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Abstract. Cardiovascular disease (CVD) is one of the most common health

problems that are responsible for one-third of all deaths around the globe.
Although X-Ray angiography has deficiencies such as two-dimensional (2D)

representation of three dimensional (3D) structures, vessel overlapping, noisy

background, the existence of other tissues/organs in images, etc., it is used as
the gold standard technique for the diagnosis and in some cases treatment of

CVDs. To overcome the deficiencies, great efforts have been drawn on retrieval

of actual 3D representation of coronary arterial tree from 2D X-ray angiograms.
However, the proposed algorithms are based on analytical methods and enforce

some constraints. With the evolution of deep neural networks, 3D reconstruc-
tion from images can be achieved effectively. In this study, we propose a new

data structure for the representation of objects in a tubular shape for 3D re-

construction of arteries using deep learning. Moreover, we propose a method
to generate synthetic coronaries from data of real subjects. Then, we validate

tubular shape representation using 3 typical deep learning architectures with

synthetic X-ray data we produced. The input to deep learning architectures is
multi-view segmented X-Ray images and the output is the structured tubular

representation. We compare results qualitatively in terms of visual appearance

and quantitatively in terms of Chamfer Distance and Mean Squared Error. The
results demonstrate that tubular representation has promising performance in

3D reconstruction of coronaries. We observe that convolutional neural net-

work (CNN) based architectures yield better 3D reconstruction performance
with 9.9e-3 on Chamfer Distance. On the other hand, LSTM-based network

fails to learn the coronary tree structure and we conclude that LSTMs are not
appropriate for auto-regression problems as depicted in this study.
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1. INTRODUCTION

Cardiovascular disease (CVD) is one of the serious health problems which may lead
to death if not treated appropriately. According to the research conducted by World
Health Organization (WHO), it is reported that an estimated 17.9 million people
die (31% of all deaths worldwide) each year from CVDs [1]. Precise diagnosis and
treatment have the potential to increase the quality of life of patients and decrease
the rate of deaths. There exist many imaging methods utilized for the diagnosis of
CVDs such as Magnetic Resonance Imaging (MRI), Digital Subtraction Angiogra-
phy (DSA), Computed Tomography Angiography (CTA) and XRay Angiography
(XRA). Among them XRA imaging modality is a gold standard technique used
in clinics [2, 3]. However, XRA provides 2-dimensional (2D) images to monitor
blockages, aneurysms, narrowing, malformations and other blood vessel problems
in veins, arteries and organs in screens. Interventional cardiologists capture images
from different views of angle [4] and examine these images to make a diagnosis.
They decide on treatment planning by investigating the anatomical features of ar-
teries. In some cases, it is possible to treat blocked vessels during the angiogram,
but further examination is recommended after surgery to diagnose a variety of vas-
cular problems including aneurysm, vascular malformations, deep vein thrombosis,
aortic arc (problems in the arteries that branch off the aorta), peripheral artery dis-
ease and renovascular conditions [5]. These tasks are not trivial due to the following
factors: (1) The images are generally in low quality and contrast; (2) XRA imaging
is limited by inherent 2D representation of 3D structures. It creates 2D projec-
tion images and the projection operation causes a substantial amount of 3D/4D
anatomy information of the coronary artery to be lost. (3) Cardiologists need to
combine all images mentally in their minds to resolve the problem and its location;
(4) the accurate diagnosis heavily relies on the experience of cardiologists, and (5)
this creates a subjective evaluation; (6) Finally, the procedure of X-Ray imaging is
not convenient to be repeated multiple times because it needs surgical intervention
and injection of contrast (radioactive) material directly to arteries. Although tack-
ling these problems manually is possible, it takes hours of processing and evaluation
for each patient. It is a cumbersome, repetitive and operator-dependent task. De-
creasing intra or inter-operator variability and improving the quality of diagnosis
in terms of time and accuracy is possible with an automated tool. In this manner,
a system generating 3D model of heart vessels can provide objective, reproducible
and relatively easier evaluation. Such a system offers a new and accurate approach
in diagnosis and has the potential to guide clinical decisions. Therefore, the de-
velopment of automatic and accurate vessel-tree reconstruction from angiograms is
highly desirable. The aim of this study is to develop a fast, robust and automated
deep-learning (DL) tool for 3D reconstruction of coronary artery tree from X-Ray
angiograms to provide clinical assistance.

