
Abstract—There has been much interest in the development of
therapies for the prevention and treatment of tumours. Recently,
the method of oncotripsy has been proposed to destroy cancer
cells by applying the ultrasound harmonic excitations at the
resonant frequency of cancer cells. In this study, periodic dis-
turbances whose frequency tuned to the fundamental frequency
and the higher harmonics of the change in the population of
tumor cells are applied to a tumour growth model, respectively,
and the appearance of periodic behaviors in a three-dimensional
chaotic cancer model is investigated as a result of those harmonic
excitations. The numerical results show that by choosing the
appropriate values of the parameters of periodic disturbances,
the chaotic cancer model induces periodic behaviors such as
period-one and two limit cycles which may have important
implications on cancer treatment. The results also provide a view
to understanding the oncotripsy effect within the framework of
stabilization of chaos.

Index Terms—Bifurcation, cancer model, chaos, stabilization.

I. INTRODUCTION

CANCER is a disease that is caused by abnormal or
uncontrolled cell growth. Understanding the mechanisms

of tumour growth is an actively developing field among
many researchers from different disciplines. There are several
techniques that are used to perform cancer diagnosis such as
X-ray mammography, magnetic resonance imaging, ultrasound
technique, digital tomosynthesis, and microwave imaging [1–
4]. There are also many mathematical models about tumour-
immune dynamics which have been extensively studied to
provide valuable insights into the evolution of tumours. A
deterministic model in the form of second-order ordinary
differential equations governing the populations of immune
cells and the tumour cells has been proposed in [5]. There
have been many other studies on deterministic tumour-immune
models [6–11]. A bifurcation analysis has been developed
in [12] to explore the effect of immune response and the
treatment strategy of periodically pulsed therapies on tumour-
immune dynamics. Pulsed immunotherapy has been extended
and a novel hybrid model combining chemotherapy and im-
munotherapy has been proposed in [13] and the effects of
duration, dosage and frequency of combined treatment strate-
gies have been investigated on the tumour population. The
above studies have been obtained based on the deterministic
tumour-immune model. However, in recent years, stochastic
models of tumour-immune systems have been also developed.
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A tumour–immune model driven by symmetric Lévy noise has
been studied in [14]. The effects of noise intensity and stability
index have been analyzed on the tumour growth dynamics and
the numerical results showed that the effects of Lévy stable
noise lead to a decrease of the tumour cells compared with
the Gaussian noise. A stochastic mathematical model of the
coevolution of immune- and tumour cells has been proposed in
[15] by considering both interactions and phenotypic plasticity
to help guide the treatment protocols. By considering the
variability in cellular reproduction, death and the fluctuation
of chemotherapy effect, the deterministic differential equation
model has been extended to the stochastic one to analyze the
dynamics of tumour cells and immune cells under chemother-
apy in [16]. The culling rate of effector cells and the intrinsic
growth rate of tumour cells have been modeled as stochastic
processes and the effect of environmental noise on the dynamic
behaviors of the tumour-immune model has been studied in
[17]. A stochastic tumour-immune system with a combination
of immunotherapy and chemotherapy has been modeled in
[18] and the evolution of tumours has been analyzed in the
presence of environmental noise and chemotherapeutic dose.
The responses of tumour growth to different drug dosing
frequencies have been studied in [19] to improve treatment
success.

Despite the various treatment modalities in practice such
as radiotherapy, chemotherapy, immunotherapy, or their com-
bination, there is a constant search for alternative modes of
treatment for cancer. In [20] a new cancer therapy which is
referred to as oncotripsy has been proposed by applying the
low-intensity ultrasound waves at specific resonance frequen-
cies. The method is based on the differences in morphologies
and material properties between the healthy and tumour cells
to selectively target cancer cells. Since the resonant frequency
is generally obtained by geometric configurations and the me-
chanical properties of individual cells such as shape, size and
stiffness which are altered in disease then the natural resonant
frequencies of healthy cells should be significantly different
from those of cancer cells. Therefore, the natural frequency of
cells can be used as a tool for specifically targeting the cancer
cells while sparing the healthy cells. The normal and cancer
cells have been modeled as a sphere linear elastic material in
[21] and modal analysis has been carried out to determine
the natural frequencies of the cells. Frequency responses
of healthy and cancer cells to mechanical stimuli (typically
low-intensity therapeutic ultrasound) have been studied in
[22] and it has been shown that the discrimination of the
normal and tumour cells can be amplified at some ultrasound
frequencies. The influence of viscoelasticity on the oncotripsy
effect has been studied in [23]. A new perspective for cancer
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treatment has been studied in [24] based on utilizing resonance
interaction mechanisms between an applied electromagnetic
field and the resonant frequency of cancer cells. The effect of
thermodynamic resonance in the presence of electromagnetic
waves with resonant frequency has been experimentally tested
in [25] and it has been shown that cancer cell invasion and pro-
liferation can be decreased with the specific electromagnetic
field. The method of oncotripsy has been studied in a panel
of breast, colon, and leukemia cancer cell models in [26, 27]
by conducting mechanistic experiments. A three-dimensional
dynamics of the cell has been developed in [28, 29] and the
numerical experiments of the dynamic response of a cell in
the presence of ultrasound waves have been presented.

