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1. Introduction

Recently, the applications of the special functions of mathematics have developed significantly in such fields
as fractional calculus, approximation theory, mathematical physics, engineering, science and technology [1-
3]. One very interesting application area of special functions of mathematics is the extension of the standard
kinetic equations by its integration [4]

A(t) — Ay = —c? (D7O{A(D)} (1)

for any positive constant ¢, A(t) represents the reaction rate, A, represents A(t) at t = 0,and ,D;? is the
Riemann-Liouville fractional integral operator defined by

1 t
DA} = —f (t —w)? 1A(w)du, (Re(d) > 0,t > 0)
') Jo
They [4] also give the following solution to equation (1):
A(t) = AgEy(—c?t?), (8 € RY)

Extensions, generalizations and different forms of equation (1) have been studied by Saxena et al., [5, 6] using
functions of Wiman and Prabhakar [7-9], Khan et al., [10] studied the following fractional kinetic equations:
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A(t) = Agt®RE 4 (a, b; c; %) = —a? (D7O{A(E)} )
and
K
A(E) — Agt®RE o (a, b; c;pt?) = —{z ( )af’w OD{a“’}A(t) 3)
w=1 @
where R}, ;) is the (p, q)-extended 7-Gauss hypergeometric function [11]
b+ kt,c — b) z¥
T a pq(
Rpq(a,bic;t?) = Z( B e—b) K

k=0

for all min{Re(p), Re(q)} > 0,7 = 0,£ € R*\{1}, Re(a) > Re(b) > 0,and B, ,(,3) is the extended beta
function defined by [12]
! q

p
o~ -1 3-1 -
Bp‘q(go,d)—.’; t?"1(1-1) exp( i t)dt

for all min{Re(p), Re(q)} > 0, min{Re (), Re(J)} > 0.
Readers can refer to [ 13-20] for more generalizations and extensions of extended fractional kinetic equations.

The main objective of this paper is to introduce the new the (p, q; £)-extended t-Gauss hypergeometric
and t-confluent hypergeometric functions with some properties and their applications to fractional kinetic
equations via the Laplace transforms methods. Furthermore, the resulting functions and equations can be
reduced to well-known and perhaps new results. This paper is presented as follows: Section one is compressed
with some preliminaries. In section 3, the (p, q; £)-extended t-hypergeometric functions and some of their
properties have been discussed. In section 4, the solution of the fractional kinetic equations contains the
(p, g; £)-extended t-Gauss hypergeometric and t-confluent hypergeometric functions. In section 5, include a
conclusion.

2. Preliminaries

In this paper, the extended fractional kinetic equations will be studied by using the following (p, q; £)-extended
T-Gauss hypergeometric and z-confluent hypergeometric functions:

Definition 2.1. The new (p, q; £)-extended t-Gauss hypergeometric function is

B2 (b + kt,c — b; £) z%

RE ¢> ®
= 4
(@bieizb) = ) (@l pr s )
k=0
for all min{Re(p), Re(q)} > 0, min{Re(¢p), Re(p)} > 0,7 = 0,¢ € R*\{1},Re(a) > Re(b) > 0.
Definition 2.2. The new (p, q; £)-extended (p, q; €)-confluent hypergeometric function is
.0 . k
B, (b+kt,c—b;¥)z
oF ¢> @ .4 ’ )z
W”’)—Z Bbic—b) K )

k=0
for all min{Re(p),Re(q)} > 0, min{Re(¢), Re(p)} > 0,7 = 0,¢ € R*\{1},Re(a) > Re(b) >0, and
B¢ @ ($,S; £) is the extended beta function proposed in [21]

1 1 et
B¢(p(,§0, ;i f) —f tP1(1 —t)31e\ @ -0%/qt (6)
0

for all min{Re(p), Re(q)} > 0, min{Re (), Re(I)} > 0,7 = 0,¢ € RT\{1}, min{Re (), Re(JI)} > 0.
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3. The (p, q; £)-Extended - Hypergeometric Functions

