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Abstract

A mathematical model of ordinary differential equations is considered to analyze the
pharmacokinetics of multi-chemotherapeutic drugs and their pharmacodynamic effects on
homogeneous tumors. Set-valued analysis is used to design protocols of drug administration
and applied to decrease tumor density under their carrying capacity of Gompertz growth
and converge to zero.

1. Introduction

Several works were carried out on cancer control by the combination of multi-chemotherapeutic agents to have more effects on tumor
cells, and their density [1]. Uses multi-objective optimization method to minimize the area under the curve of tumors as well as the side
effects on the patient during chemotherapy [2]. Introduces an adaptive neural networks control approach, based on feedback linearization,
in order to optimize chemotherapy regimens [3]. Develops optimal therapeutic strategies, subject to reducing tumor size and toxicity
throughout treatment [4]. Employs swarm intelligence for optimization of cancer chemotherapy [5]. Uses evolutionary algorithms to
minimize tumor and maximize patient survival time [6]. Applies genetic algorithms to eradicate tumor [7]. Computes the optimal doses
of CAF (Cyclophosphamide, Adriamycin, and Fluorouracil) regimen for each patient suffering with breast cancer stage IIB in adjuvant
chemotherapy [8]. Develops a mixed-integer program for combination chemotherapy optimization to reduce the number of cancer cells in
the body [9]. Deals with the optimisation of multi-drug chemotherapy in order to better cope with the occurrence of drug-resistant cancer
cells [10]. Subjects a multi-drug chemotherapy schedule optimisation problem to local optima network.
In this work, we adapt the set-valued analysis methods developed in the previous works [11–18], to approach a model of combined
chemotherapy control in cancer, and make the solution viable on decreasing subset, with converging tumor density towards zero [11].
Investigates a general class of immunotherapy ODE models and gives some numerical examples [12]. Evokes viability and set-valued theories
to provide chemotherapy protocol laws [13]. Illustrates the approach by two applications on anti-angiogrnic therapy and tumor-immune with
chemotherapy [14]. Generalizes the method to anti-angiogenic therapy with chemotherapy [15]. Treats the problem of cancer control by
chemotherapy through a general model in ordinary differential equation form of tumor dynamics [16]. Analysis a tuberculosis (TB) infection
model with the treatment of four ordinary differential equations, namely, susceptible, latent, infected, and treated individuals [17]. Proposes
an extension of the classical SEIR-type models to describe and control the spread of COVID-19 in Morocco [18]. Controls general class of
ordinary differential equations that model the temporal evolution of diseases spread and applies the approach to a SIRS model for several
diseases such that influenza and malaria.
The rest of this paper is organized as follows: Section 2 lunches the general model and states the associated viability problem. Section 3
approaches the problem with some tools of the set-valued analysis. Section 4 figures some numerical calculus of analytical results on a
model example. Section 5 concludes the paper.

2. General Model and Problem Formulation

Pharmacokinetiks of chemotherapeutic drugs

u ∈U =
n

∏
i=1

[
umin

i ,umax
i

]
,
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and their pharmacodynamics on tumor density

τ ∈ R+ = [0,∞),

are modeled by the coupled ordinary differential equations

τ̇ = ψ(τ)−G(u)τ, with τ(0) = τ0 ∈ R∗+, (2.1a)

u̇ = f (u,v), with u(0) = u0 ∈U, (2.1b)

with the explicit expressions of the functions ψ and G in (2.1a)

ψ(τ) = −ξ τ ln
(

τ

θ

)
, (2.1c)

G(u) = ∑
1≤i≤n

κiui + ∑
1≤i< j≤n

κi juiu j, (2.1d)

where in (2.1c) ξ and θ are the parameters of the Gompertz growth function, and in (2.1d) κi is the effectiveness coefficient of the i-th drug,
while κi j is the coefficient of the potentialization in drug cytotoxicity induced by the presence of i-th and j-th drugs.
And with the explicit expression of the vector function f in (2.1b)

f (u,v) =
(
− f1u1 +

v1

V1
, · · · ,− fnun +

vn

Vn

)′
, (2.1e)

where the parameters Vi are the volumes of distribution, and the parameters fi are the elimination rates, and the input functions vi(t) are the
protocol administration, associated to the compartments ui.
We have to find input control function v, expressing the protocol administration, and satisfying the constraint

