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NOTES ON SOME PROPERTIES OF THE NATURAL RIEMANN

EXTENSION

Filiz OCAK

Department of Mathematics, Karadeniz Technical University, Trabzon, TÜRKİYE

Abstract. Let (M,∇) be an n-dimensional differentiable manifold with a

torsion-free linear connection and T ∗M its cotangent bundle. In this con-

text we study some properties of the natural Riemann extension (M. Sekizawa
(1987), O. Kowalski and M. Sekizawa (2011)) on the cotangent bundle T ∗M .

First, we give an alternative definition of the natural Riemann extension with

respect to horizontal and vertical lifts. Secondly, we investigate metric con-
nection for the natural Riemann extension. Finally, we present geodesics on

the cotangent bundle T ∗M endowed with the natural Riemann extension.

1. Introduction

Let (M,∇) be an n-dimensional C∞-manifold with a torsion-free linear connec-
tion and π : T ∗M → M be the natural projection from its cotangent bundle T ∗M
to M . For any local chart

(
U, xj

)
, j = 1, ..., n around x ∈ M induces a local chart(

π−1 (U) , xj , xj̄ = pj

)
, j̄ = n+ 1, ..., 2n around (x, p) ∈ T ∗M , where xj̄ = pj are

the components of the covector p in each cotangent spaces T ∗
xM, x ∈ U endowed

with the natural coframe
{
dxj

}
, j = 1, ..., n. By ℑr

s (M) (ℑr
s (T

∗M)) we take the
module over F (M) (F (T ∗M)) of C∞ tensor fields of type (r, s) on M(T ∗M).

In [18] Patterson and Walker defined a semi-Riemannian metric of signature
(n, n) on the cotangent bundle T ∗M of (M,∇), called the Riemann extension. The
Riemann extension described by

R∇
(
CV,CZ

)
= −γ (∇V Z +∇ZV ) ,

where CV and CZ denote the complete lifts of the vector fields V and Z on M to
T ∗M and γ (∇V Z +∇ZV ) = ph

(
V j∇jZ

h + Zj∇jV
h
)
.

2020 Mathematics Subject Classification. 53B20, 53C07, 53C22.
Keywords. Vertical and horizontal lift, adapted frame, geodesics, natural Riemann extension,
cotangent bundle.

filiz.ocak@ktu.edu.tr; 0000-0003-4157-6404.

©2023 Ankara University
Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

363



364 F. OCAK

Since the tensor field R∇ ∈ ℑ0
2 (T

∗M) is completely determined by its action
upon the vector fields of type HV and V ϑ, Aslanci et al.[3] give the following alter-
native definition for R∇ by

R∇
(
HV,HY

)
= R∇

(
V ϑ, V ω

)
= 0,

R∇
(
V ϑ,HY

)
= V (ϑ (Y )) = ϑ (Y ) ◦ π

for any V, Y ∈ ℑ1
0 (M) and ϑ, ω ∈ ℑ0

1 (M). The geometry of the Riemann extension
and its generalization were intensively studied in many papers (see for example [2,
4, 8-11, 14, 15-17, 19, 21]).

The natural Riemann extension ḡ as a generalization of the Riemann extension
is given by Sekizawa in [20] (see also Kowalski and Sekizawa [12]) and defined by
the three identities:

ḡ
(
CV,CZ

)
= −aV (∇V Z +∇ZV ) + bV V V Z,

ḡ
(
CV, V ω

)
= aV (ω(V )), (1)

ḡ
(
V ϑ, V ω

)
= 0

for any V,Z ∈ ℑ1
0 (M) and ϑ, ω ∈ ℑ0

1 (M), where V V = V V(x,p) = p(Vx) =∑n
k=1 pkV

k
is a function and a, b are arbitrary constants. We may assume a > 0

without loss of generality. When b ̸= 0 (resp. b = 0) , ḡ is called a proper (resp. a
non-proper) natural Riemannian extension. As a particular situation, when a = 1
and b = 0, we get the Riemannian extension. For further references relation to the
natural Riemann extension, see [5-7,13].

