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Abstract 

In this paper, difference method is applied to the 

optimal control problem arising in non-linear optics. 

Firstly, the difference scheme is established for the 

problem. Then stability of the difference scheme is given 

and the error analysis for this scheme is evaluated. 

Finally, the covergence according to the functional of the 

difference approximation is proved.   

1.Introduction  

Optimal control problems are often not linear and, 

therefore, have no analytical solution. As a result, it is 

necessary to use numerical methods for solving optimal 

control problems. The methods used for these solutions 

are divided into two: direct methods and indirect methods. 

In indirect methods, calculus of variation used to 

determine the optimal condition of the first order of the 

original optimal control problem. Indirect methods lead to 

a boundary value problem to determine the optimal 

trajectories. The lowest cost is selected in locally-

optimized solutions. the disadvantage of the indirect 

method is that it is extremely difficult the solution of 

boundary value problems. In the direct method the 

optimal control problem is discretized converted to a non-

linear optimization problem. After the non-linear 

optimization problem is solved by well known techniques. 

Solving nonlinear optimization problem is easier than 

solving boundary value problems [ANIL V. RAO].  

The optimal control problem for the Schrödinger 

equation is one of the major interests of modern optimal 

control theory. The equation of Quasi optics is a special 

form of Schrödinger equation with complex potential. 

Potentials of this equation consists of refraction and 

absorption coefficients and these coefficients are often 

taken as control functions [KOÇAK, Y., ÇELİK, E., 

(2012)].  
 

 

 

Accepted Date: 27.04.2016

*Corresponding author:

Nigar Yıldırım Aksoy, PhD

Department of Mathematics,

Faculty of Science and Letters,

Kafkas University, TR-36100 Kars, Turkey

E-mail: tnyaksoy55@hotmail.com

 

 

 

 

 

 

 

 

 

Also the initial position of the system, usually taken as a 

control [KOÇAK, Y., ÇELİK, E., (2012), KOÇAK, Y., 

ÇELİK, E., YILDIRIM AKSOY, N., (2015)]. Such 

problems of modern physics, nonlinear optics and 

quantum mechanics arises in various branches 

[POTAPOV, M.N. AND RAZGULİN, A.V. (1990), 

YAGUBOV, G.Y. (1994), TOYOĞLU F., AND YAGUB, 

Y., (2015)]. 

Overall, the finite difference approach is used for the 

creation of numerical methods to solve optimal control 

problems. The finite difference method of solution of a 

system with optimal control problems governed by the 

Schrödinger equation were addressed in the studies 

[YAGUBOV, G.Y. AND MUSAYEVA, M.A. (1994), 

YILDIRIM, N., YAGUBOV, G.Y. AND YILDIZ B. 

(2012), TOYOĞLU F., AND YAGUB, Y., (2015)].  

2. Formulation of the Problem  

The following optimal control problem we consider 

in this paper 

                𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝐽(𝑣) = ‖𝜓1 − 𝜓2‖𝐿2(Ω)
2 }               (1)     

in the set 

𝑉 ≡ {𝑣 = (𝑣0, 𝑣1), 𝑣𝑚 ∈ 𝐿2(0, 𝐿), ‖𝑣𝑚‖𝐿2(0,𝐿)

≤ 𝑏𝑚, 𝑣1(𝑧) ≥ 0, ∀𝑧 ∈ (0, 𝐿),𝑚 = 0,1} 

subject to a systems of stationary equation of quasi optics 

𝑖
𝜕𝜓𝑘

𝜕𝑧
+ 𝑎0

𝜕2𝜓𝑘

𝜕𝑥2 − 𝑎(𝑥)𝜓𝑘 + 𝑣0(𝑧)𝜓𝑘 + 𝑖𝑣1(𝑧)𝜓𝑘 = 𝑓𝑘(𝑥, 𝑧) 

(𝑥, 𝑧) ∈ Ω,k = 1,2,                           (2) 

with the conditions  

                 𝜓𝑘(𝑥, 0) = 𝜑𝑘(𝑥), 𝑥 ∈ (0, 𝑙), 𝑘 = 1,2             (3) 

                  𝜓𝑘(0, 𝑧) =   𝜓𝑘(𝑙, 𝑧) = 0, 𝑧 ∈ (0, 𝐿).             (4) 

                         
 𝜕𝜓2(0,𝑧)

𝜕𝑥
=

𝜕𝜓2(𝑙,𝑧)