∀t ∈ [0,∞), v(t) ∈V =
n

∏
i=1

[
fiViumin

i , fiViumax
i

]
, (2.2a)

by which the tumor density τ is as follows

lim
t→∞

τ(t) = 0. (2.2b)

We will formulate the control problem (2.2) in the framework of the viability theory [19].
To each real number α > 0, we define the function

ψα (τ,u) = ψ(τ)−G(u)τ +ατ, (2.3a)

where the functions ψ and G still given by (2.1c) and (2.1d) respectively, and we associate the subset

Dα = {(τ,u) ∈ R+×U | ψα (τ,u)≤ 0}. (2.3b)

Proposition 2.1. Let be α such that (τ0,u0) ∈ Dα .
If the system (2.1) is globally viable in the subset Dα by a control v : [0,∞)→V , then v is a protocol in the sense of the problem (2.2).

Proof. Let t ≥ 0.
By (2.1a) and (2.3) we have the differential inequality

˙̄τ(t) = ψ(τ̄(t))−G(ū(t))τ̄(t)≤−ατ̄(t),

and by applying Gronwall’s Lemma we get the exponential estimate

0≤ τ̄(t)≤ τ0 exp(−αt),

then

lim
t→∞

τ̄(t) = 0.
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3. Set-Valued Approach

We associate with the system (2.1), the regulation map Fα defined on the subset Dα (2.3b) in the following way

Fα (τ,u) = {v ∈V | (ψ(τ)−G(u)τ, f (u,v))′ ∈ TDα
(τ,u)}, (3.1a)

where

TDα
(τ,u) =

{
(τ̂, û) ∈ R×Rn | liminf

h↓0

dDα
(τ +hτ̂,u+hû)

h

}
, (3.1b)

stands for the tangent cone to the subset Dα at point (τ,u).

Lemma 3.1. Let be α such that (τ0,u0) ∈ Dα .
The system (2.1) is locally viable in the subset Dα , if and only if for all (τ,u) ∈ Dα there exists vα ∈V such that

(ψ(τ)−G(u)τ, f (u,vα ))
′ ∈ TDα

(τ,u). (3.2)

i.e., if and only if the regulation map Fα is strict.

Corollary 3.2. Let be α such that (τ0,u0) ∈ Dα .
If the regulation map Fα admits a single-valued selection vα , then the system (2.1) is globally viable in the subset Dα by the protocol vα .

Proof. Let be α such that (τ0,u0) ∈ Dα , and vα : Dα →V a single-valued selection of the regulation map Fα .
According to the Lemma 3.1, the system (2.1) under the depending state control v = vα (τ,u), admits to a local viable solution (τ̄, ū) in the
subset Dα , over a maximal time interval [0, t̄).
We have to prove that t̄→ ∞:
As τ̄ is a non-negative decreasing function, then τ̄(t) has a limit denoted by τ̄(t̄) when t→ t̄−.
By (2.1b), (2.1e), and (2.2a) we have

‖ ˙̄u(t)‖ ≤ ‖ f‖‖ū(t)‖+‖ f‖‖umax‖,

then by applying Gronwall’s Lemma we get the exponential estimate

‖ū(t)‖ ≤ (‖u0‖+‖umax‖)exp(‖ f‖t),

then ū(t) has a limit denoted by ū(t̄) when t→ t̄−.
Therefore

(τ̄(t), ū(t))→ (τ̄(t̄), ū(t̄)) when t→ t̄−,

and (τ̄(t̄), ū(t̄)) belongs to Dα because it is a closed subset.
Now, by considering (τ̄(t̄), ū(t̄)) as an initial state to the system (2.1), it follows that (τ̄, ū) may be prolonged to a viable solution (τ̄, ū) in
Dα , starting at (τ̄(t̄), ū(t̄)) on some interval [t̄, tmax) where tmax > t̄, which is in contradiction with the maximality of t̄, then the solution
(τ̄, ū) becomes globally viable in Dα .
Finally the Proposition 2.1 confirms that vα is a protocol.