Furthermore, the interactions between tumour and immune
cells are nonlinear and extremely complicated which exhibit
many properties of chaotic systems. A simple tumour growth
model which has chaotic behavior in the parameter range of
interest has been developed in [11]. The relationship between
tumour size and the chaotic behavior of system dynamics has
been examined in [30]. The chaotic behavior has been ana-
lyzed in a stochastic cancer model in [31] in which Brownian
motion has been used to obtain the corresponding stochastic
model with the spread of cancer. As it is well known, even a
small disturbance in chaotic systems may lead to a significant
change in the nature of the system behavior.

With the above discussions, the aim of this study is to
analyze the stabilization of chaotic behavior in the presence of
some external periodic disturbances. Our research question is
therefore how the dynamics of tumour cells evolve if periodic
disturbances are applied at the natural resonant frequency of
the change in the population of tumour cells. The effects of
fundamental frequency and higher harmonics on the periodic
behavior of the cancer model have been also compared. To the
best of our knowledge, this is the first study to investigate the
effect of oncotripsy in a chaotic cancer model.

The paper is organized as follows. In Section II, the
dynamics of a chaotic cancer cell have been modeled in
the presence of periodic disturbances. In Section III, the
fundamental frequency and higher harmonics of the change
in the population of tumour cells have been calculated. The
bifurcation analysis has been carried out and the dynamic
responses of the model have been obtained numerically. The
discussions of the analysis have been presented in Section IV.

II. THE CANCER MODEL IN THE PRESENCE OF PERIODIC
DISTURBANCES AT HARMONICS

Periodic disturbances have been applied to the cancer model
proposed in [11] which is described by the system of differ-
ential equations given as:

dT

dt
= r1T (1− T

k1
)− α12TH − α13TE + g(t) + εξ(t)

dH

dt
= r2H(1− H

k2
)− α21TH (1)

dE

dt
=

r3TE

T + k3
− α31TE − d3E

where T (t) is the number of tumour cells at time t with the
growth rate of r1 and maximum carrying capacity k1. H(t) is
the number of healthy cells at time t with the growth rate of
r2 and maximum carrying capacity k2 and E(t) is the number
of effector immune cells at time t. The parameters α12 and
α13 denote the tumour cells killing rate by the healthy cells
and effector cells, respectively. The parameter r3 denotes the
effector cell production rate in response to the presence of
tumour cells. The parameter d3 is the decay rate of effector
cells and k3 is the half-saturation constant rate for immune
production. The rates of inactivation of healthy cells and
effector cells by tumour cells are given by the parameters α21

and α31, respectively.
The periodic disturbances g(t) have been applied to the

tumour growth in (1). The periodic disturbances are modeled
in the form of

g(t) =

{
Asin(2πft) , sin(2πft) ≥ 0

0 , otherwise
(2)

with amplitude A and frequency f . The positive half cycle of
periodic signals have been considered since the use of negative
half cycles can lead to the negative values of populations which
has no biological meaning. Furthermore, the negative cycles
of periodic signals have been deliberately modeled by zero
intervals which imply the rest period after each intervention.

Since the studies have shown that the impact of envi-
ronmental factors such as temperature, radiations, oxygen
and nutrition are unavoidable on the tumour growth rate,
these environmental fluctuations are represented by ξ(t) which
is Gaussian white noise satisfying the statistical properties
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = δ(t − s) and ε is the noise
intensity.

III. ANALYSIS AND NUMERICAL RESULTS

The non-dimensionalized cancer model of (1) has been
obtained by following the same rescaling in [11] and the
corresponding Itó type stochastic differential equation can be
written as

dx1 = (x1(t)(1− x1(t))− α12x1(t)x2(t)− α13x1(t)x3(t) + ...