𝜕𝑥
= 0, 𝑧 ∈ (0, 𝐿).            (5)           

where 𝜓𝑘 = 𝜓𝑘(𝑥, 𝑧) is a wave function, 

 Ω = (0, l) × (0, l), i = √−1, 𝑎0 > 0, 𝑙 > 0, 𝐿 > 0, 𝑏𝑚 > 0 (𝑚 = 0,1)   

are given numbers, 𝑎(𝑥) is a measurable bounded 

function that satisfies the following conditions: 
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0 < 𝜇0 ≤ 𝑎(𝑥) ≤ 𝜇1, |
𝑑𝑎(𝑥)

𝑑𝑥
| ≤ 𝜇2,  |

𝑑2𝑎(𝑥)

𝑑𝑥2
| ≤ 𝜇3, 

∀𝑥 ∈ (0, 𝑙), 𝜇𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 0.  

𝜑𝑘(𝑥) and 𝑓𝑘(𝑥, 𝑧) are given functions that satisfy the 

condition 

𝜑1 ∈
𝑜

𝑊2
2(0, 𝑙),𝜑2 ∈ 𝑊2

2(0, 𝑙),
𝑑𝜑2(0)

𝑑𝑥
=

𝑑𝜑2(𝑙)

𝑑𝑥
= 0         (6) 

𝑓1 ∈
𝑜

𝑊2
2,0(Ω),𝑓2 ∈ 𝑊2

2,0(Ω),
𝜕𝑓(0,𝑧)

𝜕𝑥
=

𝜕𝑓(𝑙,𝑧)

𝜕𝑥
= 0         (7) 

The spaces 𝑊𝑙
𝑘,𝑚(Ω) are Sobolev spaces defined as in 

LADYZENSKAJA et al. (1968). 

In study [IBRAHIMOV, N.S. (2010)], it was shown that 

the problem (1) to (4) has unique solution for each 𝑣 ∈ 𝑉 

and the following estimation is valid for this solution: 

    ‖𝜓1‖ 𝑜

𝑊2
2,0(Ω) 

≤ 𝑐1 (‖𝜑1‖ 𝑜

𝑊2
2,0(0,l) 

+ ‖𝑓1‖ 𝑜

𝑊2
2,0(Ω) 

)        (8)   

    ‖𝜓2‖𝑊2
2,1(Ω) ≤ 𝑐2 (‖𝜑2‖𝑊2

2(0,𝑙) + ‖𝑓2‖𝑊2
2,0(0,𝑙))         (9)   

for each 𝑧 ∈ (0, 𝐿).  

Now, we shall discretize the optimal control problem (1) 

to (5) as in the study [KOÇAK, Y., ÇELİK, E., 

YILDIRIM AKSOY, N., (2015)]. For this purpose, let us 

transform the region Ω into the following scheme 

{(𝑥𝑗 , 𝑧𝑘)𝑛
} , 𝑛 = 1,2,… , 𝑥𝑗 = 𝑗ℎ −

ℎ

2
, 𝑗 = 1,𝑀𝑛−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑧𝑘 = 𝑘𝜏, 𝑘 = 1,𝑁𝑛
̅̅ ̅̅ ̅̅   

ℎ = ℎ𝑛 = 𝑙
𝑀𝑛 − 1⁄ , 𝜏 =  𝜏𝑛 =  𝜏

𝑁𝑛
⁄ ,𝑀 = 𝑀𝑛 , 𝑁 = 𝑁𝑛 . 

and let us make the following assignments 

𝛿�̅�𝜙𝑗𝑘 =
𝜙𝑗𝑘 − 𝜙𝑗𝑘−1

ℎ
, 𝛿�̅�𝜙𝑗𝑘 =

𝜙𝑗𝑘 − 𝜙𝑗𝑘−1

𝜏
 

 

𝛿𝑥𝜙𝑗𝑘 =
𝜙𝑗+1𝑘 − 𝜙𝑗𝑘

ℎ
, 𝛿𝑥�̅�𝜙𝑗𝑘 =

𝜙𝑗+1𝑘 − 2𝜙𝑗𝑘 − 𝜙𝑗𝑘−1

ℎ2  

For arbitrary natural number, 𝑛 ≥ 1, let us consider the 

minimizing problem of the function 

              𝐼𝑛([𝑣]𝑛) = ℎ ∑ |𝜙𝑗𝑁
1 − 𝜙𝑗𝑁

2 |
2𝑀−1

𝑗=1                     (10) 

in the set  

𝑉 ≡ {[𝑣]𝑛: [𝑣]𝑛 = ([𝑣0]𝑛 , [𝑣1]𝑛), 𝑣1𝑘 ≥ 0, 𝑘 = 1,𝑁,̅̅ ̅̅ ̅̅  

[𝑣𝑝] = (𝑣𝑝1, 𝑣𝑝2, … , 𝑣𝑝𝑁), (ℎ ∑|𝑣𝑝𝑘|
2

𝑁

𝑘=1

)

