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Fréchet spaces, Hadamard-Volterra-
Stieltjes integral equations, Measure of
noncompactness.
2010 AMS: 26A33, 45G05, 47H08,
47H10
Received: 18 January 2022
Accepted: 5 September 2022
Available online: 1 December 2022

Abstract

The objective of this paper is to present results on the existence of solutions for a class of
fractional integral equations in Fréchet spaces of Banach space-valued functions on the
unbounded interval. Our main tool is the technique of measures of noncompactness and
fixed points theorems.

1. Introduction

One of the most widely used techniques of proving that certain operator equation has a solution is to reformulate the problem as a fixed
point problem and see if the latter can be solved via a fixed point argument. Measures of noncompactness play an important role in fixed point
theory and have many applications in various branches of nonlinear analysis, including differential equations, integral and integro-differential
equations, optimization, etc. Roughly speaking, a measure of noncompactness is a function defined on the family of all nonempty and
bounded subsets of a certain metric space such that it is equal to zero on the whole family of relatively compact sets. This significant concept
in mathematical science was defined by many authors in different manners [1, 2]. In the last years there appeared many papers devoted to
the applications of the measure noncompactness for establish some existence and stability results for various types of nonlinear integral
equations [3, 4]. In some recent works on this subject, authors utilize a new method of a family of measures of noncompactness and fixed
point theorems for condensing operators in Fréchet spaces see [5, 6]. The additional advantage of this works is the possibility of extension of
the study for several problems to an unbounded domains.

Let us mention that Fréchet spaces have played an important role in functional analysis from its very beginning: Many vector spaces of
holomorphic, differentiable or continuous functions which arise in connection with various problems in analysis and its applications are
defined by (at most) countably many conditions, whence they carry a natural Fréchet topology (if they are, in addition, complete) [7, 8].

This paper is devoted to the study of the following integral equation

u(x) = ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t); x ∈ J, (1.1)

where J = [1,+∞), r > 0, ϕ : J→ E is continuous function, f : J×E→ E, g : J→ R are given functions, (E,‖ · ‖) is a Banach space and
Γ(·) is the Euler gamma function. We investigate the existence of solutions of Eq. (1.1) with an application of the fixed point theorems and
the technique of measure of noncompactness under some sufficient conditions.

As we know, fractional calculus have been the focus of many researchers in recent years due to their wide application in various fields of
engineering, modeling of natural phenomena, optimal control, and biological mathematics [9–12]. Given the wide application of this branch
of mathematics in human life, it makes sense for researchers to spend more time identifying equations that can interpret many physical
phenomena and come up with newer and more powerful solutions to them. For this reason, in the last decade, many articles have been
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published in the field of ordinary and partial differential equations (see, for example, [13–15]). Let us mention that integral equations of
fractional order create an interesting and important branch of the theory of integral equations. The theory of such integral equations is
developed intensively in recent years together with the theory of differential equations of fractional order. On the other hand, during the
last decades there has been developed the theory of functional integral equations of Stieltjes type. Nevertheless, it turns out that a lot of
interesting and important problems which can be formulated inside the theory of Volterra–Stieltjes integral equations are not satisfactory
solved by the results obtained up to now [16]. In the theory in question, several types of integral operators, both of linear and nonlinear types
are investigated in numerous papers and monographs, we refer [17–19].

2. Preliminaries

This section is devoted to collect some definitions and auxiliary results which will be needed in further considerations.

Definition 2.1 ( [20]). A function f : J = [a,b]→ R is called of bounded variation if
∨
J

f < ∞, where
∨
J

f = sup
k
∑

i=0
| f (ti+1)− f (ti)|, and the

supremum is taken over all finite subdivision of J of the forme a = t0 < t1 < t2 · · ·< tk = b.

Proposition 2.2 ( [20]). • A function f is of bounded variation on J if and only if f is the difference between two monotone increasing
real-valued functions on J.

• If f is of bounded variation on J, then f has countable discontinuities in J.

The Stieltjes integral exists under several conditions, One of the most frequently used requires that f is continuous and g is of bounded
variation on J, and the following inequality holds ∣∣∣∣∫J

f (t)dg(t)
∣∣∣∣≤ ∫J

| f (t)|
∨
J

g.