...+ g(t)) dt+ εdW (t)

dx2 = (r2x2(t)(1− x2(t))− α21x1(t)x2(t)) dt (3)

dx3 =

(
r3x1(t)x3(t)

x1(t) + k3
− α31x1(t)x3(t)− d3x3(t)

)
dt

where W (t) is the Wiener process and the effect of changing
environmental conditions is achieved by replacing ξ(t)dt with
the increments of Wiener process dW (t) which are Gaussian
random variables.

The numerical solution of (3) is obtained by using the Euler-
Maruyama method. Table I presents the system parameters
involved in (3). The parameter values are chosen as in [11]
such that with this parameter set the system exhibits chaotic
behavior in the absence of periodic disturbances g(t) = 0 and
the environmental fluctuations ε = 0.
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TABLE I
THE PARAMETER VALUES OF MODEL (3).

α12 α13 r2 α21 r3 k3 α31 d3

1 2.5 0.6 1.5 4.5 1 0.2 0.5

The phase portrait of the system (3) for the initial conditions
(x1(0), x2(0), x3(0)) = (0.4, 0.6, 0.1) is shown in
Fig. 1 when g(t) = 0 and ε = 0. As seen from Fig. 1 the
cancer model has chaotic behavior in the absence of periodic
disturbances.

Fig. 1. Chaotic attractor with the initial condition x1(0) =
0.4, x2(0) = 0.6, x3(0) = 0.1 in the absence of periodic
disturbances and environmental fluctuations.

However, when the external periodic disturbances are al-
lowed to act during a specific period of time, the evolution
of cancer cells can be changed. In this study, in particular,
periodic signals are applied at the fundamental frequency and
harmonics of the change in the population of tumour cells
because under small periodic forces at natural frequencies,
a condition known as resonance occurs and the system can
produce a large-amplitude response. Further, the effect of
oncotripsy is discussed by analyzing how the presence of peri-
odic disturbances at the fundamental frequency and harmonics
of the change in the population of tumour cells affects the
chaotic nature of the system.

The fundamental frequency of the change in the population
of tumour cells is estimated by calculating the amplitude
spectrum of system state x1 of (3) for g(t) = 0 and ε = 0.
The amplitude spectrum has a continuous broadband spectrum
due to the chaotic nature and the fundamental frequency also
known as the first harmonic is indicated as a maximum in the
spectrum. The spectrum is also characterized by several peaks
at other relatively high frequencies which refer to the harmonic
frequencies. From the amplitude spectrum, the fundamental
frequency is estimated as 0.022 Hz and higher harmonics are
estimated as 0.0356, 0.0572 Hz, 0.069 Hz, and 0.0756 Hz,
respectively.

The responses of the system states are obtained by using the
Euler-Maruyama scheme with step size 0.01. The numerical

simulations are performed with 500000-time steps for the ini-
tial conditions of the system states x1(0) = 0.4, x2(0) = 0.6
and x3(0) = 0.1 and the noise intensity ε = 0.0001. The first
10000-time points are ignored to avoid the transient portion
of the data.

The frequency of the periodic signal is set to f = 0.022 Hz
which is the value of the fundamental frequency of the change
in the population of tumour cells. Then to determine the
values of amplitude parameter of periodic signal A at which a
qualitative change occurs in the dynamics of cancer cells, the
bifurcation diagram of the system (3) is obtained by recording
the local maxima x2 for the range of A = [0, 0.2] as shown
in Fig. 2. It is seen from Fig. 2 that when the frequency of
periodic disturbances is chosen as the fundamental frequency,
a transition occurs from chaos to periodicity in the dynamics
of the chaotic cancer model.

Fig. 2. Bifurcation diagram of model (3) with respect to the
bifurcation parameter A. The frequency of periodic signal is
chosen as the fundamental frequency of the change in the
population of tumour cells, f = 0.022 Hz.

The bifurcation diagram in Fig. 2 can be explored in more
detail by zooming into the various regions of amplitude A.
Figures 3a-3c show the zoomed plots on the particular portions
of the bifurcation diagram. It is observed that the system of (3)
exhibits rich dynamics such as period-doubling, period-halving
and chaotic regions by tuning the amplitude parameter A in
the presence of periodic disturbances with the fundamental
frequency of the change in the population of tumour cells.