1
2⁄

≤ 𝑏𝑝, 𝑝 = 0,1, 𝑘 = 1,𝑁̅̅ ̅̅ ̅}  

under the conditions  

𝑖𝛿�̅�𝜙𝑗𝑘
𝑝

+ 𝑎0𝛿𝑥�̅�𝜙𝑗𝑘
𝑝

− 𝑎𝑗𝜙𝑗𝑘
𝑝

+ 𝑣0𝑘𝜙𝑗𝑘
𝑝

+ 𝑖𝑣1𝑘𝜙𝑗𝑘
𝑝

= 𝑓𝑗𝑘
𝑝
, 𝑗 = 1,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1,𝑁̅̅ ̅̅ ̅, 

       (11) 

                  𝜙𝑗0
𝑝

= 𝜑𝑗
𝑝
, 𝑗 = 0,𝑀̅̅ ̅̅ ̅̅ , 𝑝 = 1,2                       (12) 

                  𝜙0𝑘
1 = 𝜙𝑀𝑘

1 = 0, 𝑘 = 1,𝑁̅̅ ̅̅ ̅,                          (13) 

            𝛿�̅�𝜙1𝑘
2 = 𝛿�̅�𝜙𝑀𝑘

2 = 0, 𝑘 = 1,𝑁̅̅ ̅̅ ̅,                        (14) 

where the scheme functions 𝑎𝑗 , 𝜑𝑗
𝑝
, 𝑓𝑗𝑘

𝑝
, 𝑝 = 1,2 are 

defined by  

               𝑎𝑗 =
1

ℎ
∫ 𝑎(𝑥)𝑑𝑥, 𝑗

𝑥𝑗+
ℎ

2⁄

𝑥𝑗−
ℎ

2⁄
= 1,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅             (15) 

    𝜑𝑗
𝑝

=
1

ℎ
∫ 𝜑𝑝(𝑥)𝑑𝑥, 𝑝 = 1,2, 𝑗

𝑥𝑗+
ℎ

2⁄

𝑥𝑗−
ℎ

2⁄
= 1,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       (16) 

𝜑0
1 = 𝜑𝑀

1 = 0, 𝜑0
2 = 𝜑1

2, 𝜑𝑀
2 = 𝜑𝑀−1

2  

𝑓𝑗𝑘
𝑝

=
1

𝜏ℎ
∫ ∫ 𝑓𝑝(𝑥, 𝑧)𝑑𝑥𝑑𝑥, 𝑝 = 1,2,

𝑥𝑗+
ℎ

2⁄

𝑥𝑗−
ℎ

2⁄

𝑧𝑘

𝑧𝑘−1
 𝑗 = 1,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1, 𝑁.̅̅ ̅̅ ̅̅  (17) 

As we have seen discrete problem (10)-(14) is the same as 

problem (1)-(5). So we can say the problem (10)-(14) has 

at least solution.  

Using the study [11], we can write Theorem 1 for the 

stability of difference scheme.  

Theorem 1. For each [𝑣]𝑛 ∈ 𝑉𝑛, the solution of the 

difference scheme (10)-(14) satisfies the following 

estimation.  

ℎ ∑|𝜙𝑗𝑘
𝑝

|
2

𝑀−1

𝑗=1

≤ 𝑐3 (ℎ ∑|𝜑𝑗
𝑝
|
2

𝑀−1

𝑗=1

+ 𝜏ℎ ∑ ∑|𝑓𝑗𝑘
𝑝
|
2

𝑀−1

𝑗=1

𝑁

𝑘=1

) ,𝑚 = 1,2, … , 𝑁, 𝑝 = 1,2. 

                                       (18) 

where 𝑐3 > 0 is a constant that does not depend on 𝜏 and 

ℎ. 