Now to give an explicit expression to the tangent cone TDα
(3.1b), we appeal the following Lemma

Lemma 3.3. If the function ψα (2.3a) is continuously differentiable on Dα , and admits a partial derivative ∂ψα strictly negative on Dα .
Then for each (τ,u) ∈ Dα the tangent directions (τ̂, û) of TDα

(τ,u) are characterized by

ûi ≥ 0 if u = umin
i , for i = 1, · · · ,n, (3.3a)

ûi ≤ 0 if u = umax
i , for i = 1, · · · ,n, (3.3b)

ψ̇α (τ,u)(τ̂, û)≤ 0, if ψα (τ,u) = 0. (3.3c)

Corollary 3.4. For each (τ,u) ∈ Dα the tangent directions (τ̂, û) of TDα
(τ,u) are characterized by the inequality

ψ̇α (τ,u)(τ̂, û)≤ 0, if ψα (τ,u) = 0. (3.4)

Proof. Thanks to the expression (2.1e)

• If ui = umin
i , then

− fiu+
vi

Vi
= − fiumin

i +
vi

Vi

≥ − fiumin
i + fiumin

i

≥ 0.

• If ui = umax
i , then

− fiu+
vi

Vi
= − fiumax

i +
vi

Vi

≤ − fiumax
i + fiumax

i

≤ 0.
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To give a useful expression of the regulation map Fα (3.1a), we set the functions hα and `α by the expressions

hα (τ,u) =
(

∂u1 ψα (τ,u)
V1

, · · · , ∂un ψα (τ,u)
Vn

)′
, (3.5a)

`α (τ,u) = (ψ(τ)−G(u)τ)∂τ ψα (τ,u)− ∑
1≤i≤n

fiui∂ui ψα (τ,u). (3.5b)

Corollary 3.5. The regulation map Fα is expressed explicitly on the subset Dα as

Fα (τ,u) =
{

V if ψα (τ,u)< 0,
Vα (τ,u) if ψα (τ,u) = 0, (3.6a)

with

Vα (τ,u) = {v ∈V | 〈hα (τ,u),v〉+ `α (τ,u)≤ 0}. (3.6b)

Proof. For all (τ,u) ∈ Dα we have

ψ̇α (τ,u)(ψ(τ)−G(u)τ, f (u,v)) = 〈∇ψα (τ,u),(ψ(τ)−G(u)τ, f (u,v))′〉

= (ψ(τ)−G(u)τ)∂τ ψα (τ,u)− ∑
1≤i≤n

fiui∂ui ψα (τ,u)+ ∑
1≤i≤n

vi
∂ui ψα (τ,u)

Vi
,

then by (3.5)

ψ̇α (τ,u)(ψ(τ)−G(u)τ, f (u,v)) = 〈hα (τ,u),v〉+ `α (τ,u). (3.7)

Proposition 3.6. A single-valued selection of the regulation map Fα may be given on the subset Dα by the expression

vα (τ,u) = πVα (τ,u)(0), (3.8)

where π denotes the operator of best approximation.

Remark 3.7. As Lemma 3.1, the viability of the solution (τ̄, ū) demands the necessary following condition, between initial tumor density
τ̄(0) and initial control ū(0)

ψ(τ̄(0))
τ̄(0)

< G(ū(0)). (3.9)

To deal with this situation, we introduce the set-valued map

Wβ (τ,u) = {v ∈V | 〈h(τ,u),v〉+ `(τ,u)≤−β}, (3.10a)

where β is a non-negative real number, and the functions h and ` are given by the expressions

h(τ,u) =
(

∂u1 Φ(τ,u)
V1

, · · · , ∂un Φ(τ,u)
Vn

)′
, (3.10b)

`(τ,u) = (ψ(τ)−G(u)τ)∂τ Φ(τ,u)− ∑
1≤i≤n

fiui∂ui Φ(τ,u), (3.10c)

and the function Φ is given by the expression

Φ(τ,u) = ψ(τ)−G(u)τ, (3.10d)

where the functions ψ and G still given by (2.1c) and (2.1d) respectively.

Theorem 3.8. Let be (τ0,u0) an initial state such that
ψ(τ0)

τ0
≥ G(u0).

The minimal selection wβ of the set-valued map Wβ

wβ (τ,u) = πWβ (τ,u)(0), (3.11)

controls the system (2.1) to a final state (τ̄(t̄), ū(t̄)) such that
ψ(τ̄(t̄))

τ̄(t̄)
< G(ū(t̄)) (3.9), on the interval [0, t̄] where t̄ >

Φ(τ0,u0)

β
.