Consider the bifurcation diagram given in Fig. 3a. When the
amplitude parameter A is in the range [0, 0.004), the system
has chaotic behavior. If the amplitude parameter A exceeds
some threshold levels such as A ≈ 0.004 then the chaos
disappears and a period-2 limit cycle occurs. As the amplitude
parameter A increases, the periodic solution becomes unstable
and the chaos appears again. Then consider the bifurcation
diagram given in Fig. 3b. When the amplitude parameter A
approaches 0.0230, chaos disappears suddenly and period-8
limit cycles occur. As the amplitude parameter A increases,
a very narrow chaotic window appears again with A in the
range [0.0233, 0.0240) as shown in Fig. 3b.
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Fig. 3. Bifurcation diagram: Plot of local maxima of x2 using
the amplitude of periodic signal as the bifurcation parameter.
The frequency of periodic signal is chosen as the fundamental
frequency of the change in the population of tumour cells,
f = 0.022 Hz. The amplitude of periodic signal is chosen
in the range (a) A = [0, 0.05] (b) A = [0.022, 0.0245] (c)
A = [0.09, 0.13].

After that, the transition from chaos to the period-2 limit
cycle is observed at A ≈ 0.0240 and the period-2 limit cycle
remains in the region which corresponds to the values of A in
the range [0.0240, 0.058). A period-halving bifurcation occurs
when A approaches 0.058 as shown in Fig. 2 which means
that a period-2 limit cycle disappears and a period-1 limit cycle
appears at this point.

With the increase of the amplitude parameter A period-
doubling bifurcations lead to limit cycles with period 2 and
period 4 for A ∈ [0.07728, 0.087) and A ∈ [0.087, 0.09),
respectively. When A is increased to the range [0.09, 0.126),
it can be seen from Fig. 3c that the system (3) has chaotic
behavior at a large range of parameter A, except for three nar-
row ranges [0.112, 0.1115), [0.1217, 0.122) and [0.124, 0.126)
which correspond to the limit cycles with periods 5, 6 and 8
respectively. As A approaches 0.0126 the system (3) evolves
into a periodic state through the period-halving bifurcations
which result in limit cycles with period 4 and period 2 for
A ∈ [0.126, 0.145) and A ∈ [0.145, 0.2], respectively as
shown in Fig. 2.

Table II presents the dynamical behaviors of the system (3)
with the change of amplitude parameter A which are obtained
through the bifurcation analysis. The phase portraits of the
system (3) with different amplitude values of A are shown in
Fig. 4.

TABLE II
THE DYNAMICS OF SYSTEM (3) FOR THE RANGE OF

AMPLITUDE A WHEN THE FREQUENCY IS SET TO
f = 0.022 Hz.

Range of A Attractor of the system

[0 , 0.004) Chaotic

[0.004 , 0.0125 ) Period-2 limit cycle

[0.0125 , 0.0230) Chaotic

[0.0230 , 0.0233) Period-8 limit cycle

[0.0233 , 0.0240) Chaotic

[0.0240 , 0.058) Period-2 limit cycle

[0.058 , 0.07728) Period-1 limit cycle

[0.07728 , 0.087) Period-2 limit cycle

[0.087 , 0.09) Period-4 limit cycle

[0.09 , 0.112) Chaotic

[0.112 , 0.115) Period-5 limit cycle

[0.115 , 0.1217) Chaotic

[0.1217 , 0.1222) Period-6 limit cycle

[0.1222 , 0.124) Chaotic

[ 0.124 , 0.126) Period-8 limit cycle

[0.126 , 0.145) Period-4 limit cycle

[0.145 , 0.2] Period-2 limit cycle
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. 3D phase portrait of system (3) in the presence of periodic disturbances with the frequency f = 0.022 Hz and the
amplitude (a) A = 0.064 (b) A = 0.2 (c) A = 0.13 (d) A = 0.114 (e) A = 0.122 (f) A = 0.125.
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Fig. 5. Time response of the system state x1 in the absence of periodic disturbances (a) A = 0, ε = 0 and when the periodic
disturbances are present with the frequency f = 0.022 Hz, ε = 0.0001 and the amplitude (b) A = 0.064 (c) A = 0.2 (d)
A = 0.13 (e) A = 0.114 (f) A = 0.122 (g) A = 0.125.