3D reconstruction with deep learning methods is a topic of high interest and
researchers improve algorithms and data structures as the number of 3D data-sets
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increases. We identify that previous works have only focused on analytical solutions
for 3D reconstruction of coronary arteries as reviewed in Section 2. Although 3D
reconstruction can be achieved effectively using deep learning, there is no 2D or 3D
publicly available coronary artery data-set in literature. In this paper, we present
a synthetic 3D data-set (5000 left, 5000 right coronary artery) and make following
contributions:

• We propose a novel data structure for the representation of 3D tubular
shapes.

• We have validated that our data structure works well in 3D reconstruction
of coronaries using 3 basic deep networks both qualitatively and quantita-
tively.

• We introduce a method to generate synthetic 3D coronaries from 3D com-
puterized tomography data of real subjects,

• We show deep networks can be utilized in 3D reconstruction of coronaries.
This is the first study that uses DL in 3D reconstruction of coronaries,

• We demonstrate that long-short-term-memory (LSTM) is not a proper
choice for auto-regression problems as in [6],

• The proposed method has the potential to be used in clinics due to its
decent running-time.

The rest of the paper is organized as follows: Section 2 presents related work.
Section 3 introduces the materials and proposed method. In Section 4, experimental
results are presented. Finally, we draw our conclusions, discuss the limitation of
the work and mention future directions in Section 5.

2. Related work

There are various 3D coronary reconstruction methods that stem from different
types of coronary imaging systems. The studies presented in [3, 7–13] utilize tra-
ditional (single-plane) XRA and [14–18] utilize biplane XRA. We focus on these
XRA methods and examine them into 2 main categories based on the technique
they follow: (1) Calibrated and (2) non-calibrated (calibration-free) reconstruction.
Then, we continue to present learning based methods specifically. Since 3D recon-
struction of coronary arterial tree with DL has not been addressed in the literature,
we review DL-based methods for only 3D object reconstruction. We present them
in groups according to the 3D representation they use.

In calibrated methods, camera calibration matrix is formed in order to map
points in 3D to their corresponding 2D projections. Calibration parameters are
estimated by optimizers [3,9–11] or using the phantom object on which metal balls
are attached [19]. Centerlines [7–9, 14] or corresponding 2D points [3, 11] are used
in determining calibration parameters and estimating 3D model of coronary artery
tree. [3] and [9] follow the same approach in finding external parameters of the cam-
era (R: rotation, t: translation) using constrained nonlinear optimization algorithm
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given five or more correspondence points. The works [9–11,16] use epipolar match-
ing and triangulation methods during 3D reconstruction of coronaries after calibra-
tion. Apart from these studies, [18] utilizes bundle adjustment method and [13,20]
utilize graph-cut based sparse stereo method for 3D reconstruction. The works
of [7,8] use deformable model and update contours using active contour algorithms
with back-projection external energy. Similarly, [3] proposes active contour model
and [14] uses Fourier deformable model with projective external energy. Although
most of the studies assume heart is rigid during 3D reconstruction, [3, 13, 14, 17]
include motion caused by respiration and heartbeat into their methods and obtain
4D model of coronary artery tree. In [8,10,11,13,15], X-ray images are synchronized
using electrocardiography (ECG) recordings to ease 3D reconstruction process.

Calibration-free solution of [18] utilizes Random Sample Consensus (RANSAC)
[21] method and eight-point algorithm to estimate the fundamental matrix for
3D reconstruction. In this way, the method internally achieves self-calibration in
XRA image sequences. RANSAC method produces reliable correspondences during
matching of centerline points. The work of [12] does not require calibration and
uses a non-linear optimization algorithm to estimate projection matrix directly by
making some assumptions on rotation of C-arm. The method tries to minimize the
error between centerline points and back-projection of 3D reconstructed points.