3. An Estimation for the Error of the Difference Schemes 

In this section, we will evaluate the error of the difference 

scheme (10)-(14). For this purpose, let us consider the 

following system. 

𝑖𝛿�̅�𝑍𝑗𝑘
𝑝

+ 𝑎0𝛿𝑥�̅�𝑍𝑗𝑘
𝑝

− 𝑎𝑗𝑍𝑗𝑘
𝑝

+ 𝑣0𝑘𝑍𝑗𝑘
𝑝

+ 𝑖𝑣1𝑘𝑍𝑗𝑘
𝑝

= 𝐹𝑗𝑘
𝑝
, 𝑗 = 1,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1,𝑁̅̅ ̅̅ ̅, 

                     (19) 

                   𝑍𝑗0
𝑝

= 0, 𝑗 = 0,𝑀̅̅ ̅̅ ̅̅ , 𝑝 = 1,2                          (20) 

                  𝑍0𝑘
1 = 𝑍𝑀𝑘

1 = 0, 𝑘 = 1, 𝑁̅̅ ̅̅ ̅,                            
(21) 

            𝛿�̅�𝑍1𝑘
2 = 𝛿�̅�𝑍𝑀𝑘

2 = 0, 𝑘 = 1,𝑁̅̅ ̅̅ ̅,                           
(22) 

where [𝑍𝑝]𝑛 = {𝑍𝑗𝑘
𝑝
} = {𝜙𝑗𝑘

𝑝
} − {𝜓𝑗𝑘

𝑝
}, 𝑝 = 1,2 is the 

solution of the system (10)-(14),  {𝜓𝑗𝑘
𝑝

} is defined by 

𝜓𝑗𝑘
𝑝

=
1

𝜏ℎ
∫ ∫ 𝜓𝑝(𝑥, 𝑧)𝑑𝑥𝑑𝑥,

𝑥𝑗+
ℎ

2⁄

𝑥𝑗−
ℎ

2⁄

𝑧𝑘

𝑧𝑘−1
 𝑗 = 1, 𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1, 𝑁.̅̅ ̅̅ ̅     (23) 

and the scheme function 𝐹𝑗𝑘
𝑝

 is defined by 
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𝐹𝑗𝑘
𝑝 =

1

𝜏ℎ
∫ ∫ (𝑖

𝜕𝜓𝑘

𝜕𝑧
+ 𝑎0

𝜕2𝜓𝑘

𝜕𝑥2
− 𝑎(𝑥)𝜓𝑘 + 𝑣0(𝑧)𝜓𝑘 + 𝑖𝑣1(𝑧)𝜓𝑘)𝑑𝑥𝑑𝑥

 

𝑥𝑗+
ℎ

2⁄

𝑥𝑗−
ℎ

2⁄

𝑧𝑘

𝑧𝑘−1

 

−𝑖𝛿�̅�𝜓𝑗𝑘
𝑝 + 𝑎0𝛿𝑥�̅�𝜓𝑗𝑘

𝑝 − 𝑎𝑗𝜓𝑗𝑘
𝑝 + 𝑣0𝑘𝜓𝑗𝑘

𝑝 + 𝑖𝑣1𝑘𝜓𝑗𝑘
𝑝  , 𝑗 = 1,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1,𝑁̅̅ ̅̅ ̅, 𝑝 = 1,2. 

                     (24) 

Also, let us define the operator 𝑄𝑛 such that 

𝑄𝑛: 𝑉 → 𝑉𝑛 , 𝑄𝑛(𝑣) = [𝑤]𝑛 = ([𝑤0]𝑛 , [𝑤1]𝑛 ) 

             𝑤𝑝𝑘 =
1

τ
∫ 𝑣𝑝(𝑧)𝑑𝑧,

𝑧𝑘

𝑧𝑘−1
 𝑘 = 1, 𝑁̅̅ ̅̅ ̅, 𝑝 = 1,2        

(25) 

Now, we can write the following theorem that expresses 

the error of the finite difference approximations: 

Theorem 2. Suppose that the step τ and h satisfies the 

condition 𝑐4 ≤
τ

ℎ
≤ 𝑐5 and 𝜓𝑝 satisfy following inequality: 

vraimax
𝑧∈[0,𝐿]

‖
𝜕𝜓𝑝(. , 𝑧)

𝜕𝑧
‖

𝐿2(0,𝑙)
≤ 𝑐6. 