Theorem 2.3 ( [20]). Suppose that g is a monotonically increasing function such that g′ is Riemann integrable on J and f is continuous on
J. Then ∫ b

a
f (t)dg(t) =

∫ b

a
f (t)g′(t)dt.

In what follows, we consider the Hadamard-Stieltjes integral of order q > 0 for a function u of the form(
HSIq

1 u
)
(x) =

1
Γ(q)

∫ x

1

(
ln

x
t

)q−1 u(t)
t

dg(t).

Lemma 2.4 ( [21]). Assume that the functions Φ,φ1,φ2 : R+→ R+ are continuous functions such that Φ satisfies the following inequality:

Φ(t)≤ φ1(t)+
∫ t

0
φ2(τ)Φ(τ)dτ; t ≥ 0,

then

Φ(t)≤ φ1(t)+
∫ t

0
φ1(τ)φ2(τ)exp

(∫ t

τ

φ2(s)ds
)

dτ; t ≥ 0.

We present now some basic facts concerning measures of noncompactness. If A is a subset of a Fréchet space X then the symbols A, ConvA
stand for the closure and convex hull of A, respectively. Moreover, for any fixed function h : R+→ (0,∞) let us denote

MX = {x ∈ X ; ‖x(t)‖E ≤ h(t), t ∈ J},

the family of all nonempty and bounded subsets of X and by NX its subfamily consisting of all relatively compact sets.
For the Fréchet space we accept the following definition of the family of measures of noncompactness.

Definition 2.5 ( [6]). A family of mappings µn : MX → R+ is said to be a family of measures of noncompactness in the Fréchet space X if it
satisfies the following conditions

1. The family ker{µn}= {A ∈ MX ; µn(A) = 0 for n ∈ N} is nonempty and ker{µn} ⊂ NX .
2. µn(A)≤ µn(B) for A⊂ B, n ∈ N.
3. µn(ConvA) = µn(A) for n ∈ N.
4. If (Ai) is a sequence of closed sets from MX such that Ai+1 ⊂ Ai (i = 1,2, · · ·) and if limi→∞ µn(Ai = 0 for each n ∈ N, then the

intersection set A∞ =
⋂

∞
i=1 Ai is nonempty.

5. µn(λA) = |λ |µn(A) for λ ∈ R, n = 1,2, · · ·
6. µn(A+B)≤ µn(A)+µn(B) for n = 1,2, · · ·
7. µn(A∪B) = max{µn(A),µn(B)} for n = 1,2, · · ·

We call the family {µn}n∈N to be homogeneous, subadditive, sublinear, has the maximum property if 5., 6., (5.6.), 7. hold respectively.

Definition 2.6. The family of measures of noncompactness {µn}n∈N is said to be regular if it is full (ker{µn} = NF ), sublinear and has
maximum property.

Remark 2.7. In Fréchet space X we can also consider families of measures {µT }T≥0 indexed by nonnegative numbers instead of families
{µn}n∈N indexed by natural numbers.
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Theorem 2.8 ( [6, 22]). Let Ω be a nonempty, bounded, closed and convex subset of a Fréchet space X and let L : Ω→Ω be a continuous
mapping. If L is a contraction with respect to a family of measures of noncompactness {µn}n∈N i.e for each n ∈ N and a nonempty A⊂Ω

there exist a constants kn ∈ [0,1) such that
µn(L(A))≤ knµn(A),

then L has at least one fixed point in the set Ω.

The above Theorem is a generalization of the classical Darbo fixed point Theorem for the Fréchet space.

Theorem 2.9 ( [23]). Let Ω be a nonempty, bounded, closed and convex subset of a Hausdorff locally convex space X such that 0 ∈Ω, and
let L be a continuous mapping of Ω into itself. If the implication

(V = conv L(V ) or V = L(V )∪{0})⇒V is relatively compact,

holds for every subset V of Ω, then L has a fixed point.

In the sequel we will work in the space
C(J,E) = {u : J→ E; u is continuous},

equipped with the family of seminorms
‖u‖n = sup{‖u(t)‖; t ∈ [1,n]}, n = 1,2, · · ·

C(J,E) became a Fréchet space.

