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Abstract. By using the Lp(·)−boundedness of a maximal operator defined

on homogeneous space, it has been shown that the B−maximal operator is
bounded. In the present paper, we aim to bring a different approach to the

boundedness of the B−maximal operator generated by generalized translation

operator under a continuity assumption on p(·). It is noteworthy to mention
that our assumption is weaker than uniform Hölder continuity.

1. Introduction

Nowadays, there is a big attention on the singular integral operator and maximal
operators which are defined on variable Lebesgue spaces. The problem that such
operators are bounded under which conditions is well-studied and it is the main
topic of harmonic analysis. Lp(·)−boundedness of the Hardy-Littlewood maximal
operator and singular integral operators have been investigated in [1–5].

This study is dealing with the boundedness of maximal operator generated by
the Laplace-Bessel differential operator

∆B :=

k∑
i=1

Bi +

n∑
i=k+1

∂2

∂x2
i

, Bi =
∂2

∂x2
i

+
γi

xi

∂

∂xi
, 1 ≤ k ≤ n,

which has big importance in harmonic analysis. In [8], Guliyev has obtained the
Lp,γ−boundedness of the B−maximal operator. Moreover, in [6, 12], it has been
shown that the B−maximal operator is Lp(·),γ−bounded by using the Lp(·)− bound-
edness of a maximal operator whose domain is a homogeneous space.
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In this study, we obtain that the B−maximal operator is bounded on the vari-
able Lebesgue spaces. Here, there are some difficulties while studying the theory
of variable Lebesgue spaces. One of them, the generalized translation operator
is in general not continuous on the spaces Lp(·),γ . Particularly, if p(·) is not con-
stant, then the generalized translation operator T y is not continuous on the variable
Lebesgue spaces. But, it is still possible to overcome these difficulties by taking
some regularity conditions on this exponent function. In [7], it has been obtained
that the generalized translation operator on the spaces Lp(·),γ is bounded. The
construction of the article is as follows: The first section is devoted to introduction.
In the second section, we recall some basic concepts, notations and some known re-
sults which we need throughout the paper. In the third section, we present that the
B−maximal operator on the spaces Lp(·),γ is bounded under suitable assumptions
by a different approach.

2. Preliminaries

Now, we pause to collect some basic concepts, notations and known results which
are beneficial for us.

Let x = (x′, x′′), x′ = (x1, . . . , xk) ∈ Rk, and x′′ = (xk+1, . . . , xn) ∈ Rn−k.
Denote Rn

k,+ = {x ∈ Rn : x1 > 0, . . . , xk > 0, 1 ≤ k ≤ n}, γ = (γ1, . . . , γk),

γ1 > 0, . . . , γk > 0, |γ| = γ1 + . . .+ γk, and S+ = {x ∈ Rn
k,+ : |x| = 1}. Denote by

B+(x, r) the open ball of radius r centered at x, namely,
B+(x, r) = {y ∈ Rn

k,+ : |x − y| < r}. Let B+(0, r) ⊂ Rn
k,+ be a measurable set,

then

|B+(0, r)|γ =

∫
B+(0,r)

(x′)γdx = ω(n, k, γ)rn+|γ|,

where ω(n, k, γ) = π
n−k

2

2k

k∏
i=1

Γ
(

γi+1
2

)
(γi

2

) .

We will now introduce the spaces Lp(·),γ(Rn
k,+) and recall the basic properties of

it. Let P(Rn
k,+) be the set of all measurable functions p(·) : Rn

k,+ → [1,∞]. The

elements of P(Rn
k,+) are called variable exponent functions and also let

p− := ess inf
x∈Rn

k,+

p(x), p+ := ess sup
x∈Rn

k,+

p(x).

Given p(·), the conjugate exponent function is as follows:

1

p(x)
+

1

p′(x)
= 1, x ∈ Rn

k,+.

The analog of log-Hölder continuity for variable Lebesgue spaces related to the
Laplace-Bessel differential operator is defined by the following.
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Definition 1. Given a function p(·) : Rn
k,+ → [1,∞), p(·) is called log-Hölder

continuous on Rn
k,+, if there exist constants C0, C∞ > 0 and p∞ such that for all

|x− y| ≤ 1

2
, and x, y ∈ Rn

k,+,

|p(x)− p(y)| ≤ C0

− log |x− y|
, (1)

and

|p(x)− p∞| ≤ C∞

log(e+ |x|)
, (2)

where p∞ = lim
x→∞

p(x) > 1. If (1) and (2) hold for p(·), then it is denoted by

p(·) ∈ P log(Rn
k,+), and p(·) ∈ P log

∞ (Rn
k,+), respectively.

Lemma 1. [7] Let p(·) : Rn
k,+ → [1,∞) be continuous. The followings are equiva-

lent:

(i) p(·) is uniformly continuous with |p(x) − p(y)| ≤ C0

ln |x− y|−1
for all 0 <

|x− y| ≤ 1
2 .