Time responses of the state x1 are illustrated in Fig. 5 for the
initial conditions x1(0) = 0.4, x2(0) = 0.6, x3(0) = 0.1. It is
seen from Fig. 5 that the solutions of the system have periodic
behaviors when the external periodic disturbances are applied
at the fundamental frequency with an appropriate amplitude.

In addition, to analyze the sensitivity to the initial con-
ditions, the parameters of the amplitude and frequency of
periodic disturbances are set to A = 0.064 and f = 0.022
Hz which lead to a period-1 limit cycle behavior of the
system. Then the bifurcation diagrams of the system (3)
are obtained by changing the initial condition of each state
separately as shown in Fig. 6. Each of the initial conditions
(x1(0), x2(0), x3(0)) are varied at the range [0.1, 1] while
the others are set to 0.4. It is seen from Fig. 6 that the period-
1 limit cycle behavior of the system remains unchanged with
the change of initial conditions x1(0), x2(0) and x3(0).
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Fig. 6. Bifurcation diagrams with the change of initial condi-
tions: (a) x1(0) (b) x2(0) (c) x3(0).
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The frequency of the periodic signal is set to the second
harmonics of the change in the population of tumour cells
f = 0.0356 Hz and the corresponding bifurcation diagram
shown in Fig. 7a is obtained by recording the local maxima
x2 for the range of A = [0, 0.5]. Fig. 7b shows the zoomed
plot of bifurcation diagram on the range of A = [0, 0.05]. It
can be seen from Fig. 7 that the system of (3) starts from the
chaotic state and then suddenly jumps to a periodic state at
A ≈ 0.0076. With the amplitude parameter A in the range
[0.0076, 0.5] the system presents a period-doubling bifurca-
tion followed by a period-halving bifurcation. The dynamic
behaviors of the system (3) are given in Table III when the
amplitude A is changed at the specified ranges.
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Fig. 7. Bifurcation diagram: Plot of local maxima of x2 using
the amplitude of periodic signal as the bifurcation parameter.
The frequency of periodic signal is chosen as the second
harmonic of the change in the population of tumour cells
f = 0.0356 Hz. The amplitude of periodic signal is chosen in
the range (a) A = [0, 0.5] (b) A = [0, 0.05].

Figure 8 presents the phase portraits of system (3) in the
presence of periodic disturbances with frequency f = 0.0356
Hz and amplitude A = 0.02 and A = 0.04 for period-1 and
period-2 limit cycles, respectively.

TABLE III
THE DYNAMICS OF SYSTEM (3) FOR THE RANGE OF

AMPLITUDE A WHEN THE FREQUENCY IS SET TO
f = 0.0356 Hz.

Range of A Attractor of the system

[0 , 0.0076) Chaotic

[0.0076 , 0.0297) Period-1 limit cycle

[0.0297 , 0.3412) Period-2 limit cycle

[0.3412 , 0.5] Period-1 limit cycle

(a)

(b)

Fig. 8. 3D phase portrait in the presence of periodic distur-
bances with frequency f = 0.0356 Hz and amplitude (a)
A = 0.02 (b) A = 0.04.
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Fig. 9. Bifurcation diagram: Plot of local maxima of x2 using
the amplitude of periodic signal as the bifurcation parameter.
The frequency of periodic signal is chosen as the (a) 3rd
harmonic f = 0.0572 Hz (b) 4th harmonic f = 0.069 Hz
and (c) 5th harmonic f = 0.0756 Hz.

TABLE IV
THE DYNAMICS OF SYSTEM FOR THE RANGE OF
AMPLITUDE A WHEN THE FREQUENCY IS SET TO

f = 0.0572 Hz.

Range of A Attractor of the system

[0 , 0.0052) Chaotic

[0.0052 , 0.0066) Period-2 limit cycle

[0.0066 , 0.0149) Chaotic

[0.0149 , 0.0152) Period-2 limit cycle

[0.0152 , 0.0204) Chaotic

[0.0204 , 0.022]) Period-2 limit cycle

[0.022 , 0.0309) Chaotic

[0.0309 , 0.05] Period-1 limit cycle

TABLE V
THE DYNAMICS OF SYSTEM FOR THE RANGE OF
AMPLITUDE A WHEN THE FREQUENCY IS SET TO

f = 0.069 Hz.