It is clearly seen that classical 3D reconstruction methods depend on mathemat-
ical derivations between 2D and 3D geometry using some assumptions (pin-hole
camera model). This process requires camera parameters to be known or estimated.
For the ill-posed situations, where camera parameters are not known, feature corre-
spondences are utilized to achieve self-calibration [18]. However, recent 3D recon-
struction literature shows that objects can be reconstructed without calibration by
the utilization of deep learning methods. Tremendous amount of progress has been
drawn in last 5 years in learning-based 3D reconstruction. The problem remains
challenging because there is not enough 3D data for training and there are many
ways to represent 3D models such as point clouds, meshes, volumetric grids (voxels),
etc. The proposed methods change according to the representations of 3D models.
Moreover, although DL based methods are not utilized in the 3D reconstruction of
arteries, in this part we focus on DL based object reconstruction methods. Thus, we
divide 3D object reconstruction literature into 4 main categories based on their 3D
representations as following: (1) point-cloud [22–26], (2) volumetric grids [27–34],
(3) polygonal mesh [35,36], (4) other specific data structures [25,37,38].

Point cloud representation is one of the most popular object representation tech-
niques in computer graphics and computer vision. Data is simple to read, write
and interpret in this format. However, the number of points should be limited if
this format is used in deep learning architectures due to pre-determined output
size. CAPNet is introduced in [22] and method uses an encoder-decoder architec-
ture to obtain point cloud reconstructions from 2D image(s). Arbitrary views of
reconstructed point clouds are projected onto 2D plane to refine point clouds with
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known camera parameters. Fan et al. [23] propose a network, PointOutNet, for
generating 3D objects from a single image by obtaining its own conditional shape
sampler. The output shape is 1024x3 in PointOutNet. Zamorski et al. [24] propose
adversarial auto-encoders to learn 3D latent space of compact representation of 3D
point clouds and generate 3D shape out of it. In [25], a deep learning method is
proposed for reconstructing 3D shapes from 2D sketches in the form of line draw-
ings. The network produces depth and normal map of input sketches and these
outputs are transformed into a dense point cloud representing a 3D reconstruction
of the input sketch. In [26], neural networks are trained to produce corresponding
depth maps and silhouettes from input images. From these silhouettes and depth
maps 3D point cloud is generated and refined.

Volumetric grid representation is generally preferred in the related literature
because outputs of deep learning architectures are definite in terms of size. In
this method, objects are placed into a 3D grid and grid size is constant. In [27],
a recurrent network based solution is proposed for 3D object reconstruction from
single or multi-view images. The architecture, called 3D-R2N2, takes a 127x127
input image and generates features from that image using auto-encoder network.
The output of auto-encoder network is fed into gated recurrent unit (GRU) based
recurrent network to hold necessary features in its internal memory. Finally, 3D
reconstruction of arbitrary viewpoints of images is achieved in 3D occupancy grid
(32x32x32 voxel grid) with a decoder network. Training and testing are achieved
using ShapeNet [39], PASCAL VOC 2012 [40] and online 3D databases. In [32],
an enhanced version of 3D-R2N2 is proposed by changing regular voxel values into
weighted representation. In weighted representation, voxels are defined as integer
in the range of (-53, +53) instead of 0 and 1. Neighbor voxels are taken into account
with 3x3x3 kernel filter in their representation. It is claimed that training time is
also improved in this way [32]. [28] and [29] propose deep learning architecture using
Octree [135] structure for obtaining higher resolution of a 3D model in grid voxel
representation. By using Octree, 3D models can be generated efficiently in terms of
memory and calculation because the architecture does not have cubic complexity
for 3D object (for instance:256*256*256 or 512*512*512). The neural network
learns Octree structure in [29]. Wang et al. [31] design O-CNN, a novel octree
data structure, to efficiently store the octant information occupied by 3D surfaces.
The surface of objects are predicted at different scale of voxel blocks with octrees
in [33] by using an encoder-decoder network. In order to incorporate the physics
formations such as perspective geometry and occlusion, Markov Random Fields
with ray-potentials are explicitly modeled with CNN in [34]. Yan et al. propose
an encoder-decoder network for 3D object reconstruction (output size 32*32*32)
without 3D supervision by including perspective projection in the loss function [30].
In this study, the intrinsic and extrinsic parameters are known for the camera.
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Polygonal mesh representation is another format used mostly in computer graph-
ics, games and animations. Wang et al. [35] generate meshes by deforming an el-
lipsoid into the desired shape from a single color image using convolutional neural
network (CNN). Distance between camera and objects are assumed to be fixed.
Pontes et al. [36] find the similar objects in the image from the 3D database using
classification index and deform this object with the parameters that are produced
using neural network. The method can reconstruct 3D shape of the object from sin-
gle image. We include other 3D representations into problem specific part because
these are mostly data-specific formats. For instance, [37] utilizes encoder-decoder
architecture for constructing RGB+D of a given single image view of a car or a
chair. Point cloud and mesh are generated from multi-view RGB+D output of
the network. They train their network with ShapeNet [39]. Lun et al. [25] pro-
pose a deep learning method for automatically translating hand-drawn sketches
into 2D images representing surface depth and normal across several output views.
Encoder-decoder network is utilized for generation of 12 normal maps and corre-
sponding depths. 3D point cloud and polygonal mesh of object are obtained by
fusing these depth and normal predictions later. A relatively new study presented
in [38], introduces 3D representation of an object with defining 64D vector. The
vector makes a 3D object predictable from 2D images.