(ii) |B+|p−−p+
γ ≤ C1 holds for all open balls B+.

The space Lp(·),γ(Rn
k,+) is known as the set of measurable functions f such that

for a variable exponent p(·) : Rn
k,+ → [1,∞],

∥f∥Lp(·),γ(Rn
k,+) = inf

{
λ > 0 : ρp(·),γ (f/λ) ≤ 1

}
< ∞,

where

ρp(·),γ :=

∫
Rn

k,+

|f(x)|p(x)(x′)γdx.

Note that the variable Lebesgue space Lp(·),γ(Rn
k,+) is a Banach space for 1 < p− ≤

p(x) ≤ p+ < ∞.
The definition of the generalized translation operator is as follows:

T yf(x) := Cγ,k

∫ π

0

. . .

∫ π

0

f [(x1, y1)α1
, . . . , (xk, yk)αk

, x′′ − y′′] dγ(α),

where Cγ,k = π− k
2 Γ(γi+1

2 )[Γ(γi

2 )]
−1, (xi, yi)αi

= (x2
i−2xiyi cosαi+y2i )

1
2 , 1 ≤ i ≤ k,

1 ≤ k ≤ n, and dγ(α) =

k∏
i=1

sinγi−1 αi dαi [13, 14]. Notice that the generalized

translation operator is related to the Laplace-Bessel differential operator.
The definition of the B−convolution operator is as follows:

(f ⊗ g)(x) =

∫
Rn

k,+

f(y)T yg(x)(y′)γdy.
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Given a function f ∈ Lloc
1,γ(Rn

k,+), then the maximal operator associated with the

Laplace-Bessel differential operator (B−maximal operator) (see [8]) is as follows:

Mγf(x) = sup
r>0

|B+(0, r)|−1
γ

∫
B+(0,r)

T y|f(x)|(y′)γdy.

Let B+ ∈ Rn
k,+ be an arbitrary ball and f ∈ Lloc

1,γ(Rn
k,+), then define

Mγ,B+f := |B+(0, r)|−1
γ

∫
B+

T y|f(x)|(y′)γdy.

By taking supremum over all balls centered at x, one can easily observe that

Mγf := sup
B+(x)

Mγ,B+(x)f.

As mentioned earlier, the variable Lebesgue spaces Lp(·),γ(Rn
k,+) have some un-

desired properties about the generalized translation operator. In order to overcome
this problem, it is necessary to give some smoothness conditions on p(·). The fol-
lowing theorem states the necessary condition for the boundedness of generalized
translation operator.

Theorem 1. [7] Let p(·) ∈ P log(Rn
k,+) with 1 < p− ≤ p+ < ∞. Then for all

f ∈ Lp(·),γ(Rn
k,+) ∩ S ′

+(Rn
k,+) with supp FBf ⊂ {ξ ∈ Rn

k,+ : |ξ| ≤ 2v+1}, v ∈ N0,

∥T yf(x)∥p(·),γ ≤ c exp ((2 + 2vn|y|)clog(p)) ∥f∥p(·),γ ,

holds, where c > 0 is independent of v.

3. Main Results

This section is devoted to our main results. First of all we obtain some lemmas
which we need to prove that the B−maximal operator is bounded on variable
Lebesgue spaces.

Lemma 2. Let p(·) ∈ Rn
k,+ be as in Lemma 1. Then there exists a positive constant

C(p, γ) > 0 such that

(Mγf(x))
p(x)
p− ≤ C(p, γ)

(
Mγ(|f |

p(·)
p− )(x) + 1

)
, for all x ∈ Rn

k,+,

holds for all ∥f∥p(·),γ ≤ 1.

Proof. Define q(·) := p(·)
p−

, then q(·) is also as in Lemma 1. Let ∥f∥p(·),γ ≤ 1, then

ρp(·),γ(f) ≤ 1. By Theorem 1, for r ≥ 1

2
, we get

(Mγf)
q(x) =

(
|B+|−1

γ

∫
B+

T y|f(x)|(y′)γdy

)q(x)
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≤

(
|B+|−1

γ

∫
B+

(
1

p(y)
T y|f(x)|p(y)(y′)γ +

1

p′(y)
(y′)γ

)
dy

)q(x)

≤

(
|B+|−1

γ

∫
B+

1

p(y)
T y|f(x)|p(y)(y′)γdy + |B+|−1

γ

∫
B+

1

p′(y)
(y′)γdy

)q(x)

≤

(
|B+|−1

γ

∫
B+

T y|f(x)|p(y)(y′)γdy + |B+|−1
γ

∫
B+

(y′)γdy

)q(x)

≤

(
|B+|−1

γ

∫
B+

|f(x)|p(y)(y′)γdy + |B+|−1
γ

∫
B+

(y′)γdy

)q(x)

≤

(
|B+|−1

γ

∫
B+

(|f(x)|p(y) + 1)(y′)γdy

)q(x)

≤
(
|B+|−1

γ ρp(·),γ(f) + 1
)q(x)

≤
(
|B+(0,

1

2
)|−1
γ + 1

)q+

.