In this paper, we give an alternative definition of the natural Riemann exten-
sion with respect to horizontal lifts of vector fields and vertical lifts of covector
fields. Also, we present the Levi-Civita connection and Christoffel symbols with
respect to the adapted frame. In Sect. 4, we show that the horizontal lift H∇ of
the torsion-free connection ∇ to the cotangent bundle T ∗M is a metric connection
with respect to the natural Riemann extension. In Theorem 3 , we find that the
metric connectionH∇ has a vanishing scalar curvature with respect to the natu-
ral Riemann extension. In Sect. 5, we investigate the geodesics on the cotangent
bundle T ∗M with respect to the natural Riemann extension.

2. Preliminaries

Let ϑ = ϑkdx
k and V = V k ∂

∂xk be the local statements in U ⊂ M of a covector

field (1-form) ϑ ∈ ℑ0
1 (M) and a vector field V ∈ ℑ1

0 (M), respectively. The vertical
lift V ϑ of ϑ, the horizontal and complete lift HV, CV of V are defined, respectively,
by

V ϑ =
∑
k

ϑk∂k̄,

HV = V k∂k +
∑
k

phΓ
h
kjV

j∂k̄, (2)
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CV = V k ∂

∂xk
−
∑
k

ph∂kV
h ∂

∂xk̄
,

where ∂
∂xk = ∂k,

∂
∂xk̄ = ∂k̄ and Γh

kj are the components of ∇ on M [21].

From (2), the complete lift CV of V ∈ ℑ1
0 (M) is expressed by

CV = HV − V (p (∇V )) , (3)

where p (∇V ) = pj
(
∇hV

j
)
dxh.

In U ⊂ M , we write

V(t) =
∂

∂xt
, ϑ(t) = dxt, t = 1, 2, ..., n.

From (2) and the natural frame {∂k, ∂k̄}, we can see that these vector fields have,
respectively, the local expressions{

V ϑ(t) = f̃(t̄) = ∂t̄,
HV(t) = f̃(t) = ∂t +

∑
h

paΓ
a
ht∂h̄.

(4)

The set
{
HV(t),

V ϑ(t)
}

=
{
f̃(t), f̃(t̄)

}
=

{
f̃(β)

}
is called adapted frame to the

connection ∇ in π−1 (U) ⊂ T ∗M .
We now consider local 1-forms ω̃α in π−1 (U) defined by

ω̃α = Āα
Bdx

B ,

where

A−1 =
(
Āα

B

)
=

(
Āi

j Āi
j̄

Āī
j Āī

j̄

)
=

(
δij 0

−paΓ
a
ij δji

)
. (5)

The matrix (5) is the inverse of the matrix

A =
(
Aβ

A
)
=

(
Aj

i Aj̄
i

Aj
ī Aj̄

ī

)
=

(
δij 0

paΓ
a
ij δji

)
(6)

of the transformation f̃β = Aβ
A∂A (see [4]). In what follows, the set {ω̃α} is called

the coframe dual of the adapted frame
{
f̃(β)

}
, i.e. ω̃α

(
f̃β

)
= Āα

BAβ
B = δαβ .

The Lie bracket operations of the adapted frame
{
f̃(β)

}
on the cotangent bundle

T ∗M are given by [
f̃(t), f̃(l)

]
= paRtlk

af̃(k̄),[
f̃(t̄), f̃(l̄)

]
= 0, (7)[

f̃(t), f̃(l̄)

]
= −Γl

tkf̃(k̄),
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where Rtlk
a being local components of the curvature tensor R of ∇ on M .

Hence we have the undermentioned components for vector fields V ϑ, HV and
CV on T ∗M

V ϑ =

(
0
ϑj

)
, HV =

(
V j

0

)
and CV =

(
V j

−ph∇jV
h

)
(8)

in the adapted frame
{
f̃(β)

}
.

