi-J, 2012: 449-450). 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦10 + ∑ 𝜀𝜀1𝑖𝑖

𝑡𝑡

𝑖𝑖=1
                𝑣𝑣𝑣𝑣                  𝑦𝑦2𝑡𝑡 =  𝑦𝑦2𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 =  𝑦𝑦20 + ∑ 𝜀𝜀2𝑖𝑖

𝑡𝑡

𝑖𝑖=1
         (7) 

Here, 𝑡𝑡 = 1, 2, … 𝑇𝑇, denotes the constant terms, 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡  denotes initial values, 

𝜀𝜀1𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀2𝑖𝑖 error terms. Positive and negative shocks are expressed as in equation (8). 

𝜀𝜀1𝑖𝑖
+ = max  (𝜀𝜀1𝑖𝑖, 0) , 𝜀𝜀2𝑖𝑖

+ = max  ( 𝜀𝜀2𝑖𝑖, 0), 𝜀𝜀1𝑖𝑖
− = min (𝜀𝜀1𝑖𝑖, 0)   𝑣𝑣𝑣𝑣   𝜀𝜀2𝑖𝑖

− = min  (𝜀𝜀2𝑖𝑖, 0)                               (8) 

Error terms are expressed as  𝜀𝜀1𝑖𝑖 =  𝜀𝜀1𝑖𝑖
+ + 𝜀𝜀1𝑖𝑖

−   ve 𝜀𝜀2𝑖𝑖 =  𝜀𝜀2𝑖𝑖
+ + 𝜀𝜀2𝑖𝑖

−   Based on these, it is possible 

to rewrite equations (7) and (8) as follows: 

𝑦𝑦1𝑡𝑡 =  𝑦𝑦1𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 =  𝑦𝑦1,0 + ∑ 𝜀𝜀1𝑖𝑖
+

𝑡𝑡

𝑖𝑖=1
+ ∑ 𝜀𝜀1𝑖𝑖

−
𝑡𝑡

𝑖𝑖=1
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Then, assuming that is 𝑦𝑦𝑡𝑡
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Here, 𝑦𝑦𝑡𝑡
+ indicates a variable vector of size 2x1, 𝑣𝑣 is constant variable vector of size 2x1, 𝑢𝑢𝑡𝑡
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+ is 
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𝑡𝑡
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+ = ∑ 𝜀𝜀2𝑖𝑖
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                 𝑦𝑦2𝑡𝑡
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𝑡𝑡
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                      (11) 

Then, assuming that is 𝑦𝑦𝑡𝑡
+ = 𝑦𝑦1𝑡𝑡 

+ , 𝑦𝑦2𝑡𝑡
+ , the causality relationship between the positive 

components is tested through the p delayed vector autoregressive model (VAR). VAR (p) model 

is expressed as in equation (12). 

𝑦𝑦𝑡𝑡
+ = 𝑣𝑣 + 𝐴𝐴1𝑦𝑦𝑡𝑡−1

+ + ⋯ + 𝐴𝐴𝑝𝑝𝑦𝑦𝑡𝑡−1
+ + 𝑢𝑢𝑡𝑡

+                                                                                                                               (12) 

Here, 𝑦𝑦𝑡𝑡
+ indicates a variable vector of size 2x1, 𝑣𝑣 is constant variable vector of size 2x1, 𝑢𝑢𝑡𝑡

+ is 

error term size of 2x1, and Ap is expressed as a parameter matrix of "p" order, which is 

determined using 2x2 size delay length information criteria. The following equation is used to 

determine the optimal lag lengt: 

𝐻𝐻𝐻𝐻𝐻𝐻 = ln(|Ω̂𝑗𝑗|) + 𝑗𝑗 (𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙 + 2𝑛𝑛2 ln(ln𝑇𝑇)
2𝑇𝑇 ) ,           𝑗𝑗 = 0, . . . , 𝑝𝑝                                                               (13) 					               (13)
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(|Ω̂𝑗𝑗|)  shows 𝑗𝑗 length of the lag of the estimated VAR model's error term is variance-covariance 

matrix, 𝑛𝑛 is the number of equations in the VAR model, and 𝑇𝑇 is the number of observations. 

After the lag length is determined, the Wald statistic is used to test the 𝐻𝐻0  fundamental 

hypothesis, which indicates the absence of Granger-causality between series. The VAR model 

equation created to obtain the Wald statistics is as follows. 