Proposition 2.10 ( [24]). 1. A nonempty subset Q⊂C(J,E) is said to be bounded if sup{‖x‖n; x ∈ Q}< ∞, n = 1,2, · · ·
2. A sequence (un) is convergent to u in C(J,E) if and only if (un) is uniformly convergent to u on compact subsets of J.
3. A family Q ⊂C(J,E) is relatively compact if and only if for each T > 1, the restriction to [1,T ] of all functions from Q form an

equicontinuous set and Q(t) is relatively compact in E for each t ∈ J.

In order to define a measure of noncompactness in the space C(J,E), let us fix a nonempty bounded subset Q of the space C(J,E) . For
u ∈ Q, ε > 0, t,s ∈ [1,n] such that |t− s| ≤ ε , we denote by ωn

0 (u,ε) the modulus of continuity of the function u on the interval [1,n] i.e

ω
n
0 (u,ε) = sup{‖u(t)−u(s)‖; t,s ∈ [1,n], |t− s| ≤ ε},

so

ω
n
0 (Q,ε) = sup{ωn

0 (u,ε); u ∈ Q}
ω

n
0 (Q) = lim

ε→0
ω

n
0 (Q,ε)

Finally, consider the family {µn}n≥1 in C(J,E) defined by the formula

µn(Q) = ω
n
0 (Q)+ψn(Q); Q ∈ MC(J,E), n = 1,2, · · · , (2.1)

where ψn(Q) = sup
t∈[1,n]

ψ(Q(t)) and ψ is a regular measure of noncompactness in the Banach space E.

It can be shown that the family of maps {µn}n≥1 is a family of measures of noncompactness in the space C(J,E). The kernel (ker µn)
consists of nonempty and bounded sets Q such that functions from Q are equicontinuous on compact subsets of J and Q(t) is relatively
compact in E for each t ∈ J.

Lemma 2.11 ( [24]). Assume Q⊂C(J,E) is equicontinuous on compact intervals of J and Q(t) is bounded for all t ∈ J. Then

• The function t 7→ ψ(Q(t)) is continuous on J.
• For each t ∈ J

ψ

(∫ t

1
Q(τ)dτ

)
≤
∫ t

1
ψ(Q(τ))dτ.

3. Main results

The equation (1.1) will be considered under the following assumptions :

(H1) The function f is continuous and there exist two continuous functions p,q : J −→ R+ such that

‖ f (x,u)‖ ≤ p(x)‖u‖+q(x); x ∈ J; u ∈ E.

(H2) The function g is continuous and of bounded variation on J.
(H3) For each A ∈ ME and for each x ∈ J, we have

ψ( f (x,A))≤ p(x)ψ(A).

(H4) For each T > 1, there exists a constant θT > 0 such that∣∣∣∣∣
∫ T

1

(
ln

T
t

)r−1
dg(t)

∣∣∣∣∣≤ θT .

With

kT =
θT p∗

Γ(r)
< 1,

where p∗ = sup{p(x); x ∈ [1,T ]}.
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Theorem 3.1. Under the assumptions (H1)− (H4) the integral equation (1.1) has at least one solution u = u(x) in the space C(J,E).

Proof. Consider the operator L on the space C(J,E) defined by

(Lu)(x) = ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t); x ∈ J,

observe that in view of our assumptions, for any function u ∈C(J,E) the function Lu is continuous on J. For an arbitrary function u ∈C(J,E)
and a fixed x ∈ J we have

‖Lu(x)‖ =

∥∥∥∥ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
‖ f (t,u(t))‖dg(t)

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
[p(t)‖u(t)‖+q(t)]dg(t)

≤ m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)‖u(t)‖dg(t),

where

m(x) = ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
q(t)dg(t).

Next, consider the following integral inequality

ω(x)≤ m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)ω(x)dg(t).

In view of Lemma 2.4, we get

ω(x)≤ m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)m(t)exp

(∫ x

t

(
ln

x
s

)r−1
p(s)ds

)
dg(t).

The function

Φ(x) = m(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(t)m(t)exp

(∫ x

t

(
ln

x
s

)r−1
p(s)ds

)
dg(t),

is continuous and nonnegative. Observe that the following implication is true :

‖u(x)‖ ≤Φ(x)⇒‖Lu(x)‖ ≤Φ(x); for x ∈ J.