3. The Natural Riemann Extension

Using (1) and (3), the natural Riemann extension ḡ is determined by its action
on V ϑ, HV . Then we find

ḡ
(
HV,HZ

)
= bV V V Z = bp(V )p(Z),

ḡ
(
HV, V ω

)
= aV (ω(V )) = (ω(V )) ◦ π, (9)

ḡ
(
V ϑ, V ω

)
= 0

for any V,Z ∈ ℑ1
0 (M) and ϑ, ω ∈ ℑ0

1 (M), where a > 0, a, b are arbitrary constants

and V V = V V(x,p) = p(Vx) =
∑n

k=1 pkV
k
= p (V ) is a function. By virtue of (4)

and (9), we obtain

ḡ
(
HV(j),

HZ(k)

)
= ḡ

(
f̃(j), f̃(k)

)
= ḡjk = bpjpk,

ḡ
(
HV(j),

V ϑ(k)
)
= ḡ

(
f̃(j), f̃(k̄)

)
= ḡjk̄ = adxk

(
∂

∂xj

)
= aδkj ,

ḡ
(
V ϑ(j),HV(k)

)
= ḡ

(
f̃(j̄), f̃(k)

)
= ḡj̄k = adxj

(
∂

∂xk

)
= aδjk,

ḡ
(
V ϑ(j), V ω(k)

)
= ḡ

(
f̃(j̄), f̃(k̄)

)
= ḡj̄k̄ = 0.

As corollary, the natural Riemann extension ḡ = (ḡ)JK has the following com-

ponents with respect to the adapted frame
{
f̃(β)

}
:

ḡ = ḡJK =

(
ḡjk ḡjk̄
ḡj̄k ḡj̄k̄

)
=

(
bpjpk aδkj
aδjk 0

)
. (10)

Using ḡJK g̃KI = δIJ , we obtain the inverse g̃JK of the matrix ḡJK as follows

g̃ = g̃JK =

(
0 1

aδ
j
k

1
aδ

k
j − b

a2 pjpk

)
. (11)

The Levi-Civita connection ∇̄ of the natural Riemann extension ḡ is given by the
following formulas:
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Theorem 1. In adapted frame
{
f̃(β)

}
, the Levi-Civita connection ∇̄ of the natural

Riemann extension ḡ on T ∗M is given by the following equations:

i) ∇̄f̃i
f̃j =

(
Γl
ij −

b

2a

(
δlipj + δljpi

))
f̃l +

(
b

a
pkplΓ

k
ji − pkRjli

k

)
f̃l̄,

ii) ∇̄f̃i
f̃j̄ =

(
b

2a

(
δjl pi + δjipl

)
− Γj

li

)
f̃l̄,

iii) ∇̄f̃ī
f̃j =

b

2

(
δijpl + δilpj

)
f̃l̄, (12)

iv) ∇̄f̃ī
f̃j̄ = 0

where Rlji
s, Γl

ij are respectively the components of the curvature tensor and coeffi-
cients of ∇.

Proof. The Koszul formula is given by

2ḡ
(
∇̄Ṽ W̃ , Z̃

)
= Ṽ

(
ḡ
(
W̃ , Z̃

))
+ W̃

(
ḡ
(
Z̃, Ṽ

))
− Z̃

(
ḡ
(
Ṽ , W̃

))
− ḡ

(
Ṽ ,

[
W̃ , Z̃

])
+ ḡ

(
W̃ ,

[
Z̃, Ṽ

])
+ ḡ

(
Z̃,

[
Ṽ , W̃

])
for any Ṽ , W̃ , Z̃ ∈ ℑ1

0 (T
∗M). In Koszul formula, we put Ṽ = f̃i, f̃ī, W̃ = f̃j , f̃j̄ , Z̃ = f̃k, f̃k̄.