3. Material and Methods

Three-dimensional reconstruction itself is a challenging problem due to various re-
quirements and constraints. The algorithms proposed in the literature follow similar
analytical methods like finding correspondences between images, estimating cam-
era parameters, using epipolar constraints, etc. as mentioned earlier in Section 2.
There are many parameters in analytical solutions. On the other hand, deep learn-
ing architectures with appropriate data structures can eliminate the parameters
that analytical methods use.

In this study, we propose a simple data structure for tubular shaped objects
and validate this representation in reconstruction of coronaries. To the best of our
knowledge, this is the first study that employs deep learning in the reconstruction
of coronary arteries. Moreover, we present a method to generate a synthetic data-
set and make it publicly available for researchers. This section presents details of
synthetic data-set generation and proposed data structure along with some simple
deep networks.

3.1. Synthetic 3D Data Generation. Deep network architectures require plenty
of labeled training data in order to learn input and output relationships. If the num-
ber of elements in the training set is lower, the network memorizes input-output
relation, called overfitting. In this case, the network performance (the quality of
output) degrades in tests. To generalize network for better test results, training
should be accomplished using a relatively large data-set. Thus, we randomly gen-
erate 10000 3D models from real coronaries of nine subjects from [41]. We also
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generate centerlines and corresponding radius in order to use them in the proposed
method.

Figure 1. Coronary arteries of one of the subject in [41]. Branches are shown on the
left and corresponding radii are shown on the right. The units are in mm for radii.

Left coronary artery (LCA) and right coronary artery (RCA) are branched off
from the aorta to supply blood to the different parts of heart muscles. White colors
on the left in Fig. 1 show aorta (Ao), red colors show main RCA branch and pink
colors show the start of LCA. Typically, X-Ray angiogram is applied to one side of
the arterial tree. Thus, we separate LCA and RCA branches during generation of
synthetic data-set. In this way, networks can specifically learn anatomical proper-
ties of LCA and RCA structures. Another advantage of separating main branches
is that the output size of the network becomes smaller. This will yield less compu-
tation and faster prediction time. Later, the combined version of the arterial tree
can also be produced using the same logic presented here.

(a) (b) (c) (d)

Figure 2. Some of the branching patterns of coronary arterial tree. (A) and (B)
branches of left main (LM) and left circumflex (LCx) arteries on LCA. (C) and (D) are
RCA and the acute marginal branch (M1) on RCA.

We do not utilize the actual 3D data (centerline and radius) from [41]. We
create random vessel trees by selecting one of the corresponding branches from 9
subjects. Additionally, some of the branches follow a similar path and we add them
to the same group to obtain a random pool. We determine similarities by looking
at visually multiple samples of branches. Vessels with similar patterns are gathered
into the same group. In this way, we increase the variety of coronary trees that can
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be encountered in real cases. Example branching patterns for some of LCA and
RCA branches from 9 subjects can be examined in Fig. 2.

(a) (b) (c) (d)

Figure 3. The coronary trees synthetically produced from our method. (A) shows 3D
centerline points of (B) for LCA. (C) shows 3D centerline points of (D) for RCA.

We introduce more randomization to the vessel generation procedure to expand
diversity of coronaries. There is a possibility to deviate 3D coordinates of center-
line points and their corresponding radii. Some branches are also determined to be
added in the coronary tree with an 80% possibility from the related random pool.
We also add the possibility to change the distance between two consecutive center-
line points. In this way, we can produce various coronary vessel forms that may
resemble real coronary trees. It is a very low possibility to generate the same vessel
tree in this configuration. Some example outputs from vessel generating software
are illustrated in Fig. 3 with their 3D centerlines.