In this section, the integral representation of the (p, q; £)-extended t-Gauss hypergeometric and t-confluent
hypergeometric functions are established in the following theorem:

Theorem 3.1. The following Laplace-type integral formula holds:
RI®%(a,b;c;2;0) = T )f t@ L exp(—t) Ppe? (b c; z; £)dt
for all min{Re(p), Re(q)} > 0, min{Re(¢), Re(p)} > 0,7 = 0,¢ € R*\{1},Re(a) > 0,Re(z) < 1.
Proor. Consider equation (4) and expansion of the pochhammer notation in [22]
1 [ee]
=—— | tatk1 —t)dt
@i =5 | e om0
gives

o . ¢ (b + Kz, c — b; £) 7
(M’(abczf) Z{F( )f ta*k=1 exp(— t)dt} pa Bo.c— D) W

As a result of changing the order of integration and summation,

B¢(p(b + kt, ¢ — b; £) (t2)¥
Z B(b,c —b) k!

T(M’(a b;c;z;4) = %J‘mt“‘l exp(—t)

a-1 CDT¢‘P I
T f £ exp(—t) DT (b; ¢; 2; £)dt
Theorem 3.2. The following Euler-type equality holds:
T¢<P a-1 c-b-1 T a( ¢(1t)<p)
(a,b;c;z;¢) = Bb.c —b)ft 1-1 (1—-ttz) %\ ¢ dt
for all min{Re(p), Re(q)} > 0, min{Re(¢),Re(¢)} >0, T =0, £ € R*\{1}, Re(b) > Re(b) >
0,and |arg(1 — 2)| < m.

Proor. Rewritten equation (4) in term of (p, q; £)-extended beta function in (6), yields

(@)"
= B(b,c —b)

P

1
T ¢<P(a b;c; z; #) — {f tb+k‘r—1(1 _ t)c—b—l(l _ tTZ)_af(_t%_—(;l_qt)(p)dt}@
0

Changing the order of integration and summation will result in

k
T¢<P(a b;c;z;4) = Bc b)f tb- 1(1 ) b- 119( b (- t)‘l’ {z(a)]k(tZ) }

k=0

— a-1¢1 _ #\c—b-1(1 _ +T\—a (‘?‘W)
B(b,c—b)fot (1 -0 D711 — t72) 7o\ "6 a-0P/qt

Considering equation (5), the following corollary can be obtained:

Corollary 3.1. The following result is also holds true:

r¢‘l’(b C;Z; 1’,’) ——b)_[ tb- 1(1—t)c b— 1exp(tTZ){’( P (- f)"’)dt

B(b
for all min{Re(p), Re(q)} > 0, min{Re(¢), Re(p)} >0, =0, £ € R*\{1}, Re(c) > Re(b) > 0.
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4. Extended Fractional Kinetic Equations Solutions

In this section, the applications of (p, q; £)-extended t-Gauss hypergeometric and t-confluent hypergeometric
functions to extended fractional kinetic equations are established using the Laplace transform method in the
following theorem:

Theorem 4.1. The extended fractional kinetic equation
A(t) — AOtNR{,i?"P(a,b; Pt 8) = —a9 (D7O{A(L)} (7)

for all X,0,0 € R*,y € C with § # 1, € RY; min{Re(p),Re(q)} > 0, min{Re(¢),Re(¢)} >0, T =0,
¢ € R*\{1}, Re(c) > Re(b) > 0.

BY¥ (b + ke, c — b; €) (pt?)"
B(b,c —b) k!

A = Agt* Y (@) 2 P(0k + X)Eg ogeen(~0?t?)

k=0
1s the solution.