Then, the estimation is valid: 

ℎ ∑ |𝑍𝑗𝑘
𝑝
|
2

≤𝑀−1
𝑗=1 𝑐6(𝛽τh + ‖𝑄𝑛(𝑣) − [𝑣]2‖

2),𝑚 = 1,𝑁̅̅ ̅̅ ̅, 𝑝 = 1,2.   (26) 

where 𝑐6
𝑝

> 0 is a constant independent from τ and h, 

𝛽τh > 0, 𝛽τh → 0 for τ → 0 and h → 0. 𝛽τh > 0, for τ → 0 

and h → 0, 𝛽τh → 0. Here ‖𝑄𝑛(𝑣) − [𝑣]2‖
2 is defined by 

following equality 

‖𝑄𝑛(𝑣) − [𝑣]2‖
2 = τ ∑(|𝑤0𝑘 − 𝑣0𝑘|

2 + |𝑤1𝑘 − 𝑣1𝑘|
2).

𝑁

𝑘=1

 

Proof: The proof of Theorem 2 can be obtain by similar 

process given in [8,9]. 

4. The convergence of the difference approximations 

In this section, we will investigate the convergence of the 

difference approximations according to functional. 

Theorem 3. Suppose that the conditions of Theorem 2 

hold. Then, the inequality 

|𝐽(𝑣) − 𝐼𝑛([𝑣]𝑛| ≤ 𝑐7(√β𝜏ℎ + ‖𝑄𝑛‖(𝑣) − [𝑣]𝑛)       (27) 

is valid for ∀𝑣 ∈ 𝑉 and ∀[𝑣]𝑛 ∈ 𝑉𝑛. 

Here the number of  𝑐7 > 0 is independent from 𝜏 and ℎ. 

Proof: We consider the difference 𝐽(𝑣) − 𝐼𝑛([𝑣]𝑛). We 

can write the following equation using (1) and (10): 

𝐽(𝑣) − 𝐼𝑛([𝑣]𝑛) = ∫|𝜓1(𝑥, 𝑧) − 𝜓2(𝑥, 𝑧)|2𝑑𝑥𝑑𝑧

Ω

− ℎ ∑ ∑|𝜙𝑗𝑘
1 − 𝜙𝑗𝑘

2 |
2

𝑀−1

𝑗=1

𝑁

𝑘=1

 

= ∑ ∑ ∫ ∫ ((|𝜓1(𝑥, 𝑧) − 𝜓2(𝑥, 𝑧)|

𝑥
𝑗+

ℎ
2

𝑥
𝑗−

ℎ
2

𝑧𝑘

𝑧𝑘−1

𝑀−1

𝑗=1

𝑁

𝑘=1

+ |𝜙𝑗𝑘
1 − 𝜙𝑗𝑘

2 |) × 

= (|𝜓1(𝑥, 𝑧) − 𝜓2(𝑥, 𝑧)| + |𝜙𝑗𝑘
1 − 𝜙𝑗𝑘

2 |)) 𝑑𝑥𝑑𝑧. 

Using the estimates (8), (9) and applying the Cauchy-

Bunyakovski, we obtain the following inequality: 

|𝐽(𝑣) − 𝐼𝑛([𝑣]𝑛)| 

≤ 𝑐8

[
 
 
 
 

(

 
 

∑ ∑ ∫ ∫ |𝜓1(𝑥, 𝑧) − 𝜙𝑗𝑘
1 |

2
𝑑𝑥𝑑𝑧

𝑥
𝑗+

ℎ
2

𝑥
𝑗−

ℎ
2

𝑧𝑘

𝑧𝑘−1

𝑀−1

𝑗=1

𝑁

𝑘=1

)

 
 

1
2

 

+

(

 
 

∑ ∑ ∫ ∫ |𝜓2(𝑥, 𝑧) − 𝜙𝑗𝑘
2 |

2
𝑑𝑥𝑑𝑧

𝑥
𝑗+

ℎ
2

𝑥
𝑗−

ℎ
2

𝑧𝑘

𝑧𝑘−1

𝑀−1

𝑗=1

𝑁

𝑘=1

)

 
 

1
2

]
 
 
 
 
 

= 𝑐9[𝐽1 + 𝐽2]. 