Range of A Attractor of the system

[0 , 0.006) Chaotic

[0.006 , 0.0063) Period-3 limit cycle

[0.0063 , 0.0075) Chaotic

[0.0075 , 0.0079) Period-4 limit cycle

[0.0079 , 0.0112) Chaotic

[0.0112 , 0.0218) Period-1 limit cycle

[0.0218 , 0.0375) Chaotic

[0.0375 , 0.05] Period-1 limit cycle

TABLE VI
THE DYNAMICS OF SYSTEM FOR THE RANGE OF
AMPLITUDE A WHEN THE FREQUENCY IS SET TO

f = 0.0756 Hz.

Range of A Attractor of the system

[0 , 0.007) Chaotic

[0.007 , 0.0079) Period-2 limit cycle

[0.0079, 0.0155) Chaotic

[0.0155 , 0.0315) Period-1 limit cycle

[0.0315, 0.0387) Chaotic

[0.0387 , 0.05] Period-1 limit cycle

When the periodic disturbances are applied at the higher
harmonics up to the 5th harmonic, the corresponding bifurca-
tion diagrams are obtained for the amplitude parameter A in
the range [0, 0.05] as shown in Fig. 9. It can be seen from
Fig. 9 that the system (3) evolves from chaotic into a periodic
state by tuning the amplitude of periodic disturbances. It can
be also seen that chaotic regions contain some very narrow
periodic windows and when the frequency is set to the higher
harmonics there are successive transitions from chaotic to
periodic state or periodic to chaotic state as the amplitude
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of the periodic disturbances gradually increases. Through
bifurcation analysis, the amplitude of periodic disturbances to
observe the periodic dynamics such as period-1 limit cycle can
be also clearly specified.

Table IV, Table V and Table VI present the ranges of the
amplitude A which correspond to the regions of periodic and
chaotic behaviors when the frequency of periodic disturbances
is set to f = 0.0572 Hz, f = 0.069 Hz and f = 0.0756 Hz,
respectively.

Figure 10 shows the phase portraits of the system (3) when
the amplitude of periodic disturbances is set to A = 0.04 and
the frequency of periodic disturbances is tuned to the values
of 3rd, 4th and 5th harmonics. Figure 11 shows the structures
of period-2 limit cycles when the periodic disturbances are
applied at 3rd and 5th harmonics with a sufficient amplitude
such as A = 0.021 and A = 0.0075, respectively.

It is seen from Fig. 10 that the system exhibits period-1 limit
cycles for those frequencies and a change in the frequency
results in a change in the amplitude of the limit cycles. It is
also observed that not only the amplitude of the limit cycle
but also the period of the limit cycle can be changed with the
change of frequency of periodic disturbances.

Fig. 10. 3D phase solution in the presence of periodic
disturbances with amplitude A = 0.04 and the frequency
f = 0.0572 Hz (black line); f = 0.069 Hz (blue line);
f = 0.0756 Hz (red line).

Specifically, by choosing the frequency of periodic distur-
bances as 1st or 2nd harmonic the system exhibits period-2
limit cycles at A = 0.04. Thus, the system exhibits different
sensitivities to the same amplitude of periodic disturbances
depending on the frequency of periodic disturbances.

Therefore, it can be concluded that the chaotic cancer
model (3) is highly dependent on the frequency of periodic
disturbances. This just ensures that if the tumour cells are
disturbed with a periodic signal at the fundamental frequency
or harmonics, the dynamics of the system can be switched
from chaotic to periodic behavior.

(a)

(b)

Fig. 11. 3D phase solution in the presence of periodic dis-
turbances when the frequency f and amplitude A are set to
(a) f = 0.0572 Hz and A = 0.021 (b) f = 0.0756 Hz and
A = 0.0075.

IV. CONCLUSION

In this study, the method of oncotripsy is discussed to
stabilize chaotic behavior in a cancer model. To analyze the
effect of the resonance phenomenon on the chaotic cancer
model, the fundamental and higher harmonic frequencies of
the change in the tumour cell population have been calculated,
and the external periodic disturbances have been applied at
those frequencies to the tumour growth. The amplitude of
periodic disturbances has been considered as the bifurcation
parameter, and the associated bifurcation diagrams have been
obtained for each of the harmonics. The numerical results have
been utilized to obtain the dynamic responses of the system.