Proor. Applying the Laplace transform [23] to equation (7), gives
L{ACE); s} — Ao L{t¥RES (a,b; c;t%; €); s} = a2 L{ (DT {AD)); 5}
Consider equation (4) and the Laplace transform of the Riemann-Liouville fractional integral [24]

L{ oDFUA®)}; s} = —sL{A(D)}

yields

L{A(t); s} — Mg

B (b + ke, c — b; ) (t?
j exp(—st) {Z(a)k (B(b CT Cb) )(lpuil) th] = —g9s9L{A(t)}
0 k=0 ’ '

When integration and summation are changed, it leads to

B2 (b + ke, c — b; £) Y& s 1
LA@is) = o Y (@ s m{ fo exp(—s) £+ 1dt}{—1 )

k=0

Using result [25]

Jooexp(—st)txdt— (s 1) ,(Re(R) > —1)
0

gives

pq(b+]k‘rc—b e)wkr(ak+x){ 1 }

LA s} = AOZ(“)k B(b,c — b) kI sOR |1+ (gs-1)0

k=0
Applying the geometric series expansion [26]

1
Trosy = QDo s™
£20

leads to

B2 (b + kt, ¢ — b; £) p* T'(9k + X
£A©;5) = Do Y (@ LTS PN TEED S 1y ot
k=0 &20
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¢><p Kk

By b+kt,c—b;?

= A E (@2 a )Y 1"(6]1«+N) E (=1)§g0¢ s~(0E+0k+N)
& B(b,c —b) &

Using the inverse Laplace transform and the result in [25]

1 -
{S } - F(a)
one may obtain
?(b + kt,c — b; £) Pk (—1)0%
p q O +0k+X—1
A(t)‘A"kZO(a)“‘ B(b,c—b) F“’M*‘)Zr( FroktN)"
¢(p +0 0\ .o
BY# (b + k¢ — b; £) (pt)" o%t%) 0%
— N—-1
= Aot kzw(a)“‘ B(b,c —b) k! F(aﬂ”er( ¢+ 0k + X)
¢ ¢ £
B BY# (b + kr,c — b; €) (
= Aot¥ lkzo(a)k Bb.c—b) ( k!) T (0k + R)Eqg gierx(—07t?)
Theorem 4.2. The extended fractional kinetic equation
AE) = Apt¥TRE (a, b; ¢; pt0; £) = — Z (Yo% oDrowtac) ®)
p.q y Yy Ly 1) ] W t
w=

forall X,d,0 € RY,y,k € C with § # ¥, € R{; min{Re(p), Re(q)} > 0, min{Re(¢),Re(p)} >0, T =0,
£ € R*\{1}, Re(c) > Re(b) > 0.

B (b + kt,c — b; €) (yt 6)
B(b,c — b) k!

A = Agt*1 Y (@) 2

k=0

I'(0k + N)Eg,anﬁx(_aata)

1s the solution.

Proor. Applying the Laplace transform [23] to equation (8), gives

LEACE); s} — AoL {t“-lR;jg"‘”(a, b; c; t?; £); s} = — Z (Z) 5% L{ (DFICA(D); s}

w=1

Consider equation (4) and the Laplace transform of the Riemann-Liouville fractional integral [24]
L{ DA} s} = —sOL{A); s},

yields

L{A(t); s} — Ay

0 BY# (b + k b; £) (yt?
f exp(—st) {tNZ(a)n« (B(b CT_Cb) )(‘l’t ) } l awSaL{A(t):S}
0 k=0

w>1

By reordering integral and summation, we get

B2 (b + kt, ¢ — b; £) Y 1
LE{A(E); s} = Ao Z(a)k (B(b, CT - b) )l]/;&, {—fo eXp(_St)takJrN_ldt} {Z 1(16) (05-1)6(»}
k=0 w21\

Using result [25]

Jmexp(—st)txdt = @ (Re(R) > —1)
0

gives
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B2 (b + ke, ¢ — b; €)¢“‘F(ak+x){ 1 }