If 0 < r <
1

2
, then |B+|γ ≤ (2r)n+|γ| < 1, and

(Mγf)
q(x) =

(
|B+|−1

γ

∫
B+

T y|f(x)|(y′)γdy

)q(x)

≤

(|B+|−1
γ

∫
B+

T y|f(x)|q−(y′)γdy

) 1
q−
(
|B+|−1

γ

∫
B+

(y′)γdy

) 1
q′−

q(x)

≤

(
|B+|−1

γ

∫
B+

T y|f(x)|q−(y′)γdy

) q(x)
q−

≤

(
|B+|−1

γ

∫
B+

T y|f(x)|q(y)(y′)γdy

) q(x)
q−

≤

(
|B+|−1

γ

∫
B+

(T y|f(x)|q(y) + 1)(y′)γdy

) q(x)
q−

≤ |B+|
− q(x)

q−
γ 3q+

(
1

3

∫
B+

(T y|f(x)|q(y) + 1)(y′)γdy

) q(x)
q−

.
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Since,

1

3

∫
B+

(T y|f(x)|q(y) + 1)(y′)γdy ≤ 1

3

∫
B+

(T y|f(x)|p(y) + 2)(y′)γdy

≤ 1

3

∫
B+

T y|f(x)|p(y)(y′)γdy + 2

3
|B+|γ < 1,

and from Lemma 1, we obtain

(Mγf)
q(x) ≤ |B+|

− q(x)
q−

γ 3q+

(
1

3

∫
B+

T y|f(x)|q(y)(y′)γdy + 2

3
|B+|γ

)

≤ |B+|
− q(x)

q−
γ |B+|γ3q+−1

(∫
B+

T y|f(x)|q(y)(y′)γdy + 2

)

≤ |B+|
q−−q+

q−
γ 3q+−1

∮
B+

T y|f(x)|q(y)(y′)γdy + 2


≤ C0 3

q+−1(Mγ(|f |q(y)) + 2).

If one takes supremum over all balls B+, then the proof is completed. □

Lemma 3. Let p(·) ∈ Rn
k,+ be as in Lemma 1 and be constant outside some ball

B+(0, r). Then there exist a constant C(p, γ) > 0, and
h ∈ L1,∞,γ(Rn

k,+) ∩ L∞,γ(Rn
k,+) such that

(Mγf(x))
p(x)
p− ≤ C(p, γ)Mγ

(
|f |

p(·)
p−

)
(x) + h(x) for a.a. x ∈ Rn

k,+,

holds for all ∥f∥p(·),γ ≤ 1.

Proof. Define q(·) := p(·)
p−

, and q∞ :=
p∞
p−

, then q(·) satisfies the equivalent condi-

tions of Lemma 1. Let ∥f∥p(·),γ ≤ 1, then ρp(·),γ(f) ≤ 1. Split f = f0 + f1 such

that f0 := χB+
f , and f1 := χRn

k,+\B+
f . Thus, for all x ∈ B+(0, 2r),

(Mγf(x))
q(x) ≤ C(q, γ) (Mγ(|f |q(·)) + 1). (3)

Now let x ∈ Rn
k,+\B+(0, 2r). Then |x|−r ≥ 1

2
|x|, and |B+(x, |x|−r)|γ ≥ C |x|n+|γ|.

Since suppf0 ⊂ B+(x, r), and from Theorem 1, we get

(Mγf0(x))
q(x) ≤

(
sup

|x|−r<r

|B+(x, r)|−1
γ

∫
B+(x,r)

T y|f0(x)|(y′)γdy

)q(x)

≤

(
|B+(x, |x| − r)|−1

γ

∫
B+(x,r)

T y|f(x)|(y′)γdy

)q(x)
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≤

(
C |x|−n−|γ|

∫
B+(x,r)

T y|f(x)|(y′)γdy

)q(x)

≤

(
C |x|−n−|γ|

∫
B+(x,r)

|f(x)|(y′)γdy

)q(x)

≤

(
C |x|−n−|γ|

∫
B+(x,r)

(|f(x)|p(y) + 1)(y′)γdy

)q(x)

≤
(
C |x|−n−|γ|ρp(·),γ(f)

)q(x)
≤ C(q, γ)|x|−n−|γ|. (4)

Moreover, for x ∈ Rn
k,+\B+(0, 2r),

(Mγf1(x))
q(x) =

(∮
Rn

k,+\B+(0,2r)

|T yf1(x)|(y′)γdy

)q(x)