It has been observed that when the periodic disturbances
are applied at the fundamental frequency, the chaotic system
can be stabilized to a limit cycle with period-one. Moreover,
when the frequency is set to the fundamental frequency of
the change in the population of tumour cells, the system may
have rich dynamic behaviors such as limit cycles exhibiting
different periods just by tuning the amplitude parameter. An

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 10, No. 2, April 2022                                             
147

https://dergipark.org.tr/bajece


interesting phenomenon has been observed when the frequency
of the periodic disturbances is chosen as the second harmonics
of the change in the population of tumour cells. In this case,
the system has a very narrow chaotic region, and as the
amplitude of periodic disturbances exceeds some low level,
then the chaos disappears, and the periodic behaviors occur.
Furthermore, when the frequency is set to higher harmonics,
it has been observed that the dynamics of the system can be
switched between chaotic and periodic states with the change
of the amplitude parameter.

Finally, it is important to note that our results also provide
insights on a possible effect of oncotripsy for the stabilization
of chaos in a cancer model. Periodic disturbances acting on
a chaotic cancer model are capable of exhibiting periodic be-
haviors, which may help adjust treatment regimes. Therefore,
it will be extremely important to understand the parameters
and conditions that lead to limit cycles.

DATA AVAILABILITY

All figures were generated using MATLAB R2021b.

REFERENCES

[1] S. G. Orel and M. D. Schnall, “Mr imaging of the breast
for the detection, diagnosis, and staging of breast cancer,”
Radiology, vol. 220, no. 1, pp. 13–30, 2001.

[2] C. K. Kuhl, S. Schrading, C. C. Leutner, N. Morakkabati-
Spitz, E. Wardelmann, R. Fimmers, W. Kuhn, and H. H.
Schild, “Mammography, breast ultrasound, and magnetic
resonance imaging for surveillance of women at high
familial risk for breast cancer,” Journal of clinical on-
cology, vol. 23, no. 33, pp. 8469–8476, 2005.

[3] S. Vedantham, A. Karellas, G. R. Vijayaraghavan, and
D. B. Kopans, “Digital breast tomosynthesis: state of the
art,” Radiology, vol. 277, no. 3, pp. 663–684, 2015.

[4] A. R. Celik, M. B. Kurt, and S. Helhel, “An experimental
performance investigation of an ultra-wideband direc-
tional antenna in the microwave imaging of breast cancer
tumor,” The Applied Computational Electromagnetics
Society Journal (ACES), pp. 1549–1560, 2019.

[5] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A. S.
Perelson, “Nonlinear dynamics of immunogenic tumors:
parameter estimation and global bifurcation analysis,”
Bulletin of mathematical biology, vol. 56, no. 2, pp. 295–
321, 1994.

[6] D. Kirschner and J. C. Panetta, “Modeling immunother-
apy of the tumor–immune interaction,” Journal of math-
ematical biology, vol. 37, no. 3, pp. 235–252, 1998.

[7] V. A. Kuznetsov and G. D. Knott, “Modeling tumor
regrowth and immunotherapy,” Mathematical and Com-
puter Modelling, vol. 33, no. 12-13, pp. 1275–1287,
2001.

[8] L. G. De Pillis and A. Radunskaya, “The dynamics of
an optimally controlled tumor model: A case study,”
Mathematical and computer modelling, vol. 37, no. 11,
pp. 1221–1244, 2003.

[9] A. d’Onofrio, “A general framework for modeling tumor-
immune system competition and immunotherapy: Math-
ematical analysis and biomedical inferences,” Physica D:

Nonlinear Phenomena, vol. 208, no. 3-4, pp. 220–235,
2005.

[10] L. G. de Pillis, W. Gu, and A. E. Radunskaya, “Mixed
immunotherapy and chemotherapy of tumors: modeling,
applications and biological interpretations,” Journal of
theoretical biology, vol. 238, no. 4, pp. 841–862, 2006.

[11] M. Itik and S. P. Banks, “Chaos in a three-dimensional
cancer model,” International Journal of Bifurcation and
Chaos, vol. 20, no. 01, pp. 71–79, 2010.

[12] H.-C. Wei and J.-T. Lin, “Periodically pulsed im-
munotherapy in a mathematical model of tumor-immune
interaction,” International Journal of Bifurcation and
Chaos, vol. 23, no. 04, p. 1350068, 2013.

[13] J. Yang, S. Tang, and R. A. Cheke, “Modelling pulsed
immunotherapy of tumour–immune interaction,” Mathe-
matics and Computers in Simulation, vol. 109, pp. 92–
112, 2015.

[14] Y. Xu, J. Feng, J. Li, and H. Zhang, “Stochastic bi-
furcation for a tumor–immune system with symmetric
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