In order to obtain 3D model of coronaries, we perform a sampling operation
around the center and corresponding radii. Since this process requires vector op-
erations in 3D space, we provide implementation details of tubular shaped rep-
resentation and its transformation into 3D objects in Appendix A. Once the 3D
coronary is obtained, 2D images of the model should be produced from different
views. Simulating C-arm machine behavior to generate images similar to X-Ray
angiograms is described in detail in Appendix B.

3.2. Proposed Networks. We propose 3 deep learning-based architectures for 3D
reconstruction: (1) Multi-view fully CNN, (2) Time distributed auto-encoder CNN
and (3) Auto-encoder followed by LSTM. The input to the networks is multi-view
coronary vessel tree and the output is the sequential data structure we proposed
for tubular shapes (see details in Appendix A).

3.2.1. Multi-view CNN. We propose fully CNN network as shown in Fig. 4 for the
construction of 3D synthetic coronaries. In this architecture, multi-view images are
provided to the network as channels. Thus, we name it as Multi-view Fully CNN
(MvFCNN). We add residual connections to carry features from previous layers to
deeper layers. This approach generally prevents loss of information and performs
better performance on the given task. The convolution filter size for each layer for
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Figure 4. Multi-view fully CNN 3D reconstruction network. Activation function
followed by each 3x3 convolution layer is Leaky-ReLU. Gray and orange arrows show
residual connections and down-sampling with strided convolution (s=2), respectively.

MvFCNN architecture is 3x3. Downsampling is achieved using convolution opera-
tion with a stride of 2. In this way, the architecture continues to update weights
while shrinking the size of the input (or embedding information from inputs) in
intermediate layers. We utilize residual connections to transfer hierarchical repre-
sentations to deeper layers of the network. In the end, we utilize fully connected
layer to transform embedded information into the data structure we defined for the
tubular shapes. Finally, we convert tubular shape representation into 3D objects
using some math described in A.

3.2.2. Time-distributed Auto-encoder CNN. We use the same MvFCNN architec-
ture of the previous section, but modify input and output layers to build a larger
network as shown in Fig. 5. The differences are that (1) input images are separately
supplied to the network instead of giving them as channels and (2) we remove the
fully-connected layer at the end. In this way, each image is encoded into a feature
space with the same auto-encoder. The features coming from different images are
combined and used to produce our structured output with fully-connected layer.
Fig. 5 visualizes this process clearly. In this figure, images of the same coronary tree
are denoted as X1, X2, . . . , Xn. These images are supplied to the same network to
produce corresponding embedded features E1, E2, . . . , En. Finally, embedded fea-
tures are fed into a dense layer to produce our structured output.

For simplicity, we abbreviate time-distributed auto-encoder network as “TDAEn-
Dense”. In this naming convention, TD stands for time-distributed, AEn stands
for auto-encoder and Dense is the final layer.

3.2.3. Auto-encoder LSTM Decoder. We use an auto-encoder network to embed
features into a latent-space, and pass these features into memory cells of LSTM to
hold necessary information that is coming from the current input. We remove the
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Figure 5. Time-distributed auto-encoder network. Input images are provided to the
network in series.

fully connected part of the network in Fig. 5 and replace it with LSTM. In order
to extract embedded information in LSTM cells, we place a decoder network at the
end of LSTM. In this configuration, LSTM learns to hold important features in its
internal memory and updates its hidden state according to incoming inputs. The
network is abbreviated as En-LSTM-Dec in this study. The LSTM cell size is set
to 1500.

Figure 6. The decoder part for 3D reconstruction network.

The decoder part plays an important role in the architecture because the entire
input sequence is now represented in LSTM’s memory cells as a fixed-length vector.
This encoded vector should be transformed into desired output sequences. The
intuition here is that the decoder learns this complex representation and extracts
the embedded information that LSTM holds. Thus, the output of LSTM is provided
to the input of the decoder part in Fig. 6 to decode the embedded information
within it.