We take the set

Q =

{
u ∈C(J,E); ‖u(x)‖ ≤Φ(x); x ∈ J

}
.

We see that Q is nonempty, bounded, closed and convex subset of C(J,E). Moreover, the operator L transforms the set Q into itself.
Further, let T > 1, x1,x2 ∈ [1,T ] with x1 < x2 and x2− x1 < ε . For a given u ∈ Q, we have

‖Lu(x2)−Lu(x1)‖ =

∥∥∥∥ϕ(x2)+
1

Γ(r)

∫ x2

1

(
ln

x2

t

)r−1 f (t,u(t))
t

dg(t)−ϕ(x1)−
1

Γ(r)

∫ x1

1

(
ln

x1

t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x2)−ϕ(x1)‖+
1

Γ(r)

∥∥∥∥∫ x2

1

(
ln

x2

t

)r−1
f (t,u(t))dg(t)−

∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dtg(x2, t)

+
∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)−

∫ x1

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)

∥∥∥∥
≤ ‖ϕ(x2)−ϕ(x1)‖+

1
Γ(r)

∫ x1

1
[(lnx2)

r− (lnx1)
r]‖ f (t,u(t))‖dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
‖ f (t,u(t))‖dg(t)

≤ ‖ϕ(x2)−ϕ(x1)‖+
p∗Φ∗+q∗

Γ(r)

[∫ x1

1
[(lnx2)

r− (lnx1)
r]dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
dg(t)

]
= W (T,ε),

since ϕ and the logarithm function are locally uniformly continuous, so, W (T,ε)→ 0 when ε → 0.

Remark 3.2. In this case, the set Q is the family consisting of functions equicontinuous on compact intervals of J.

Next, we will show that L : Q→ Q is continuous. Let us fix T > 1, δ > 0 and take u0 ∈ Q. Then, for x ∈ [1,T ] and any function u ∈ Q such
that ‖u(x)−u0(x)‖< δ , we get

‖Lu(x)−Lu0(x)‖ =

∥∥∥∥ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t)− 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u0(t))
t

dg(t)
∥∥∥∥

≤ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
‖ f (t,u(t))− f (t,u0(t))‖dg(t).
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Since f is continuous on [1,T ]×E, we have supx∈[1,T ] ‖ f (x,u(x))− f (x,u0(x))‖< ε(δ ) with ε(δ )→ 0 as δ → 0. This implies

sup
x∈[1,T ]

‖Lu(x)−Lu0(x)‖ ≤
θT

Γ(r)
ε(δ ),

hence, the operator L is continuous on the set Q.
Further, fix arbitrarily T > 1 and take a nonempty Ω⊂ Q. In view of the assumption (H3), Remark 3.2 and by Lemma 2.11, we obtain

ψ(LΩ(x)) = ψ

(
ϕ(x)+

1
Γ(r)

∫ x
1
(
ln x

t
)r−1 f (t,Ω(t))

t
dg(t)

)
≤ 1

Γ(r)
∫ x

1
(
ln x

t
)r−1 p(t)ψ(Ω(t))dg(t)≤ p∗θT

Γ(r)
ψ(Ω(t)).

Thus

ψn(LΩ)≤ kT ψn(Ω). (3.1)

Observe, that linking (3.1) and the definition of the family of measure of noncompactness µn given by the formula (2.1), we obtain

µn(LΩ)≤ kT µn(Ω). (3.2)

Finally, in view of the Theorem 2.8 we deduce that L has at least one fixed point in Q which is a solution of Eq. (1.1).

In this section, we will give an other result using Mönch’s fixed point Theorem.

The Eq. (1.1) will be considered under the following assumptions :

(C1) The function f is continuous and there exists a continuous function p : J −→ R+ such that

‖ f (x,u)‖ ≤ p(x); x ∈ J; u ∈ E.

(C2) The function g is continuous and of bounded variation on J.
(C3) There exists a continuous function b : J −→ R+ such that for each A ∈ ME and for each x ∈ J, we have

ψ( f (x,A))≤ b(x)ψ(A). (3.3)

(C4) For each T > 1, there exists a constant θT > 0 such that∣∣∣∣∣
∫ T

1

(
ln

T
t

)r−1
dg(t)

∣∣∣∣∣≤ θT .