𝑌𝑌 = 𝐷𝐷𝐷𝐷 +  𝛿𝛿  the equation is more clearly expressed. 

𝑌𝑌:  = (𝑦𝑦1
+, 𝑦𝑦2

+, … , 𝑦𝑦𝑇𝑇
+) 

𝐷𝐷:  = (𝑣𝑣, 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑝𝑝) 

𝑍𝑍𝑡𝑡 : =

[
 
 
 
 1  

  𝑦𝑦𝑡𝑡
+  

      𝑦𝑦𝑡𝑡−1
+  

⋮  
    𝑦𝑦𝑡𝑡−𝑝𝑝+1

+ ]
 
 
 
 
                                                                                                                                                                         (14) 

𝑍𝑍: =  (𝑍𝑍0, 𝑍𝑍1, … , 𝑍𝑍𝑇𝑇−1)   

𝛿𝛿: = (𝑢𝑢1
+, 𝑢𝑢2

+, … , 𝑢𝑢𝑇𝑇
+)           

According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
𝑛𝑛𝑛𝑛)), 𝑍𝑍𝑡𝑡: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 1),  𝑍𝑍: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 𝑇𝑇) and 𝛿𝛿: (𝑛𝑛 𝑥𝑥 𝑇𝑇). 

The basic hypothesis (𝐻𝐻0: 𝐶𝐶𝐶𝐶 = 0) which states that there is no Granger causality is tested with 

the Wald statistic. The Wald statistics can be calculated with the help of the following equation. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝐶𝐶𝐶𝐶)′[𝐶𝐶((𝑍𝑍′𝑍𝑍)−1 ⊗ 𝑆𝑆𝑈𝑈)𝐶𝐶′]−1(𝐶𝐶𝐶𝐶)                                                                                                (15) 

Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

 shows j length of the lag of the estimated VAR model’s error term is variance-covariance 
matrix, n is the number of equations in the VAR model, and T is the number of observations.

After the lag length is determined, the Wald statistic is used to test the H0 fundamental hypothesis, 
which indicates the absence of Granger-causality between series. The VAR model equation created 
to obtain the Wald statistics is as follows.
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𝑍𝑍: =  (𝑍𝑍0, 𝑍𝑍1, … , 𝑍𝑍𝑇𝑇−1)   

𝛿𝛿: = (𝑢𝑢1
+, 𝑢𝑢2

+, … , 𝑢𝑢𝑇𝑇
+)           

According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
𝑛𝑛𝑛𝑛)), 𝑍𝑍𝑡𝑡: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 1),  𝑍𝑍: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 𝑇𝑇) and 𝛿𝛿: (𝑛𝑛 𝑥𝑥 𝑇𝑇). 

The basic hypothesis (𝐻𝐻0: 𝐶𝐶𝐶𝐶 = 0) which states that there is no Granger causality is tested with 

the Wald statistic. The Wald statistics can be calculated with the help of the following equation. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝐶𝐶𝐶𝐶)′[𝐶𝐶((𝑍𝑍′𝑍𝑍)−1 ⊗ 𝑆𝑆𝑈𝑈)𝐶𝐶′]−1(𝐶𝐶𝐶𝐶)                                                                                                (15) 

Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

According to equation (14): it refers to matrixes of different sizes Y : (n x T), D : (n x (1+np)), Zt: 
((1+np) x 1), Z: ((1+np) x T) and 

12 
 

(|Ω̂𝑗𝑗|)  shows 𝑗𝑗 length of the lag of the estimated VAR model's error term is variance-covariance 

matrix, 𝑛𝑛 is the number of equations in the VAR model, and 𝑇𝑇 is the number of observations. 

After the lag length is determined, the Wald statistic is used to test the 𝐻𝐻0  fundamental 

hypothesis, which indicates the absence of Granger-causality between series. The VAR model 

equation created to obtain the Wald statistics is as follows. 

𝑌𝑌 = 𝐷𝐷𝐷𝐷 +  𝛿𝛿  the equation is more clearly expressed. 