3.3. Performance Measures. We evaluate the performance of 3D reconstruction
predictions for 3D deep network architectures using Chamfer Distance (CD). It is
utilized in ShapeNet’s [39] shape reconstruction challenge. However, this measure
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works with point cloud representation. Therefore, we use center points in our
structured data definition of 3D tubular objects for quantitative comparisons. CD
is the evaluation criterion for estimating 3D points in our data representation.
However; our networks also predict the radius of each point. To compare network
performance quantitatively, we use mean squared error (MSE) to evaluate average
error on the radius as follows:

ER(r, r̃) =
1

M

1

N

∑
s

∑
i

(rsi − r̃si)
2 (1)

where M is the number of test samples, N is the number of points in sample s, rsi
and r̃si are the reference (ground-truth) and predicted radius values in test sample
s for the point at i.

4. Experimental Results

In this section, we show the validation of our 3D reconstruction methods using syn-
thetic data-set we produced from real subjects as mentioned earlier in Section 3.1.
We share the results of several experiments conducted on networks and compare
their reconstruction performances in terms of CD and MSE. We present network
comparisons under three subsections. The first section compares predictions quanti-
tatively using statistical measures. The second section compares them qualitatively
and finally, the last section compares the average running time.

4.1. Quantitative Comparison for 3D Reconstruction. We quantify the per-
formance of each network proposed for multi-view 3D reconstruction of coronary
arteries and report the results in terms of CD and MSE. CD is used for the eval-
uation of center-line points in 3D and MSE is used for the evaluation of radius
estimations. The lower values of both metrics indicate better 3D reconstruction
that networks estimate.

There are 3 different 3D reconstruction networks described in Section 3.2. Table
1 shows the results of each network. In order to show network comparisons fairly
and clearly, we present results with statistical measures; namely, mean (µ) and
standard deviation (σ).

Table 1. Reconstruction performances of networks proposed in this study.

Model Name
Chamfer Distance Radius Error

µ σ µ σ
MvFCNN 0.00998328 0.00299526 0.00000580 0.00000226
TDAEn Dense 0.03288964 0.02404985 0.00014654 0.00039439
En LSTM Dec 1.54436864 0.17509677 0.29157797 0.15928418

As shown in Table 1, MvFCNN outperforms others. The second architecture
which achieves relatively good performance is TDAEn Dense. These two architec-
tures have no memory structure and data is provided explicitly as part of their
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input. However; in LSTM-based architecture, data is provided in series and it is
expected to remember past observations. We observe that the architecture with
internal memory (LSTM) have the largest errors in both metrics. The reasons why
LSTM-based network performs poorly on 3D reconstruction might be that (1) the
number of epoch or (2) memory units are not enough (it was 500 epoch and 1500
memory unit for LSTM in this study) for them to learn hidden representations or
(3) they are not suited for auto-regression type problems as stated in [6]. Increas-
ing the number of training epochs or using a stack of LSTMs may have improved
the results but the network sizes are quite large as in the current configuration.
Prediction time increases as the number of parameters are increased. Thus, we
do not add more layers to memory-based network. We perform an additional test
by increasing the number of units in LSTMs to 3000, but it does not improve the
reconstruction performance for at least learning the vessel tree structure.

(a) Ground-Truth (b) MvFCNN (c) TDAEn Dense (d) En LSTM Dec

Figure 7. The prediction of proposed networks for qualitative comparisons (test data
o00015). Rows show the same object from different views.

4.2. Qualitative Comparison for 3D Reconstruction. We depict the recon-
struction performances of each network in Fig. 7. It is clear from the figure that
LSTM-based network produces worse predictions than CNN based networks. We
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observe that they fail to learn to estimate 3D positions of centers and corresponding
radius of coronaries. The reasons why LSTM-based networks failed are discussed
previously in Section 4.1.

If we compare predictions qualitatively, we observe that MvFCNN and TDAEn Dense
networks perform well on 3D reconstruction. There is no difference visually worth
mentioning but quantitative comparison in Table 1 shows that MvFCNN produces,
on average, 3.3 times better than TDAEn Dense in CD metric and 25.27 times
better in radius estimates. En LSTM Dec has the worst 3D reconstruction perfor-
mance. It fails to construct the structure of coronary artery anatomy (see Fig. 7).
We consider this is because LSTMs are not appropriate choice for auto-regression
type problem.

4.3. Execution Time. The experiments for running time have been implemented
on two Linux-based machines. The first one is a notebook computer with the
hardware specifications: Intel(R) Core (TM) i7-4700HQ CPU@2.40GHz and 16GB
1600 MHz DDR3 RAM. We use this machine for testing CPU-based platforms.
The second one is a server machine where training is achieved. The hardware
specifications of this machine are as follows: Xeon(R) CPU E5-2667v4 (3.20GHz)
CPU, 128GB of RAM and NVIDIA Tesla P100 Graphics Processing Unit (GPU).
We use this machine for testing GPU-based platforms.