With

kT =
θT b∗

Γ(r)
< 1,

where b∗ = sup{b(x); x ∈ [1,T ]}.

Theorem 3.3. Suppose the hypotheses (C1)− (C4) are satisfied. Then Eq. (1.1) has at least one solution u = u(x) in the space C(J,E).

Proof. Consider the operator L on the space C(J,E) defined by

(Lu)(x) = ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t); x ∈ J,

observe that in view of our assumptions, for any function u ∈C(J,E) the function Lu is continuous on J. For an arbitrary function u ∈C(J,E)
and a fixed x ∈ J we have

‖Lu(x)‖ =

∥∥∥∥ϕ(x)+
1

Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
‖ f (t,u(t))‖dg(t)

≤ ‖ϕ(x)‖+ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
p(x)dg(t),

hence, for x ∈ [1,n] we infer that

‖Lu‖n = ‖ϕ‖n +
θn p∗

Γ(r)
.
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Further, let T > 1, x1,x2 ∈ [1,T ] with x1 < x2 and x2− x1 < ε . For a given u ∈C(J,E), we have

‖Lu(x2)−Lu(x1)‖ =

∥∥∥∥ϕ(x2)+
1

Γ(r)

∫ x2

1

(
ln

x2

t

)r−1 f (t,u(t))
t

dg(t)−ϕ(x1)−
1

Γ(r)

∫ x1

1

(
ln

x1

t

)r−1 f (t,u(t))
t

dg(t)
∥∥∥∥

≤ ‖ϕ(x2)−ϕ(x1)‖+
1

Γ(r)

∥∥∥∥∫ x2

1

(
ln

x2

t

)r−1
f (t,u(t))dg(t)−

∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)

+
∫ x2

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)−

∫ x1

1

(
ln

x1

t

)r−1
f (t,u(t))dg(t)

∥∥∥∥
≤ ‖ϕ(x2)−ϕ(x1)‖+

1
Γ(r)

∫ x1

1
[(lnx2)

r− (lnx1)
r] p(t)dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
p(t)dg(t)

≤ ‖ϕ(x2)−ϕ(x1)‖+
p∗

Γ(r)

[∫ x1

1
[(lnx2)

r− (lnx1)
r]dg(t)+

∫ x2

x1

(
ln

x1

t

)r−1
dg(t)

]
≤ W (T,ε),

We take the set

D =

{
u ∈C(J,E); ‖u‖n ≤ ln = ‖ϕ‖n +

θn p∗

Γ(r)
; and ω

n
0 (u,ε)≤W (T,ε); n≤ T

}
.

Obviously D is nonempty, bounded, closed and convex subset of C(J,E) and the operator L transforms the set D into itself. Moreover, the
set D is the family consisting of functions equicontinuous on compact intervals of J.
Now, we show that L is continuous on the set D. Let (un)n ⊂ D be a sequence converging to u in D i.e

lim
n→∞

sup
1≤t≤T

‖un(t)−u(t)‖= 0; T > 1.

Then we get

sup
1≤t≤T

‖(Lun)(x)− (Lu)(x)‖ ≤ 1
Γ(r)

sup
1≤x≤T

∫ x

1

(
ln

x
t

)r−1
‖ f (t,un(t))− f (t,u(t))‖×dg(t)

≤ θT

Γ(r)
sup

1≤t≤T
‖ f (t,un(t))− f (t,u(t))‖,

so

lim
n→∞

sup
1≤t≤T

‖(Lun)(x)− (Lu)(x)‖ ≤ θT

Γ(r)
lim
n→∞

sup
1≤t≤T

‖ f (t,un(t))− f (t,u(t))‖.

Since f is continuous on [1,T ]×E, we obtain

lim
n→∞

sup
1≤t≤T

‖(Lun)(x)− (Lu)(x)‖= 0,

hence the operator L is continuous on the set D.