𝑌𝑌:  = (𝑦𝑦1
+, 𝑦𝑦2

+, … , 𝑦𝑦𝑇𝑇
+) 

𝐷𝐷:  = (𝑣𝑣, 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑝𝑝) 

𝑍𝑍𝑡𝑡 : =

[
 
 
 
 1  

  𝑦𝑦𝑡𝑡
+  

      𝑦𝑦𝑡𝑡−1
+  

⋮  
    𝑦𝑦𝑡𝑡−𝑝𝑝+1

+ ]
 
 
 
 
                                                                                                                                                                         (14) 

𝑍𝑍: =  (𝑍𝑍0, 𝑍𝑍1, … , 𝑍𝑍𝑇𝑇−1)   

𝛿𝛿: = (𝑢𝑢1
+, 𝑢𝑢2

+, … , 𝑢𝑢𝑇𝑇
+)           

According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
𝑛𝑛𝑛𝑛)), 𝑍𝑍𝑡𝑡: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 1),  𝑍𝑍: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 𝑇𝑇) and 𝛿𝛿: (𝑛𝑛 𝑥𝑥 𝑇𝑇). 

The basic hypothesis (𝐻𝐻0: 𝐶𝐶𝐶𝐶 = 0) which states that there is no Granger causality is tested with 

the Wald statistic. The Wald statistics can be calculated with the help of the following equation. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝐶𝐶𝐶𝐶)′[𝐶𝐶((𝑍𝑍′𝑍𝑍)−1 ⊗ 𝑆𝑆𝑈𝑈)𝐶𝐶′]−1(𝐶𝐶𝐶𝐶)                                                                                                (15) 

Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

The basic hypothesis 

12 
 

(|Ω̂𝑗𝑗|)  shows 𝑗𝑗 length of the lag of the estimated VAR model's error term is variance-covariance 

matrix, 𝑛𝑛 is the number of equations in the VAR model, and 𝑇𝑇 is the number of observations. 

After the lag length is determined, the Wald statistic is used to test the 𝐻𝐻0  fundamental 

hypothesis, which indicates the absence of Granger-causality between series. The VAR model 

equation created to obtain the Wald statistics is as follows. 

𝑌𝑌 = 𝐷𝐷𝐷𝐷 +  𝛿𝛿  the equation is more clearly expressed. 

𝑌𝑌:  = (𝑦𝑦1
+, 𝑦𝑦2

+, … , 𝑦𝑦𝑇𝑇
+) 

𝐷𝐷:  = (𝑣𝑣, 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑝𝑝) 

𝑍𝑍𝑡𝑡 : =

[
 
 
 
 1  

  𝑦𝑦𝑡𝑡
+  

      𝑦𝑦𝑡𝑡−1
+  

⋮  
    𝑦𝑦𝑡𝑡−𝑝𝑝+1

+ ]
 
 
 
 
                                                                                                                                                                         (14) 

𝑍𝑍: =  (𝑍𝑍0, 𝑍𝑍1, … , 𝑍𝑍𝑇𝑇−1)   

𝛿𝛿: = (𝑢𝑢1
+, 𝑢𝑢2

+, … , 𝑢𝑢𝑇𝑇
+)           

According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
𝑛𝑛𝑛𝑛)), 𝑍𝑍𝑡𝑡: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 1),  𝑍𝑍: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 𝑇𝑇) and 𝛿𝛿: (𝑛𝑛 𝑥𝑥 𝑇𝑇). 

The basic hypothesis (𝐻𝐻0: 𝐶𝐶𝐶𝐶 = 0) which states that there is no Granger causality is tested with 

the Wald statistic. The Wald statistics can be calculated with the help of the following equation. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝐶𝐶𝐶𝐶)′[𝐶𝐶((𝑍𝑍′𝑍𝑍)−1 ⊗ 𝑆𝑆𝑈𝑈)𝐶𝐶′]−1(𝐶𝐶𝐶𝐶)                                                                                                (15) 

Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

 which states that there is no Granger causality is tested with the 
Wald statistic. The Wald statistics can be calculated with the help of the following equation.

12 
 

(|Ω̂𝑗𝑗|)  shows 𝑗𝑗 length of the lag of the estimated VAR model's error term is variance-covariance 

matrix, 𝑛𝑛 is the number of equations in the VAR model, and 𝑇𝑇 is the number of observations. 

After the lag length is determined, the Wald statistic is used to test the 𝐻𝐻0  fundamental 

hypothesis, which indicates the absence of Granger-causality between series. The VAR model 

equation created to obtain the Wald statistics is as follows. 