Proof. By dynamic equations (2.1a) and (2.1b) we have

Φ(τ̄(t̄), ū(t̄)) = Φ(τ̄(0), ū(0))+
∫ t̄

0
Φ̇(τ̄(s), ū(s))(ψ(τ̄(s))−G(ū(s))τ̄(s), f (ū(s),wβ (s)))ds,

then by the formula (3.7) we get

Φ(τ̄(t̄), ū(t̄)) = Φ(τ0,u0)+
∫ t̄

0
[〈h(τ̄(s), ū(s)),wβ (τ̄(s), ū(s))〉+ `(τ̄(s), ū(s))]ds,

since wβ is a single-valued selection of the set-valued map Wβ then we have

Φ(τ̄(t̄), ū(t̄))≤Φ(τ0,u0)−β t̄,

as β t̄ > Φ(τ0,u0) it follows that Φ(τ̄(t̄), ū(t̄))< 0.
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4. Particular Model and Numerical Simulation

To give numerical simulations for the analytical results of the previous section, we consider the following model from the paper [20],
which describes the phamacokinetiks of Etoposide drug u1 ∈ U1 = [umin

1 ,umax
1 ] and Cisplatin drug u2 ∈ U2 = [umin

2 ,umax
2 ], and their

pharmacodynamics on tumor the density τ ∈ R+ = [0,∞)

τ̇ = ψ(τ)−G(ũ1, ũ2)τ, (4.1a)

u̇1 = f1(u1,v1), (4.1b)

u̇2 = f2(u2,v2), (4.1c)

where the explicit expressions of the functions ψ are G are given as follows

ψ(τ) = −ξ τ ln
(

τ

θ

)
, (4.1d)

G(ũ1, ũ2) = κ1ũ1 +κ2ũ2 +κ12ũ1ũ2, (4.1e)

with

ũi = [ui−umin
i ]H[ui−umin

i ], for i = 1,2, (4.1f)

where H(·) is the Heaviside’s step function

H[ui−umin
i ] =

{
1, ui ≥ umin

i ,

0, ui < umin
i ,

(4.1g)

and f1, and f2 are given as follows

f1(u1,v1) = − f1u1 +
v1

V1
, (4.1h)

f2(u2,v2) = − f2u2 +
v2

V2
. (4.1i)

The numerical values of the model parameters are grouped in the Table 1.
For the non-advanced stage of tumor Φ(τ0,u0)< 0, we initiate the model (4.1) at the four states (2,0,0), (2,0.1,0), (2,0,0.01), (2,0.1,0.01),
to compare between single and coupled effects of chemo-therapies on the tumor density in Figure 4.1, so by the protocols of Figure 4.3,
while Figure 4.2 illustrates their corresponding pharmacokinetics, concerning the viability parameter α of (2.3b) we take 20 (without unit) as
numerical value. In the following scheme we combine the numerical methods of Euler by step h̄ > 0 and Uzawa of parameter λ ∈ R5

+ to
discretize and solve the model 

τ̇ = ψ(τ)−G(ũ)τ,

u̇ = f (u,v),

v = vα (τ,v) ∈ Fα (τ,u),

t0 ∈ R+,(τ0,u0) ∈ Dα .

(4.2)

1. Initialization

(a) t0 ∈ R+,
(b) (τ0,u0) ∈ Dα ,
(c) λ 0 ∈ R5

+,

2. Iteration

(a) tn+1 = tn + h̄,

(b)


τn+1 = τn + h̄

(
−ξ τn ln

(
τn

θ

))
,

un+1
1 = un

1 + h̄
(
− f1un

1 +
vn

1
V1

)
,

un+1
2 = un

2 + h̄
(
− f2un

2 +
vn

2
V2

)
,

(c)
{

vn
1 =−λ n

5 h1
α (τn,un)+λ n

3 −λ n
1 ,

vn
2 =−λ n

5 h2
α (τn,un)+λ n

4 −λ n
2 ,

(d)



λ
n+1
1 = max(λ n

1 +σ(vn
1− vmax

1 ),0),
λ

n+1
2 = max(λ n

2 +σ(vn
2− vmax

2 ),0),
λ

n+1
3 = max(λ n

3 −σvn
1,0),

λ
n+1
4 = max(λ n

4 −σvn
2,0),

λ
n+1
5 = max(λ n

5 +σ(h1
α (τn,un)vn

1 +h2
α (τn,un)vn

2 + `α (τn,un),0), with 0 < σ <
2

‖hα (τ,u)‖
.
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For the advanced stage of tumor Φ(τ0,u0) ≥ 0, we choose (0.5,0,0) as initial state to the model (4.1), and parameter β = 0.1 (3.10a)
(without unit). Tumor density in Figure 4.5 needs the minimal time t̄ = 6 (by days) of Figure 4.8, before reaching the non-advanced stage
Φ(τ(t̄),u(t̄))< 0, so by the controls of Figure 4.7. We follow the preceding algorithm to approach the minimal selection (3.11) and analyze
the model 