i) By using (4), (7) and (10), we have

2ḡ
(
∇̄f̃i

f̃j , f̃t

)
= f̃i

(
ḡ
(
f̃j , f̃t

))
+ f̃j

(
ḡ
(
f̃t, f̃i

))
− f̃t

(
ḡ
(
f̃i, f̃j

))
− ḡ

(
f̃i,

[
f̃j , f̃t

])
+ ḡ

(
f̃j ,

[
f̃t, f̃i

])
+ ḡ

(
f̃t,

[
f̃i, f̃j

])
=

(
∂i + pkΓ

k
hi∂h̄

)
bpjpt +

(
∂j + pkΓ

k
hj∂h̄

)
bptpi −

(
∂t + pkΓ

k
ht∂h̄

)
bpipj

− apkRjtl
kδli + apkRtil

kδlj + apkRijl
kδlt

= bpkΓ
k
hi

(
ptδ

h
j + pjδ

h
t

)
+ bpkΓ

k
hj

(
piδ

h
t + ptδ

h
i

)
− bpkΓ

k
ht

(
pjδ

h
i + piδ

h
j

)
− apkRjti

k + apkRtij
k + apkRijt

k

= 2bpkptΓ
k
ji − 2apkRjti

k

=

(
2
b

a
pkplΓ

k
ji − 2pkRjli

k

)
aδlt

= 2ḡ

((
b

a
pkplΓ

k
ji − pkRjli

k

)
f̃l̄, f̃t

)
and

2ḡ
(
∇̄f̃i

f̃j , f̃t̄

)
= f̃i

(
ḡ
(
f̃j , f̃t̄

))
+ f̃j

(
ḡ
(
f̃t̄, f̃i

))
− f̃t̄

(
ḡ
(
f̃i, f̃j

))
− ḡ

(
f̃i,

[
f̃j , f̃t̄

])
+ḡ

(
f̃j ,

[
f̃t̄, f̃i

])
+ ḡ

(
f̃t̄,

[
f̃i, f̃j

])
= −∂t̄ (bpipj) + aΓt

jkδ
k
i + aΓt

ikδ
k
j
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= 2aΓl
ijδ

t
l − b

(
δlipj + δljpi

)
δtl

= 2ḡ

((
Γl
ij −

b

2a

(
δlipj + δljpi

))
f̃l, f̃t̄

)
.

For ii), iii) and iv) we get calculations similar to those above. □

Then we write ∇̄f̃α
f̃β = Γ̄δ

αβ f̃δ in the adapted frame
{
f̃(α)

}
of T ∗M , where Γ̄δ

αβ

is the coeffients of ∇̄. Using Theorem 1, we obtain

Corollary 1. In adapted frame
{
f̃(β)

}
, the components of the Christoffel symbols

Γ̄δ
αβ of ∇̄ on (T ∗M, ḡ) are found as follows

Γ̄l
ij = Γl

ij −
b

2a

(
δlipj + δljpi

)
, Γ̄l̄

ij =
b

a
pkplΓ

k
ji − pkRjli

k,

Γ̄l̄
i j̄ =

b

2a

(
δjl pi + δjipl

)
− Γj

li, Γ̄l̄
ī j =

b

2

(
δijpl + δilpj

)
,

Γ̄l̄
ī j̄ = Γ̄l

ī j̄ = Γ̄l
ī j = Γ̄l

i j̄ = 0. (13)

Let Ṽ = Ṽ αf̃(α) = Ṽ if̃(i) + Ṽ īf̃(̄i) be a vector field on T ∗M . The covariant

derivative of Ṽ with respect to the Levi-Civita connection ∇̄ of the natural Riemann
extension ḡ is given by

∇̄βṼ
α = f̃(β)Ṽ

α + Γα
βγ Ṽ

γ .