𝑌𝑌 = 𝐷𝐷𝐷𝐷 +  𝛿𝛿  the equation is more clearly expressed. 

𝑌𝑌:  = (𝑦𝑦1
+, 𝑦𝑦2

+, … , 𝑦𝑦𝑇𝑇
+) 

𝐷𝐷:  = (𝑣𝑣, 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑝𝑝) 

𝑍𝑍𝑡𝑡 : =

[
 
 
 
 1  

  𝑦𝑦𝑡𝑡
+  

      𝑦𝑦𝑡𝑡−1
+  

⋮  
    𝑦𝑦𝑡𝑡−𝑝𝑝+1

+ ]
 
 
 
 
                                                                                                                                                                         (14) 

𝑍𝑍: =  (𝑍𝑍0, 𝑍𝑍1, … , 𝑍𝑍𝑇𝑇−1)   

𝛿𝛿: = (𝑢𝑢1
+, 𝑢𝑢2

+, … , 𝑢𝑢𝑇𝑇
+)           

According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
𝑛𝑛𝑛𝑛)), 𝑍𝑍𝑡𝑡: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 1),  𝑍𝑍: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 𝑇𝑇) and 𝛿𝛿: (𝑛𝑛 𝑥𝑥 𝑇𝑇). 

The basic hypothesis (𝐻𝐻0: 𝐶𝐶𝐶𝐶 = 0) which states that there is no Granger causality is tested with 

the Wald statistic. The Wald statistics can be calculated with the help of the following equation. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝐶𝐶𝐶𝐶)′[𝐶𝐶((𝑍𝑍′𝑍𝑍)−1 ⊗ 𝑆𝑆𝑈𝑈)𝐶𝐶′]−1(𝐶𝐶𝐶𝐶)                                                                                                (15) 

Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

					              (15)

Equation (15) is in the form of 

12 
 

(|Ω̂𝑗𝑗|)  shows 𝑗𝑗 length of the lag of the estimated VAR model's error term is variance-covariance 

matrix, 𝑛𝑛 is the number of equations in the VAR model, and 𝑇𝑇 is the number of observations. 

After the lag length is determined, the Wald statistic is used to test the 𝐻𝐻0  fundamental 

hypothesis, which indicates the absence of Granger-causality between series. The VAR model 

equation created to obtain the Wald statistics is as follows. 

𝑌𝑌 = 𝐷𝐷𝐷𝐷 +  𝛿𝛿  the equation is more clearly expressed. 

𝑌𝑌:  = (𝑦𝑦1
+, 𝑦𝑦2

+, … , 𝑦𝑦𝑇𝑇
+) 

𝐷𝐷:  = (𝑣𝑣, 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑝𝑝) 

𝑍𝑍𝑡𝑡 : =

[
 
 
 
 1  

  𝑦𝑦𝑡𝑡
+  

      𝑦𝑦𝑡𝑡−1
+  

⋮  
    𝑦𝑦𝑡𝑡−𝑝𝑝+1

+ ]
 
 
 
 
                                                                                                                                                                         (14) 

𝑍𝑍: =  (𝑍𝑍0, 𝑍𝑍1, … , 𝑍𝑍𝑇𝑇−1)   

𝛿𝛿: = (𝑢𝑢1
+, 𝑢𝑢2

+, … , 𝑢𝑢𝑇𝑇
+)           

According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
𝑛𝑛𝑛𝑛)), 𝑍𝑍𝑡𝑡: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 1),  𝑍𝑍: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 𝑇𝑇) and 𝛿𝛿: (𝑛𝑛 𝑥𝑥 𝑇𝑇). 

The basic hypothesis (𝐻𝐻0: 𝐶𝐶𝐶𝐶 = 0) which states that there is no Granger causality is tested with 

the Wald statistic. The Wald statistics can be calculated with the help of the following equation. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝐶𝐶𝐶𝐶)′[𝐶𝐶((𝑍𝑍′𝑍𝑍)−1 ⊗ 𝑆𝑆𝑈𝑈)𝐶𝐶′]−1(𝐶𝐶𝐶𝐶)                                                                                                (15) 

Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

 and indicates the column clustering operator. 
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(|Ω̂𝑗𝑗|)  shows 𝑗𝑗 length of the lag of the estimated VAR model's error term is variance-covariance 

matrix, 𝑛𝑛 is the number of equations in the VAR model, and 𝑇𝑇 is the number of observations. 