L{A(t); s} = Ay ;)(a)k B(b,c —b) k! gOk+X szl((’;) (os~1)dw

Applying the geometric series expansion in [27]
K 0 — K
(w 0? = (1 +2)%, (k€ C |z| < 1)
w=1

leads to

B2 (b + k b; £) Y T (0k + & K
LA 5} = Ag ) (@ T (B(b,f_cb) )% (Sakfx (140757

k=0

Can be rewritten using [27]

(1-2)¢= z (};)lw z? (keC|z| <1)

w=0

so that

¢> ® k
By (b +kr,c — b; ) YT (0k + X) Z( INHGE
A =A E 66 —(0&+0k+R)
k=0 £20
Using the inverse Laplace transform and the result in [25]
a-1

t
L£7Ys7 9%} = )

The following can be obtained:

BY (b + kt,c — b; e)lpk (18098 (i) tO5+IM+R~1
e BY (b + kt,c — b; £) (—DE% ()¢ (—02t%)°
= Aot kzo(a)“‘ Blhe—b) k& KTV L0 +ak+X) ¢l
B (b + ke, c — b; £) (yt?
= AotN_IZ(a)]k (B(b CT ‘ D) ) (e ,) 0k + R)ES iy x(—0t?)
k=0 ’ It

Considering equations (5), (7), and (8), the following corollaries can be obtained:
Corollary 4.1. The extended fractional kinetic equation
A(t) — Aot NCIDT(M)(b; c;l,l)ta;t’) = -9 ,D;2{A(D)}
for all X,0,0 € R*,y € C with § # ¥, € R{; min{Re(p), Re(q)} > 0, min{Re(¢), Re(p)} >0, =0,
£ € R*\{1}, Re(c) > Re(b) > 0.

B2 (b + kz, ¢ — b; €) (t?
A(t) = A, z (B o CT_Cb) ) (¢k!) [0k + R)Eggrex(—09t9)

k=0
is the solution.

Corollary 4.2. The extended fractional kinetic equation
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Ab) — Aot“‘lcb;if""(b; c;yPtd;¢) = —{Z (Z) gdo OD;aw}A(t)

w=1

forall X,d,0 € RY,y,k € C with § # ¥, € R{; min{Re(p), Re(q)} > 0, min{Re(¢),Re(p)} >0, T =0,
£ € R*\{1}, Re(c) > Re(b) > 0.

b0 ) ok

OB (b + K, c— b; €) (it

A@) = Aot? 12 = B(b,c —b) ( ]kl) I(9k + R)ES 545 (—0t?)
k=0 ’ )

is the solution.
5. Conclusion

The new (p,q;f)-extended 7-Gauss hypergeometric and (p, q;€)-extended t-confluent hypergeometric
functions are defined by using the (p, q; £)-extended beta function in [21] with some of their properties such
as integral formulas and their application to the solutions of extended fractional kinetic equations. If the
parameters of these newly established functions and equations are appropriately substituted, a number of works
already established in the literature are obtained, for example: if £ = e and ¢ = ¢ = 1, then the results of
Khan et al., [10] and Parmar et al., [11]; by setting £ =e, ¢ = ¢ = 1,and 7 = 1, the extended Gauss
hypergeometric and confluent hypergeometric functions presented by Choi et al., [12] will be obtained; by
setting £ = e, ¢ = @ =1 and p = q = 0, the proposed results will be returned to Virchenko et al., [28] and
Virchenko [29]; the substituting = e, ¢ = ¢ = 1,7 = land p = q leads to the results of Chaudhry et al.,
[30, 31]; finally, by taking £ = e, ¢ = ¢ = 1,7 = 1,and p = q = 1, the results under discussion will naturally
return to the classical results. The extended kinetic equations are expected to have potential applications in
nuclear energy, nuclear physics, astrophysics and other related fields. Furthermore, the functions under
discussion can be used to study fractional integrals and derivatives such as the Riemann-Liouville, Caputo,
Eydilyi-kober, Saigo, Merichev-Saigo-Maide and the Caputo-type Merichev-Saigo-Maide.
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