Further, let V ⊂ D such that V = L(V )∪{0}, fix x ∈ [1,T ] and using our assumptions we arrive at the following estimates

ψ(LV (x)) = ψ

(
ϕ(x)+

1
Γ(r)

∫ x

1

(
ln

x
t

)r−1 f (t,V (t))
t

dg(t)
)

≤ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
ψ( f (t,V (t)))dg(t)

≤ 1
Γ(r)

∫ x

1

(
ln

x
t

)r−1
b(t)ψ(V (t))dg(t)

≤ b∗θT

Γ(r)
sup

x∈[1,T ]
ψ(V (x)),

thus

sup
x∈[1,T ]

ψ(V (x))≤ kT sup
x∈[1,T ]

ψ(V (x)).

Since for each T > 1 we have kT < 1, we deduce that

sup
x∈[1,T ]

ψ(V (x)) = 0.

Hence, V (x) is relatively compact in E for each x ∈ [1,T ], and from the choice of the set D, we conclude that V is relatively compact in
C(J,E) (in view of proposition 2.10). Combining with Theorem 2.9 we complete the proof.
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4. Example

Let E = l∞ be the space of all bounded sequences (wp)p∈N of real numbers endowed with the norm

‖w‖∞ = max
p∈N
|wp|; w ∈ E.

We consider an infinite system of fractional integral equations

up(z) =
z+ p

z2 +2p
+

1
Γ(r)

∫ z

1

(
ln

z
t

)r−1

√
e−2tu2

p(t)+
1
pt

t
d
(

1
t
− 1

t2

)
; p ∈ N; r > 1. (4.1)

It is clear that equation (4.1) can be written as equation (1.1), where

u : J = [1,∞) → l∞

z 7→ (up(z))p∈N,

Set
ϕ(z) = (ϕp(z))p∈N =

z+ p
z2 +2p

; g(t) =
1
t
− 1

t2 ,

f (z,u(z)) = ( fp(z,up(z)))p∈N =

√
e−2zu2

p(z)+
1
pz

.

Remark 4.1. We can see that for each u(z) ∈ l∞ and z ∈ J we have ( fp(z,up(z)))p∈N ∈ l∞, so, the function f : J× l∞→ l∞ is well defined.

Let us show that conditions (H1)− (H4) hold. The function t 7→ 1
t
− 1

t2 is continuous on J, increasing on [1,2] and decreasing on [2,∞).
Moreover, we have

lim
t→+∞

(
1
t
− 1

t2

)
= 0.

So it is of bounded variation on J. It follows that∣∣ fp(z,up(z))
∣∣ =

√
e−2zu2

p(z)+ pz

≤
√

e−2zu2
p(z)+

√
1
pz

≤ e−z|vp(z)|+

√
1
pz

,

thus

sup
p∈N

∣∣ fp(z,up(z))
∣∣≤ e−z sup

p∈N
|vp(z)|+

√
1
pz

.

Then

‖ f (z,u(z))‖∞ ≤ e−z‖u(z)‖∞ +

√
1
pz

. (4.2)

So p(z) = e−z; p∗ = 1
e ; q(z) =

√
1
pz and for a fixed T > 1 we have∣∣∣∣∣
∫ T

1

(
ln

T
t

)r−1
d
(

1
t
− 1

t2

)∣∣∣∣∣ ≤ (lnT )r
∣∣∣∣∫ T

1
d
(

1
t
− 1

t2

)∣∣∣∣
≤ (lnT )r

(
1
T
− 1

T 2

)
= θT .

Observe that

k =
θT p∗

Γ(r)
=

(lnT )r (T −1)
eT 2Γ(r)

< 1; for each T > 1.

In view of (4.2), we deduce that
ψ( f (t,A))≤ e−t

ψ(A); for each A ∈ ME .

Consequently from Theorem 3.1 the Eq. (4.1) has at least solution in C(J,E).

5. Conclusion

In this work, we have presented an existence result for a type of integral equation by application of MNCs and the fixed point theorems. The
interest of this work is the possibility of dealing with several nonlinear problems on unbounded domains, on the other hand, we have given
an illustrative example which indicates the applicability of this study to deal with an infinite system of integral equations. Some of the results
in this direction are our future plan especially the choice of MNCs which allows us to characterize the qualitative aspect of the solutions.



112 Journal of Mathematical Sciences and Modelling

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References
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