After the lag length is determined, the Wald statistic is used to test the 𝐻𝐻0  fundamental 

hypothesis, which indicates the absence of Granger-causality between series. The VAR model 

equation created to obtain the Wald statistics is as follows. 

𝑌𝑌 = 𝐷𝐷𝐷𝐷 +  𝛿𝛿  the equation is more clearly expressed. 

𝑌𝑌:  = (𝑦𝑦1
+, 𝑦𝑦2

+, … , 𝑦𝑦𝑇𝑇
+) 

𝐷𝐷:  = (𝑣𝑣, 𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑝𝑝) 

𝑍𝑍𝑡𝑡 : =

[
 
 
 
 1  

  𝑦𝑦𝑡𝑡
+  

      𝑦𝑦𝑡𝑡−1
+  

⋮  
    𝑦𝑦𝑡𝑡−𝑝𝑝+1

+ ]
 
 
 
 
                                                                                                                                                                         (14) 

𝑍𝑍: =  (𝑍𝑍0, 𝑍𝑍1, … , 𝑍𝑍𝑇𝑇−1)   

𝛿𝛿: = (𝑢𝑢1
+, 𝑢𝑢2

+, … , 𝑢𝑢𝑇𝑇
+)           

According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
𝑛𝑛𝑛𝑛)), 𝑍𝑍𝑡𝑡: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 1),  𝑍𝑍: ((1 + 𝑛𝑛𝑛𝑛) 𝑥𝑥 𝑇𝑇) and 𝛿𝛿: (𝑛𝑛 𝑥𝑥 𝑇𝑇). 

The basic hypothesis (𝐻𝐻0: 𝐶𝐶𝐶𝐶 = 0) which states that there is no Granger causality is tested with 

the Wald statistic. The Wald statistics can be calculated with the help of the following equation. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝐶𝐶𝐶𝐶)′[𝐶𝐶((𝑍𝑍′𝑍𝑍)−1 ⊗ 𝑆𝑆𝑈𝑈)𝐶𝐶′]−1(𝐶𝐶𝐶𝐶)                                                                                                (15) 

Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

Kronecker, C represents the indicator function including constraints. The variance-covariance matrix 
calculated for the unconstrained VAR model is expressed as 

12 
 

(|Ω̂𝑗𝑗|)  shows 𝑗𝑗 length of the lag of the estimated VAR model's error term is variance-covariance 

matrix, 𝑛𝑛 is the number of equations in the VAR model, and 𝑇𝑇 is the number of observations. 

After the lag length is determined, the Wald statistic is used to test the 𝐻𝐻0  fundamental 

hypothesis, which indicates the absence of Granger-causality between series. The VAR model 

equation created to obtain the Wald statistics is as follows. 
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According to equation (14): it refers to matrixes of different sizes 𝑌𝑌: (𝑛𝑛 𝑥𝑥 𝑇𝑇),  𝐷𝐷: (𝑛𝑛 𝑥𝑥 (1 +
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Equation (15) is in the form of 𝛽𝛽 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷) and indicates the column clustering operator. ⊗
 Kronecker, 𝐶𝐶 represents the indicator function including constraints. The variance-covariance 

matrix calculated for the unconstrained VAR model is expressed as 𝑆𝑆𝑈𝑈 = 𝛿̂𝛿𝑈𝑈
′ 𝛿̂𝛿𝑈𝑈

 

𝑇𝑇−𝑞𝑞 . And here, the 

𝑞𝑞 represents the number of lags in the VAR model. 

In the research, four hypotheses have been established to test the existence of a causality 

relationship between the variables. These hypotheses established for study are as follows. 

H0: There is no causal relationship between BENERG and BPRICE, BTRANS. 

H1: There is causal relationship between BENERG and BPRICE, BTRANS. 

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to 

a higher level. In addition, the model tries to enhance some of the problems that occur in the 

. And here, the q represents the 
number of lags in the VAR model.
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In the research, four hypotheses have been established to test the existence of a causality relationship 
between the variables. These hypotheses established for study are as follows.

H0: There is no causal relationship between BENERG and BPRICE, BTRANS.