In order to compare network complexities, the total number of trainable pa-
rameters and the number of CNN layers used in each network are shared in Table
2. TDAEn Dense appears to have the most parameters but this is because it uses
copies of network to calculate prediction and combines all results in dense layer (see
Fig. 5). Therefore, the number of parameters in dense layer increases. The latent
size for LSTM based network is 1500, however, the internal structure of LSTM is
more complex than just a single metric. It has 5 different gate calculations for
updating its memory and output. The running time complexities validates this
computational complexity as demonstrated in Table 3.

Table 2. Total number of parameters for each network.

Metric / Model Name MvFCNN TDAEn Dense En LSTM Dec
Num. of Convolutional Layers 14 20 28
Num. of Dense Layer 1 1 0
Num. of Trainable Parameters 304,201,808 626,246,480 311,528,065

We measure prediction time on test data for each network and calculate its
average over 3000 samples. Table 3 reports the average running-time on CPU and
GPU based platforms for a single prediction.

Since memory-based (LSTM) network are larger (more complex, more weights,
more calculation), it produces prediction slower than the other two networks. If we
compare run-time for different platforms, GPU based platform produces at least
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Table 3. Run-time comparison of proposed networks on CPU and GPU based plat-
forms.

Model Name CPU (seconds) GPU (seconds) Ratio (CPU / GPU)
MvFCNN 0.033588 0.001923 17.47
TDAEn Dense 0.120523 0.004286 28.12
En LSTM Dec 0.243891 0.005843 41.74

17.47 times faster than CPU based platform on average. This gain increases to
41.74 for larger and more complex deep networks. The fastest network appears to
be MvFCNN with approximately 30 and 520 predictions per second on CPU and
GPU, respectively.

5. Conclusion

In this paper, we have proposed deep-learning based 3D reconstruction method
from 2D X-Ray angiograms for coronary arterial tree. Previously, this problem is
solved using analytical methods in the related literature but such methods have
some limitations discussed earlier in Section 1. We have solved the same prob-
lem with a learning-based approach. In this study, for the first time in literature,
we demonstrate that coronary arteries can be reconstructed using 3D deep net-
works. We have proposed variations of 3D-R2N2 network [27] and multi-view CNN
based networks. 3D-R2N2 network produces voxel-grids and the resolution is very
low. It is not appropriate for our problem. Thus, we modify object representation
and present well-defined data-structure for 3D representation of objects in tubu-
lar/cylindrical shapes described in Section A. We have shown that networks can
learn this representation and show promising results. We prove the validation of
the data-structure and architectures proposed in this study for 3D reconstruction
of coronaries.

In this study, 3D reconstruction task is designed as a regression problem in which
output contains continuous values. We conduct experimental tests to quantitatively
evaluate and compare the performance of networks. We observe that CNN-based
networks yield better 3D reconstruction performances in terms of CD and MSE
metrics. The results for memory-based network (LSTM) are worse than CNN
only-based networks and memory-based network fails to construct coronary tree
anatomy. We consider this is because memory-based networks must remember
past observations thanks to their internal cells whereas CNN-based networks are
provided this data explicitly. We conclude that LSTMs are not appropriate for
auto-regression problems as stated in [6].

We show and validate our 3D reconstruction method in this study using a syn-
thetic data-set produced from real subjects. We believe that 3D reconstruction
with deep learning architecture can be improved further with the evaluation of
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technologies and development of variants of network architectures. We believe that
the topic (DL-based 3D reconstruction) becomes a trending problem shortly which
is already started with object reconstruction.

5.1. Limitations and Future Work. We consider 3D reconstruction problem
as a regression problem in this study. We train networks to estimate 6000 floating
point numbers from their inputs. This is a difficult task. Instead, a deformable
model can be used to facilitate the 3D reconstruction problem, as the anatomy of
the heart vessels is specific. This kind of approach will decrease the number of
parameters in networks and we believe that the performance will improve on 3D
reconstruction.

Secondly, one may use transfer learning method to train (fine-tuning) our net-
work on real coronary data. Since there is no publicly available X-Ray coronary
data-set, we hope this study encourages researchers to share their X-Ray angiogram
data with the community.