(𝐽1)
2 = ∑ ∑ ∫ ∫ |𝜓1(𝑥, 𝑧) − 𝜓𝑗𝑘

1 + 𝜓𝑗𝑘
1 −𝜙𝑗𝑘

1 |

𝑥
𝑗+

ℎ
2

𝑥
𝑗−

ℎ
2

𝑧𝑘

𝑧𝑘−1

𝑀−1

𝑗=1

𝑁

𝑘=1

 

≤ 2 ∑ ∑ ∫ ∫ |𝜓1(𝑥, 𝑧) − 𝜓𝑗𝑘
1 |

2

𝑥𝑗+ℎ/2

𝑥𝑗−ℎ/2

𝑧𝑘

𝑧𝑘−1

𝑀−1

𝑗=1

𝑁

𝑘=1

+ 2𝜏ℎ ∑ ∑ ∫ ∫ |𝜓𝑗𝑘
1 − 𝜙𝑗𝑘

1 |
2

𝑥𝑗+ℎ/2

𝑥𝑗−ℎ/2

𝑧𝑘

𝑧𝑘−1

𝑀−1

𝑗=1

𝑁

𝑘=1

 

= 𝐽11 + 𝐽12                                                                     (28) 

If we use the formula (23) we can write the following 

inequality: 

      𝐽11 ≤ 4𝜏2 ‖
𝜕𝜓1

𝜕𝑧
‖

𝐿2(Ω)

2

+ 4ℎ2 ‖
𝜕𝜓1

𝜕𝑥
‖

𝐿2(Ω)

2

                (29)                                       

We choose 𝑝 = 1 in (26), then we obtain 

 𝐽12 ≤ 2𝑐9(𝛽𝜏ℎ + ‖𝑄𝑛(𝑣) − [𝑣]𝑛‖2).           (30)                                                                

Using (29) and (30) we obtain the following inequality for 

the 𝐽11: 

          (𝐽1)
2 ≤ 𝑐10(𝛽𝜏ℎ + ‖𝑄𝑛(𝑣) − [𝑣]𝑛‖2)              (31) 
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Here the number 𝑐10 > 0 independent from 𝜏 and ℎ. 

Similarly, we can write the following inequality for the 

(𝐽2)
2: 

 (𝐽2)
2 ≤ 𝑐11(𝛽𝜏ℎ + ‖𝑄𝑛(𝑣) − [𝑣]𝑛‖2)          (32) 

Lemma 1. Suppose that the conditions of Theorem 3 hold 

and the operator 𝑄𝑛 is defined by (23). Then 𝑄𝑛(𝑣) ∈ 𝑉𝑛 

for ∀𝑣 ∈ 𝑉 and the following estimation 

  |𝐽(𝑣) − 𝐼𝑛(𝑄𝑛(𝑣))| ≤ 𝑐12√𝛽𝑡ℎ 

is valid, where 𝑐12 > 0 is a constant independent from 𝜏 

and ℎ. 

Proof. Let 𝑣 ∈ 𝑉 is admissible control. The following 

formulas is written definition of 𝑄𝑛: 

𝑄𝑛(𝑣) = ([𝑤0], [𝑤1]), [𝑤𝑀] = (𝑤𝑚1, 𝑤𝑚2, … , 𝑤𝑚𝑁),     𝑚 = 0,1 

𝑤𝑚𝑘 =
1

𝜏
∫ 𝑣𝑚(𝑧)𝑑𝑧

𝑧𝑘

𝑧𝑘−1

,         𝑘 = 1, 𝑁̅̅ ̅̅ ̅,       𝑚 = 0,1. 

𝑤𝑚𝑘 =
1

𝜏
∫ 𝑣𝑚(𝑧)𝑑𝑧

𝑧𝑘

𝑧𝑘−1

≥
1

𝜏
∫ 𝑏0𝑑𝑧

𝑧𝑘

𝑧𝑘−1

= 𝑏0, 

𝑤𝑚𝑘 =
1

𝜏
∫ 𝑣𝑚(𝑧)𝑑𝑧

𝑧𝑘

𝑧𝑘−1

≥
1

𝜏
∫ 𝑏1𝑑𝑧

𝑧𝑘

𝑧𝑘−1

= 𝑏1 

Thus, we obtain 𝑏0 ≤ 𝑤𝑚𝑘 ≤ 𝑏1, 𝑘 = 1,𝑁, and 𝑄𝑛(𝑣) ∈

𝑉𝑛. Then we take [𝑣]𝑛 ∈ 𝑉𝑛 and using Theorem 3 Lemma 

is valid. 