H1: There is causal relationship between BENERG and BPRICE, BTRANS.

Another method, developed by Toda and Yamamoto (1995), take the Granger causality test to a 
higher level. In addition, the model tries to enhance some of the problems that occur in the Granger 
causality test. To be able to test Granger causality for time series, the series must first become 
stationary and stabilize at the same level. However, once this condition has been met, co-integration 
must also occur to demonstrate a long-term relationship between stationary series at the same level. 
In other words, only the Granger causality test can be performed between the series that are stable at 
the same level and have a cointegration relationship between them. However, the Toda-Yamamoto 
test revealed that time series, which are at different levels of stability, may have causality between 
them, and even causality testing can be done without the need for a stationary test. This model can 
also be tested whether there is a co-integration between the series, regardless of co-integration (Toda 
and Yamamoto, 1995: 246).

In the case of the performing Toda and Yamamoto (1995) test, the appropriate lag length (k) is 
determined by the VAR model. In the second stage of the analysis, the degree of integration (dmax) of 
the variable, which has the highest degree of integration, is added to the lag length (k) of the model. 
In the last stage, the VAR model is estimated according to the lags with series level values (k + dmax ). 
The VAR model is applied with the help of the following equations (Toda and Yamamoto, 1995: 230)
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For the Toda and Yamamoto (1995) The hypotheses established for study are as follows. 

H0: The X variable is not the Granger cause of the Y variable. 

H1: The X variable is the Granger cause of the Y variable. 

 

4. Findings and Discussions 

The Zivot-Andrews Unit Root Test (1992), which allows for structural break, was used to test 

the stationarity of the time series in this study. This test is a new unit root test that does not find 

Perron's (1989) external breakpoint assumption rational and allows an estimated break in the 

under-trend function against the basic hypothesis versus the alternative hypothesis. Zivot and 

Andrews (1992) criticized Perron's external breakpoint assumption and developed a new unit 

root test method under the alternative hypothesis that allows an estimated break in the trend 

function using the data used by Perron. Since structural break is accepted as intrinsic in Zivot-
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H0: The X variable is not the Granger cause of the Y variable.

H1: The X variable is the Granger cause of the Y variable.

4. Findings and Discussions

The Zivot-Andrews Unit Root Test (1992), which allows for structural break, was used to test the 
stationarity of the time series in this study. This test is a new unit root test that does not find Perron’s 
(1989) external breakpoint assumption rational and allows an estimated break in the under-trend 
function against the basic hypothesis versus the alternative hypothesis. Zivot and Andrews (1992) 
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criticized Perron’s external breakpoint assumption and developed a new unit root test method under 
the alternative hypothesis that allows an estimated break in the trend function using the data used 
by Perron. Since structural break is accepted as intrinsic in Zivot-Andrews test, Zivot-Andrews test 
is considered to be superior to Perron test. For this reason, Zivot-Andrews test is preferred in this 
study.

According to the intercept and trend-breaking model C results obtained from the Zivot-Andrews 
unit root test, it was determined that the BENERG and BTRANS variables are stationary at the I (0) 
level. However, the BPRICE variable is not stable at the level, but it is found to be stationary at the 
I (1) level. In addition, when the break dates obtained from the ZA unit root test were examined, it 
was observed that the movements in the ordinary political and economic policies that occurred on 
these dates caused the breaks.

Table 3: The results of Zivot-Andrews Unit Root Test

Zivot-Andrews (Model C)

Variables I(0)
Test Statistic

I(0)
Breaking Date

Critical 
Values

I(1)
Test Statistic

I(1)
Breaking Date

Critical 
Values

BENERG -5.459** 05.12.2020 -5.08 - - -5.08
BPRICE -2.674 09.07.2020 -5.08 -10.039 09.07.2020 -5.08
BTRANS -8.539 14.08.2018 -5.08 - - -5.08

**: It is significant at 5% level.

According to the intercept and trend-breaking model C results obtained from the Zivot-Andrews 
unit root test, it was determined that the BENERG and BTRANS variables are stationary at the I (0) 
level. However, the BPRICE variable is not stable at the level, but it is found to be stationary at the 
I (1) level. In addition, when the break dates obtained from the ZA unit root test were examined, it 
was observed that the movements in the ordinary political and economic policies that occurred on 
these dates caused the breaks.