Vessel construction method presented in this study can also be applicable to
other forms of vessels such as retinal images. Researchers are encouraged to try
tubular shape representation in their work.
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Appendix

Appendix A. Transformation of Tubular Shapes to 3D

There are various ways to represent objects in 3D and 3D representation matters
in terms of 3D machine learning. A compatible data structure with deep learning
method can improve reconstruction performance of networks. Thus, we define a
new data structure for holding tubular shapes specifically. In this structure, the
center of circles and their radii are used to represent tubular shapes. The center
points must come sequentially to obtain the path for a continuous tubular shape
(see Fig. 8). In this way, we can find the direction of each consecutive circle using1:

n⃗ =

−−−−→
CiCi+1∥∥∥−−−−→CiCi+1

∥∥∥ =
Ci+1 − Ci

∥Ci+1 − Ci∥
(2)

The segment shown in Fig. 8 starts with its center point (C0) in 3D space and
ends with the corresponding radius (r0) of the circle centered at C0 for the first
line. We assume that this segment is continuous until the end of the segment sign
(?, ?, ?, -1) appears. We represent the end of the segment with ?, ?, ? for indicating
any value for center point and a negative value for radius (it is -1 in the example).
The direction of tubular segments can easily be derived (using Eq. 2) from the
continuity assumption in which center points must come in order (see Fig. 8).

In order to recover tubular shape, we need to sample points around centers with
a given radius as in Fig. 8. u⃗ and v⃗ vectors are on the surface of the circle and can
be derived with a little effort using equations 3, 4, 5 and 6. The variables nx and ny
in the equations show unit normal values in X and Y directions, respectively. For
deeper understanding of vectors in 3D space along with 3D reconstruction, please
have a look at this book2.

n⃗ = ⟨x, y, z⟩ (3)

1Olver, Peter J., Chehrzad Shakiban, and Chehrzad Shakiban. Applied linear algebra. Prentice
Hall, 2006

2Andrew, Alex M. ”Multiple view geometry in computer vision.” Kybernetes (2001)
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Figure 8. Tubular shape representation for one segment. Ci and ri show center and
radius for the point at location i. For sampling tubular shapes around centers (on the
right), n⃗ shows unit normal to the surface, u⃗ and v⃗ are perpendicular unit vectors lie on
the surface of the circle.

t⃗ = ⟨nx,−ny, 0⟩ (4)

u⃗ = n⃗× t⃗ (5)

v⃗ = n⃗× u⃗ (6)

We parametrize the circle using these vectors (u⃗ and v⃗) around each center point
Ci to obtain represented 3D cylindrical shape. In our tests, we sampled each circle
with 20 points. If desired, this can be increased for a better resolution of tubular
shapes. Parametrization over the angle, θ, can be achieved as follows:

Psi = (r ∗ cosθ)u⃗+ (r ∗ sinθ)v⃗ + Ci (7)

where Psi is an array of sampled points for 0 ≤ θ ≤ 2π with a step of 2π/20 and
Ci is i

th center point in the segment.

Appendix B. Multi-view Image Generation

Remembering the main goal posed at the beginning of this study, we propose
deep-learning based 3D reconstruction method for coronary arteries from 2D X-Ray
angiograms to provide an objective, reproducible clinical assistance. To achieve this
goal, we have generated 3D coronaries synthetically with the procedure mentioned
in Section 3.1. The next step is to produce multi-view images of coronaries. We
have created a tool for producing multiple images from different views of angle like
in X-Ray C-arm machine. We simulate 2 axis rotations demonstrated in Fig. 9.
The coordinates of the camera (head point of C-arm) after rotations are calculated
using spherical coordinates as follows:

⟨Cx, Cy, Cz⟩ = ⟨ρ sin(θ), ρ cos(θ), ρ sin(θ) cos(ψ)⟩ (8)
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where ρ is the distance between the camera and the geometric center of objects
(coronaries). We use Blender software3 to produce multiple-view images (n=3) of
coronary arterial tree. Since operators capture X-Ray images in variety of angles
to visualize blood vessels clearly, we use random rotations during the generation of
multi-view images.

Figure 9. C-arm rotation axis simulation. θ and ψ represent rotations in y-axis and
x-axis, respectively [42].

3www.blender.org
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