Applying (4), (8) and (13), we find the following components for the covariant
derivatives of the vector fields HV,CV, V ϑ with respect to the Levi-Civita connection
∇̄ of the natural Riemann extension ḡ:

∇̄i
HV j = f̃(i)

HV j + Γ̄j
ik

HV k + Γ̄j

ik̄
HV k̄ = ∇iV

j − b

2a

(
piV

j + δjipkV
k
)
,

∇̄ī
HV j = f̃(̄i)

HV j + Γ̄j
īk

HV k + Γ̄j

īk̄
HV k̄ = 0,

∇̄i
HV j̄ = f̃(i)

HV j̄ + Γ̄j̄
ik

HV k + Γ̄j̄

ik̄
HV k̄ =

b

a
ptpjΓ

t
kiV

k − ptRkji
tV k,

∇̄ī
HV j̄ = f̃(̄i)

HV j̄ + Γ̄j̄
īk

HV k + Γ̄j̄

īk̄
HV k̄ =

b

2

(
pjV

i + δijpkV
k
)
.

∇̄i
CV j = ∇iV

j − b

2a

(
piV

j + δjipkV
k
)
,

∇̄ī
CV j = 0,

∇̄i
CV j̄ = −pt∇i∇jV

t +
b

a
ptpjΓ

t
kiV

k − b

2a
pt

(
pi∇jV

t + pj∇iV
t
)
− ptRkji

tV k,

∇̄ī
CV j̄ = −∇jV

i +
b

2

(
pjV

i + δijpkV
k
)
.

∇̄i
V ϑj = 0,

∇̄ī
V ϑj = 0,
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∇̄i
V ϑj̄ = ∇iϑj +

b

2a
(piϑj + pjϑi) ,

∇̄ī
V ϑj̄ = 0.

Then, we get the following theorem:

Theorem 2. The horizontal and complete lifts HV,CV ∈ ℑ1
0 (T

∗M) of V ∈ ℑ1
0 (M)

and the vertical lift V ϑ ∈ ℑ1
0 (T

∗M) of ϑ ∈ ℑ0
1 (M) are not parallel with respect to

the Levi-Civita connection ∇̄ of the natural Riemann extension ḡ.

4. The Metric Connection with Respect to the Natural Riemann
Extension ḡ

The Levi-Civita connection ∇̄ of the natural Riemann extension ḡ on the cotan-
gent bundle T ∗M is the unique connection which satisfies ∇̄ḡ = 0, and has no

torsion. Further, there exists another connection which satisfies
⌣

∇ḡ = 0, and has
non-trivial torsion tensor. This connection is called the metric connection of ḡ.

Now we consider the horizontal lift H∇ of any connection ∇ on the cotangent
bundle T ∗M defined by

H∇V ϑ
V ω = 0 , H∇V ϑ

HZ = 0,
H∇HV

V ω = V (∇V ω) , H∇HV
HZ = H (∇V Z) (14)

for any V,Z ∈ ℑ1
0 (M) and ϑ, ω ∈ ℑ0

1 (M) [21].

Let HΓγ
αβ be coefficients of H∇. Using the formula H∇αf̃(β) =

HΓγ
αβ f̃(γ), where

H∇α = H∇f̃(α)
, we obtain

HΓk
ij =

HΓk
ij , HΓk̄

i j̄ = −HΓj
ik,

HΓk̄
ī j̄

= HΓk̄
i j =

HΓk
ī j̄

= HΓk
ī j

= HΓk̄
ī j

= HΓk
i j̄ = 0. (15)

The torsion tensor T of H∇ is the skew–symmetric (1,2)-tensor field and satisfies
the following:

T
(
V ϑ, V ω

)
= 0, T

(
HV, V ω

)
= 0 , T

(
HV,HZ

)
= −γR (V,Z) ,

where R denotes the curvature tensor of ∇ and γR (V,Z) =
∑
j

phR
h
kljV

kZl ∂
∂xj̄

(see[21, p.287]).
From (9) and (14), we obtain

(
H∇V ϑḡ

) (
V ω, V ε

)
= H∇V ϑḡ

(
V ω, V ε

)
− ḡ

(
H∇V ϑ

V ω, V ε
)
− ḡ

(
V ω,H∇V ϑ

V ε
)
,

= 0(
H∇HV ḡ

) (
V ϑ, V ω

)
= H∇HV ḡ

(
V ϑ, V ω

)
− ḡ

(
H∇HV

V ϑ, V ω
)
− ḡ

(
V ϑ,H∇HV

V ω
)
,

= 0(
H∇V ϑḡ

) (
V ω,HZ

)
= H∇V ϑḡ

(
V ω,HZ

)
− ḡ

(
H∇V ϑ

V ω,HZ
)
− ḡ

(
V ϑ,H∇V ω

HZ
)



370 F. OCAK

= V ϑ
(
a
(
V (ω (Z))

))
= 0,

(
H∇HV ḡ

) (
V ω,HZ

)
= H∇HV ḡ

(
V ω,HZ

)
− ḡ

(
H∇HV

V ω,HZ
)
− ḡ

(
V ω,H∇HV

HZ
)

= H∇HV

(
a
(
V (ω (Z))

))
− ḡ

(
V (∇V ω) ,

HZ
)
− ḡ

(
V ω,H (∇V Z)

)
=

(
H∇HV a

) (
V (ω (Z))

)
+ a

(
V (∇V (ω (Z)))

)
− a

(
V ((∇V ω) (Z))

)
+ a

(
V (ω (∇V Z))

)
= a

(
V (∇V (ω (Z)))

)
− a

(
V (∇V (ω (Z)))

)
= 0,

(
H∇V ϑḡ

) (
HZ, V ε

)
= H∇V ϑḡ

(
HZ, V ε

)
− ḡ

(
H∇V ϑ

HZ, V ε
)
− ḡ

(
HZ,H∇V ϑ

V ε
)
,

= 0,(
H∇HV ḡ

) (
HZ, V ε

)
= H∇HV ḡ

(
HZ, V ε

)
− ḡ

(
H∇HV

HZ, V ε
)
− ḡ

(
HZ,H∇HV

V ε
)

= H∇HV

(
aV (ε (Z))

)
− ḡ

(
H (∇V Z) , V ε

)
− ḡ

(
HZ, V (∇V ε)

)
= V (∇V (aε (Z)))− aV (ε (∇V Z))− aV ((∇V ε) (Z)) = 0,(

H∇V ϑḡ
) (

HV,HZ
)

= H∇V ϑḡ
(
HV,HZ

)
− ḡ

(
H∇V ϑ

HV,HZ
)
− ḡ

(
HV,H∇V ϑ

HZ
)
,

= 0,

(
H∇HV ḡ

) (
HY,HZ

)
= H∇HV ḡ

(
HY,HZ

)
− ḡ

(
H∇HV

HY,HZ
)
− ḡ

(
HY,H∇HV

HZ
)

= H∇HV (bp (Y ) p (X))−V (bp (∇V Y ) p (Z))−V (bp (Y ) p (∇V Z))

= V (∇V b (p (Y )) p (Z))− V (∇V b (p (Y )) p (Z)) = 0

for any V, Y, Z ∈ ℑ1
0 (M) and ϑ, ω, ε ∈ ℑ0

1 (M), i.e. the horizontal lift H∇ of ∇ is a
metric connection.

In [21], the Ricci tensor field HRγβ of H∇ is given by:

HRkj =
HRαkj

α = HRikj
i + HRīkj

ī = Rikj
i = Rkj ,

HRk̄ j̄ =
HRk̄j =

HRkj̄ = 0, (16)

where Rkj denotes the Ricci tensor field of ∇ on M .
Now using (11) and (16) the natural Riemann extension ḡ, the scalar curvature

of H∇ is generated by

Hr = ḡγβHRγβ = ḡjkHRjk + ḡj̄kHRj̄k + ḡjk̄HRjk̄ + ḡj̄k̄HRj̄k̄ = 0.