In this part of the study, the causality between the bitcoin prices, energy consumption of the bitcoin, 
and bitcoin transaction volume are analyzed by the asymmetric causality test introduced into the 
literature by Hatemi-J (2012). Hatemi-J asymmetric causality test was performed with the help of 
the Gauss 10 econometric analysis package program. The findings related to the analysis are given 
with the (+) and (-) symbols in a way that positive and negative causality can be seen. In addition, 
both variables included in the model were examined as both dependent and independent variables.

According to the results of the Hatemi-J asymmetric causality test (Table 4), which investigates the 
causality relationship between the cumulative positive and negative changes of the variables, it was 
found that there were two-way partial causality relationships among the BENERG, BPRICE and 
BTRANS at the 5% significance level.

According to the results of the Hatemi-J asymmetric causality test (Table 4), which investigates the 
causality relationship between the cumulative positive and negative changes of the variables, it was 
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found that there were two-way partial causality relationships among the BENERG, BPRICE and 
BTRANS at the 5% significance level.

According to the results of the Hatemi-J asymmetric causality test (Table 4), which investigates the 
causality relationship between the cumulative positive and negative changes of the variables, it was 
found that there were two-way partial causality relationships among the BENERG, BPRICE and 
BTRANS at the 5% significance level.

Table 4: The results of Hatemi-J Asymmetric Causality Analysis
Direction of Causality Wald Statistics Bootstrap Critical Values

%1 %5 %10

BENERG (+) > BPRICE (+) 5.985 18.109 9.892 6.935

BENERG (-) > BPRICE (-) 11.036** 17.391 9.974 7.100

BPRICE (+) > BENERG (+) 16.039** 17.183 9.680 7.004
BPRICE (-) > BENERG (-) 16.122** 16.879 9.855 6.866
BENERG (+) > BTRANS (+) 3.309 21.262 10.376 6.961
BENERG (-) > BTRANS (-) 3.305 19.743 10.271 6.880
BTRANS (+) > BENERG (+) 5.121 18.903 10.014 6.929
BTRANS (-) > BENERG (-) 5.156 18.083 10.257 7.210
BTRANS (+) > BPRICE (+) 8.328** 12.853 8.301 6.494
BTRANS (-)> BPRICE (-) 7.084 12.954 8.245 6.404
BPRICE (-)> BTRANS (+) 6.164 12.473 8.029 6.263
BPRICE (-) > BTRANS (-) 7.561 12.382 8.194 6.508

** It is significant at 5% level.

According to the results of the Hatemi-J asymmetric causality test, which investigates the causality 
relationship between the cumulative positive and negative changes of the variables, it was found that 
there were two-way partial causality relationships among the BENERG, BPRICE and BTRANS at the 
5% significance level.

According to the results of the equation in which a positive causality relationship was tested from the 
BENERG to the BPRICE, the Wald test statistic value (5.985) was found to be not significant because 
it was less than the bootstrap critical value (9.892). H0 hypothesis was accepted and the H1 hypothesis 
was rejected. Also, in another equation where negative causality is tested for the same variables, the 
Wald test statistic value (11.036) is found while the bootstrap critical value is 9.974. It is significant 
because Wald test statistic value is higher than the bootstrap critical value. According to the results 
of the equation in which a positive-negative causality relationship is tested from the BPRICE to 
BENERG was observed that both a positive and a negative causality relationship. It was found that 
BPRICE affected BENERGY at a 5% significance level. H0 hypothesis was rejected, H1 hypothesis 
was accepted.
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On the other hand, according to the results of the equation in which a positive and negative causality 
relationship is tested from the BENERG to BTRANS was tested, the Wald test statistic values less 
than bootstrap critical values. It couldn’t be reached the 5% significance level. From BTRANS to 
BENERGY. H0 hypothesis was accepted, H1 hypothesis was rejected. The findings indicate that there 
is no one-way or two-way causality relationship between BTRANS and BENERGY.

However, a partial causality relationship has been identified between BTRANS and BPRICE. Only one 
causality effect was determined from the 4 equations established between BTRANS and BPRICE. In 
the equation where positive causality was tested from the BTRANS to BPRICE the Wald test statistic 
value (8.328) is found while the bootstrap critical value is 8.301. It was found significant because 
Wald test statistic value is higher than the bootstrap critical value. H0 hypothesis was rejected, H1 
hypothesis was accepted. Apart from this, the causality relationship could not be determined for 
other equations established from BPRICE to BTRANS.