≤

(∮
Rn

k,+\B+(0,2r)

|T yf1(x)|(y′)γdy

)q∞

≤
∮
Rn

k,+\B+(0,2r)

T y|f1(x)|q∞(y′)γdy

≤
∮
Rn

k,+\B+(0,2r)

T y|f1(x)|q(x)(y′)γdy

≤ Mγ(|f |q(x))(x). (5)

By (3), (4) and (5), we obtain

(Mγf(x))
q(x) ≤ χB+(0,2r) (Mγf(x))

q(x)
+ χRn

k,+\B+(0,2r) (Mγf0(x) +Mγf1(x))
q(x)

≤ χB+(0,2r) (Mγf(x))
q(x)

+ C(q, γ)χRn
k,+\B+(0,2r)

(
(Mγf0(x))

q(x)
+ (Mγf1(x))

q(x)
)

≤ C(q, γ)Mγ(|f |q(·))(x) + χB+(0,2r)C(q, γ)

+

(
sup

x∈Rn
k,+\B+(0,2r)

∮
Rn

k,+\B+(0,2r)

(y′)γdy

)q(x)

≤ C(q, γ)Mγ(|f |q(·))(x) + χB+(0,2r)C(q, γ) + χRn
k,+\B+(0,2r)C(q, γ) |x|−n−|γ|︸ ︷︷ ︸
=:h

,

for all x ∈ Rn
k,+. The fact that h ∈ L1,∞,γ(Rn

k,+) ∩ L∞,γ(Rn
k,+) proves the lemma.

□

Now we can present our main theorem.
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Theorem 2. Let p(·) be as in Lemma 3 with p− > 1. Then Mγ is bounded on
Lp(·),γ(Rn

k,+), i.e.

∥Mγf∥p(·),γ ≤ C(p, γ) ∥f∥p(·),γ .

Proof. Since Mγ(λf) = ∥λ∥Mγf , we have ∥Mγf∥p(·),γ ≤ C, for all ∥f∥p(·),γ ≤ 1.
Since p+ < ∞, it is sufficient to illustrate ρp(·),γ(Mγf) ≤ C for all ∥f∥p(·),γ ≤
1. Let f ∈ Lp(·),γ with ∥f∥p(·),γ ≤ 1. Then ρp(·),γ(Mγf) ≤ 1. Moreover, let

q(·) := p(·)/p−. By Lemma 3, there exists h ∈ L1,∞,γ(Rn
k,+) ∩ L∞,γ(Rn

k,+) such

that (Mγf)
q(·) ≤ C(p, γ)Mγ(|f |q(·)) + h. Thus,

ρp(·),γ(Mγf) =

∫
Rn

k,+

|Mγf |p(x)(x′)γdx

=

∫
Rn

k,+

(
sup
B+

∫
B+

T y|f(x)|(y′)γdy

)p(x)

(x′)γdx

=

∫
Rn

k,+

(
sup
B+

∫
B+

T y|f(x)|(y′)γdy

)q(x)p−

(x′)γdx

=

∫
Rn

k,+

(sup
B+

∫
B+

T y|f(x)|(y′)γdy

)q(x)
p−

(x′)γdx

=

∫
Rn

k,+

(
|Mγf |q(x)

)p−
(x′)γdx

=
∥∥∥(Mγf)

q(x)
∥∥∥p−

p−,γ

≤
(
C(p, γ)

∥∥∥Mγ(|f |q(x))
∥∥∥
p−,γ

+ ∥h∥p−,γ

)p−

holds and since p− > 1, one can see that the B−maximal operator Mγf is contin-
uous on Lp−,γ(Rn

k,+). Therefore, we obtain that

ρp(·),γ(Mγf) ≤
(
C(p, γ) ∥Mγ(|f |q(x))∥p−,γ + ∥h∥p−,γ

)p−

=
(
C(p, γ) ρp(·),γ(f)

1
p− + ∥h∥p−,γ

)p−
≤ C(p, γ),

and this completes the proof. □

4. Concluding Remarks

The Hardy-Littlewood maximal operators, singular integral operators, rough in-
tegral operator, its commutators and their boundedness on the various function
spaces are crucial topics of Harmonic Analysis. In this study, we have shown that
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the B−maximal operator on the variable Lebesgue spaces is bounded under suit-
able assumptions by a different approach. The boundedness of this operator plays a
significant role in order to obtain the boundedness of the singular integral operator,
fractional integral operator and its commutators. The fractional versions of these
operators have recently become an active area of research (see [9–11,15,16]). As a
future direction of this study, one might extend to the case that the Laplace-Bessel
differential operators with coefficient such as a(x) that could be continuous or Van-
ishing Mean Oscillation functions.
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