Thus we have

Theorem 3. The cotangent bundle T ∗M with metric connection H∇ has a van-
ishing scalar curvature with respect to the natural Riemann extension ḡ.
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5. Geodesics on the Cotangent Bundle with the Natural Riemann
Extension

Let now we investigate the geodesics on the cotangent bundle with the natural
Riemann extension. Let C : xh = xh (t) be a curve in M and ωh (t) be a covector

field along C. Also, we take that C̃ be a curve on T ∗M and locally given by

xh = xh (t) , xh̄def= ph = ωh (t) . (17)

If the curve C satisfies at all the points the relation

δωh

dt
=

dωh

dt
− Γi

jh

dxj

dt
ωi = 0,

then the curve C̃ is said to be a horizontal lift of the curve C in M . Hence, the
initial condition ωh = ω0

h for t = t0 is taken, there exists a unique horizontal lift
given by (17).

If t is the arc length of a curve xA = xA (t) , A = (i, ī) in T ∗M , then the
differential equations of the geodesic is given by

δ2xA

dt2
=

d2xA

dt2
+ Γ̄A

CB

dxC

dt

dxB

dt
= 0 (18)

with respect to the induced coordinates
(
xi, xī

)
=

(
xi, pi

)
in T ∗M , where Γ̄A

CB are

components of ∇̄ defined by (13).

Now, from (5), (6) and using the adapted frame
{
f̃(β)

}
, we write the equation

(18) as follow:

θα = Ãα
Adx

A,

i.e.

θh = Ãh
Adx

A = δhi dx
i = dxh

for α = h and

θh̄ = Ãh̄
Adx

A = −paΓ
a
hjdx

j + δhj dx
j = δph

for α = h̄. Also we put

θh

dt
= Ãh

A
dxA

dt
=

dxh

dt
,

θh̄

dt
= Ãh̄

A
dxA

dt
=

δph
dt

along a curve xA = xA (t) in T ∗M . Hence,

d

dt

(
θα

dt

)
+ Γ̄α

γβ

θγ

dt

θβ

dt
= 0.
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Using (18), we obtain

a)
δ2xh

dt2
+

b

2a

(
δhi pj + δhj pi

) dxi

dt

dxj

dt
= 0,

b)
δ2ph
dt2

+ ps

(
b

a
phΓ

s
ji −Rjhi

s

)
dxi

dt

dxj

dt
+

b

2

(
δijph + δihpj

) δpi
dt

dxj

dt

+
b

2a

(
δjhpi + δjiph

) dxi

dt

δpj
dt

= 0, (19)

where δ2ph

dt2 = d
dt

(
δph

dt

)
− Γs

jh
δps

dt
dxj

dt .

Theorem 4. Let C̃ be a curve expressed locally by xh = xh (t), ph = ωh (t) with

respect to the induced coordinate system
(
xi, xī

)
=

(
xi, pi

)
on T ∗M . If the curve

C̃ satisfies the equation (19), then it is a geodesic of the natural Riemann extension
ḡ.

Let us assume that the curve (19) lies on a fibre, namely xh = const. Then we
obtain

δ2ph
dt2

= 0.

Then we find ph = kht+ nh, where khand nh are constant. With this selection, we
have proved the following:

Theorem 5. If geodesic xh = xh (t) , ph = ph(t) lies on a fibre of T ∗M endowed
with the natural Riemann extension ḡ, then: xh = ch, ph = kht + nh where ch, kh
and nh are constant.

Let now C̃ : xh = xh (t) , xh̄ = ph(t) = ωh (t) be a horizontal lift ( δph

dt = δωh

dt = 0)

of the geodesic C : xh = xh (t) ( δ
2xh

dt2 = 0) in M of ∇. Then by virtue of (19), we
obtain

Theorem 6. Let (M,∇) be an dimensional manifold with metric g and T ∗M be
its cotangent bundle with the natural Riemann extension ḡ. Then the horizontal lift
of a geodesic on M need not be a geodesic on T ∗M with respect to the connection
∇̄.
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