Another method, which used in this study, is the Toda-Yamamoto test, the basic hypothesis and 
alternative hypothesis can be discussed as follows.

H0: The X variable is not the Granger cause of the Y variable.

H1: The X variable is the Granger cause of the Y variable.

The success of the Toda-Yamamoto causality test is directly related to the correct determination of 
the value of the series (dmax) and (k) in the model.

Table 5. Toda-Yamamoto Causality Test Results
Dependent 
Variable

Independent 
Variable dmax k Chi-Square Test 

Statistics Probability Causality and Direction

BPRICE BENERGY 9 17.69205 0.0389 BENERGY => BPRICE
BTRANS 9 6.534878 6.534878 BENERGY ≠> BTRANS
BENERGY BPRICE 9 30.72404 0.0003 BPRICE => BENERGY
BTRANS 2 0.072714 0.9643 BPRICE ≠> BTRANS
BENERGY BTRANS 9 5.730869 0.7665 BTRANS ≠> BENERGY
BPRICE 2 4.459055 0.1076 BTRANS ≠> BPRICE

**: It is significant at 5% level.

The optimal lag length was determined according to the criterion SC, dmax = the maximum 
stationarity level according to the unit root test of Lee Strazicich, k = VAR denotes the lag length. All 
variables are evaluated in equations as both dependent and independent variables.

At the end of the analysis, it was obtained partial meaningful relations in all. The causality relationship 
with a 5% significance level was realized from the BPRICE to BENERGY. It was found the causality 
relations from BENERGY to BPRICE. It is seen that the H0 hypothesis is rejected, H1 hypothesis is 
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accepted. However, there was no causality relationship in the rest of the equation. It was seen that the 
established H1 hypothesis is accepted. The H0 hypothesis is rejected.

5. Conclusion

The 21st century has been a period of anxiety regarding the use of traditional currencies due to 
their sustainability. Many reasons cause the emergence of this situation. Especially these reasons 
can be counted as technological developments, differentiation of the needs of today’s people and 
globalization. But most of all, with the strengthening of the dominant currencies in the global 
markets, the currencies of other countries, especially the developing countries, rapidly lose their 
competitiveness. Based on these and similar reasons, the use of cryptocurrency has become 
increasingly common. The first and most popular of these cryptocurrencies is Bitcoin. Since it is an 
energy-based creation process, unlike traditional money, it is closely related to energy consumption. 
Therefore, in this study, bitcoin energy consumption, bitcoin price, and transaction volume were 
investigated. In this direction, analysis was carried out using 2 different causality tests using daily 
data between 2017 February-2021 February.

According to the findings obtained from the study conducted, it was seen that the results of both 
causality tests confirm each other. According to the Hatemi-J Asymmetric causality test results, 
while positive shocks in bitcoin energy consumption do not have a significant effect on positive 
shocks of bitcoin price, negative shocks are significantly effective. In other words, while increasing 
energy consumption for bitcoin does not affect the price, the decrease in energy consumption has a 
causal effect on the decrease in prices. In the equations investigating the relationship between bitcoin 
energy consumption and bitcoin price, Toda-Yamamoto Causality Test results revealed two-way 
causality between bitcoin energy consumption and bitcoin prices. On the other hand, no causality 
relationship has been found between bitcoin energy consumption and bitcoin transaction volume. 
This result was the same in every test performed. Although not supported by the Toda-Yamamoto 
test results, according to the Hatemi-J asymmetric causality test results, it has been observed that the 
positive change in bitcoin transaction volume affects the positive change in bitcoin prices weakly.

This research is the causal relationship between Bitcoin electricity consumption and price in the 
literature. This study finds evidence of a relationship between the Cambridge Bitcoin Electricity 
Consumption Index and price. This evidence shows that when Bitcoin electricity consumption 
decreases, there will be a price decrease. Therefore, market actors will be able to use electricity 
consumption as a leading indicator in their investment analysis. On the other hand, a significant 
relationship was found between Bitcoin electricity consumption and transaction volume, similar to 
the study of Schinckus et al. (2020). Since this relationship is quite weak, it does not contain sufficient 
data for analysis.
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