Now, we define the operator 𝑃𝑛 as follows: 

                    𝑃𝑛([𝑣]𝑛) = (𝑃𝑛[𝑣0], 𝑃𝑛[𝑣1])                      (33) 

𝑃𝑛([𝑣]𝑚) = �̃�𝑚(𝑧), �̃�𝑚(𝑧) = 𝑣𝑚𝑘 , 𝑧𝑘−1 ≤ 𝑧 ≤ 𝑧𝑘 ,   𝑚 = 0,1. 

Lemma 2. Suppose that the conditions of Theorem 3 hold 

and the operator 𝑃𝑛 is defined by (25). Then 𝑃𝑛([𝑣𝑛]) ∈ 𝑉 

|𝐽(𝑃𝑛([𝑣]𝑛) − 𝐼𝑛([𝑣]𝑛)| ≤ 𝑐12√𝛽𝑡ℎ. 

Proof. [𝑣𝑛] ∈ 𝑉𝑛 is discrete control. The following 

formulas is written definition of 𝑃𝑛: 

�̃�𝑚(𝑧) = 𝑃𝑛([𝑣]𝑛) = 𝑣𝑚𝑘 ≥ 𝑏0,   𝑧𝑘−1 ≤ 𝑧 ≤ 𝑧𝑘 
�̃�𝑚(𝑧) = 𝑃𝑛([𝑣]𝑛) = 𝑣𝑚𝑘 ≥ 𝑏1,   𝑧𝑘−1 ≤ 𝑧 ≤ 𝑧𝑘 ,   𝑘 = 1, 𝑁,   𝑚 = 0,1. 

Thus 𝑃𝑛([𝑣]𝑛) ∈ 𝑉. Let �̃�𝑚(𝑧) = 𝑃𝑛([𝑣]𝑛) instead of 

𝑣 ∈ 𝑉. Then, we obtain 

|𝐽(𝑃𝑛([𝑣]𝑛) − 𝐼𝑛([𝑣]𝑛)| ≤ 𝑐13(√𝛽𝑡ℎ + ‖𝑄𝑛(𝑃𝑛([𝑣]𝑛)) − 𝐼𝑛([𝑣]𝑛)‖) 

    (34) 

and the following estimate: 

‖𝑄𝑛(𝑃𝑛([𝑣]𝑛)) − 𝐼𝑛([𝑣]𝑛)‖
2

= 𝜏 ∑|
1

𝜏
∫ 𝑣𝑚(𝑧)𝑑𝑧 − 𝑣𝑚𝑘

𝑧𝑘

𝑧𝑘−1

|

2𝑁

𝑘=1

 

= 𝜏 ∑|
1

𝜏
∫ 𝑣𝑚𝑘 𝑑𝑧 − 𝑣𝑚𝑘

𝑧𝑘

𝑧𝑘−1

|

2

= 𝜏 ∑|𝑣𝑚𝑘 − 𝑣𝑚𝑘|
2 = 0

𝑀−1

𝑗=1

𝑁

𝑘=1

 

Now, let write the convergence of the difference 

approximations according to functional: 

Theorem 4. Suppose that the conditions of Lemma 1 and 

Lemma 2 hold. Also, let 𝑣∗ ∈ 𝑉, [𝑣]𝑛
∗ ∈ 𝑉𝑛 be solutions of 

the problems (1) to (5) and (10) to (14), respectively, 

i.e. 

𝐽∗ = inf
𝑣∈𝑉

𝐽(𝑣) = 𝐽(𝑣∗) 

𝐼𝑛∗ = inf
[𝑣]𝑛∈𝑉

𝐼𝑛([𝑣]𝑛) = 𝐼𝑛(𝑣𝑛
∗) 

Then, the solutions of the problem (10) − (14) are 

approximate to the solution of the problem (1)-(5), i.e., 

lim𝑛→∞ 𝐼𝑛∗ = 𝐽∗ and for the convergence according to 

functional the following estimation is valid: 

|𝐼𝑛∗ − 𝐽∗| ≤ 𝑐14√𝛽𝑡ℎ. 

Proof: The proof can be obtain by similar process given in 

[YILDIRIM, N., YAGUBOV, G.Y. AND YILDIZ, B. 

TOYOĞLU F., AND YAGUB, Y., (2015), KOÇAK, Y., 

ÇELİK, E., YİLDİRİM AKSOY, N., (2015), KOÇAK, 

Y., DOKUYUCU, M.A., ÇELİK, E.(2015)]. 
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