τ̇ = ψ(τ)−G(ũ)τ,

u̇ = f (u,v),

v = wβ (τ,v) ∈Wβ (τ,u),

t ∈ [t0, t̄],

t0 ∈ R+,Φ(τ0,u0)≥ 0,

(4.3)

with the both modifications on the initialization 1. (b) and the iteration 2. (d) to

1. (b) Φ(τ0,u0)≥ 0, and

2. (d) λ
n+1
5 = max(λ n

5 +σ(h1(τn,un)vn
1 +h2(τn,un)vn

2 + `(τn,un)+β ,0), where 0 < σ <
2

‖h(τ,u)‖
.

Parameter Value Unit Description Reference
ξ 0.006 d−1 Gompertz growth parameter [20]
θ 1 kg Carrying capacity [20]
k1 10 d−1g−1.` Coffecient of u1 effectiveness [20]
k2 5 d−1g−1.` Coffecient of u2 effectiveness [20]
k12 2×104 d−1.g−2.`−2 Coefficient of the cytotoxicity by u1 and u2 [20]
f1 2 d−1 Elimination rate of u1 [20]
f2 0.1 d−1 Elimination rate of u2 [20]
V1 25 ` Volume of distribution for u1 [20]
V2 40 ` Volume of distribution for u2 [20]
umax

1 5 mg.`−1 Upper bound of u1 [20]
umax

2 10 mg.`−1 Upper bound of u2 [20]
umin

1 10−4 g.`−1 Lower bound of u1 [20]
umin

2 10−4 g.`−1 Lower bound of u2 [20]

Table 1: Parameter Values with Units and Descriptions

Figure 4.1: Tumors densities τ , τ1, τ2, and τ12, under null-control v = 0, single protocols v1
α , v2

α , and coupled protocol (v1
α ,v

2
α ) respectively.
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Figure 4.2: Pharmacokinetics u1 of Etoposide and u2 of Cisplatin

Figure 4.3: Etoposide v1
α and Cisplatin v2

α Protocols

Figure 4.4: Tumor τ in Advanced Stage
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Figure 4.5: Tumor τ in Transition from Advanced Stage to Non-Advanced One

Figure 4.6: Pharmacokinetics u1 of Etoposide and u2 of Cisplatin for the Stages Transition

Figure 4.7: Etoposide w1
β

and Cisplatin w2
β

Controls of Stages Transition.
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Figure 4.8: Sign of the Indicator Function Φ of the Tumor Stages and the Minimal Time t̄

5. Conclusion

The control problem of the tumor density (2.2) is successfully approached by the set-valued analysis, the single-valued selection vα (3.8) of
the regulation map Fα (3.1a) controls the general model (2.1) to be globally viable in the subset Dα (2.3b), and strictly decreases the tumor
density τ̄ under the carrying capacity θ = 1kg (2.1c) towards zero τ̄(∞) = 0kg (2.2b), under the exponential estimate τ̄(t)≤ τ0 exp(−αt),
for all t ∈ [0,∞). The protocols of the numerical model (4.2) given in Figure 4.3 are in feedback forms vi

α = vi
α (τ,u) for i = 1,2, and

their combination provides a considerable reduction of the tumor density in Figure 4.1, where τ̄12(t)� τ̄2(t) < τ̄1(t)� τ(t) for all
t ∈ [0,∞), yet τ(∞) = θ 6= 0 when there is no therapy, while τ̄12(∞) = τ̄2(∞) = τ̄1(∞) = 0, under mono-chemo-therapies v1

α , and v2
α , and

multi-chemo-therapies (v1
α ,v

2
α ) respectively. Nonetheless if the tumor density τ is in advanced stage Φ(τ0,u0)≥ 0, the minimal selection

wβ (3.11) of the set-valued map Wβ (3.10a) controls the general model (2.1) to the non-advanced stage Φ(τ̄(t̄), ū(t̄))< 0 on [0, t̄], where the
staging function Φ of cancer is given by (3.10d), which is in complete conformity with the numerical simulations of the specific model (4.3)
figured by 4.4, 4.5, 4.6, 4.7, and 4.8.
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