<u>Gazi University Journal of Science</u> GU J Sci 29(2):491-502 (2016)

On product of Fuzzy Semiprime ideals in *Γ*-LA-Semigroups

Pairote YIARAYONG^{1,*}

¹Pibulsongkram Rajabhat University, Faculty of Science and Technology, Department of Mathematics, 65000, Phitsanuloke, Thailand

TARİH Received: 09/07/2015 Accepted: 29/12/2015

ABSTRACT

The purpose of this paper is to introduce the notion of a weakly fuzzy quasi-semiprime ideals in Γ -LAsemigroups, we study direct product of fuzzy semiprime, fuzzy weakly completely semiprime, weakly fuzzy semiprime and weakly fuzzy quasi-semiprime ideals in Γ -LA-semigroups. Some characterizations of weakly fuzzy semiprime and weakly fuzzy quasi-semiprime ideals are obtained. Moreover, we investigate relationships between fuzzy weakly completely semiprime and weakly fuzzy quasi-semiprime ideals in Γ -LA-semigroups

Key words:fuzzy semiprime, fuzzy quasi-semiprime, fuzzy weakly completely semiprime, weakly fuzzy semiprime, weakly fuzzy quasi-semiprime

1. INTRODUCTION

A left almost semigroup (LA-semigroup) is a generalization of semigroup theory with wide range of usages in theory of flocks [23]. The fundamentals of this non-associative algebraic structure were first discovered

by Kazim and Naseeruddin (1972). A groupoid S is called an LA-semigroup if it satisfies the left invertive law:

(ab)c = (cb)a

for all $a, b, c \in S$. It is interesting to note that an LAsemigroup with right identity becomes a commutative monoid [21]. This structure is closely related to a commutative semigroup. Because of containing a right identity, an LA-semigroup becomes a commutative monoid [21]. A left identity in an LA-semigroup is unique [21]. It lies between a groupoid and a commutative semigroup with wide range of applications in theory of flocks [23]. Ideals in LA-semigroups have been discussed in [22]. Now we define the concepts that we will used. Let S be an LA-semigroup. By an LA-subsemigroup of [20], we means a non-empty subset A of S such that $A^2 \subseteq A$. A non-empty subset A of an LA-semigroup S is called a left (right) ideal of [18] if

^{*}Corresponding author, e-mail:pairote0027@hotmail.com

 $SA \subseteq A(AS \subseteq A)$. By two-sided ideal or simply ideal, we mean a non-empty subset of an LA-semigroup S which is both a left and a right ideal of S. In 1981, the notion of Γ -semigroups was introduced by M. K. Sen. A groupoid is called an Γ -LA-semigroup if it satisfies the left invertive law:

$$(a\gamma b)\alpha c = (c\gamma b)\alpha a$$

for all $a, b, c \in S$ and $\gamma, \alpha \in \Gamma$ [26]. This structure is also known as an Γ -Abel-Grassmann's groupoid (Γ -AG-groupoid). In this paper, we are going to investigate some interesting properties of recently discovered classes, namely Γ -LA-semigroup always satisfies the Γ -medial law:

$$(a\gamma b)\alpha(c\beta d) = (a\gamma c)\alpha(b\beta d)$$

for all $a,b,c,d \in S$ and $\gamma, \alpha, \beta \in \Gamma$ [26], while an Γ -LA-semigroup with left identity always satisfies Γ -paramedial law:

$$(a\gamma b)\alpha(c\beta d) = (d\beta c)\alpha(b\gamma a)$$

for all $a, b, c, d \in S$ and $\gamma, \alpha, \beta \in \Gamma$ [26]. Recently T. Shah and I. Rehman have discussed Γ -Ideals and Γ -Bi-Ideals in Γ -LA-semigroups. An ideal P of an Γ -LA-semigroup S is called semiprime if $A^2 \subseteq P$ implies that either $A \subseteq P$, for all ideal A in S. Q. Mushtaq and M. Khan defined the direct product of left (resp, right) ideals, prime ideals, maximal ideals and investigate the properties of such ideals [19].

The fundamental concept of fuzzy sets was first introduced by Zadeh [28] in 1965. Given a set S, a fuzzy subset of S is, by definition an arbitrary mapping $f: S \rightarrow [0,1]$, where [0,1] is the unit interval.

$$(f\Gamma g)(y) = \begin{cases} sup[min\{f(y), g(z)\}] \\ 0 \end{cases}$$

A fuzzy subset f of S is called a fuzzy sub Γ -LA-semigroup of S if

$$f(x\gamma y) \ge \min\{f(x), f(y)\}$$

for all $x, y \in S, \gamma \in \Gamma$, and is called a fuzzy left (right) Γ -ideal of S if

$$f(x\gamma y) \ge f(y)(f(x\gamma y) \ge f(x))$$

Kuroki initiated the theory of fuzzy bi ideals in semigroups [15]. The thought of belongingness of a fuzzy point to a fuzzy subset under a natural equivalence on a fuzzy subset was defined by Murali [17]. Recently, M. Khan et al. introduced the concept of fuzzy ideals and anti fuzzy ideals of LA-semigroups in this papers [27]. There are many mathematicians who added several results to the theory fuzzy Γ -LA-semigroups, see [2, 3, 26]. In this paper we characterize the fuzzy subset in Γ -LA-semigroup. We investigate the relationships between fuzzy weakly completely semiprime and weakly fuzzy quasi-semiprime Γ -ideals in Γ -LA-semigroups.

2. PRELIMINARIES

Let S be an Γ -LA-semigroup. A nonempty subset A of S is called a left Γ -ideal of S if $S\Gamma A \subseteq A$. A is called a right Γ -ideal of S if $A\Gamma S \subseteq A$ and A is called an Γ -ideal of S if A is both a left and a right Γ -ideal of S. A function f from S to the unit interval [0,1] is a fuzzy subset of S. The Γ -LAsemigroup S itself is a fuzzy subset of S such that S(x)=1 for all $x \in S$, denoted also by S. Let f and g be two fuzzy subsets of S. Then the inclusion relation $f \subseteq g$ is defined $f(x) \leq g(x)$, for all $x \in S$. $f \cap g$ and $f \cup g$ are fuzzy subsets of S defined by

$$(f \cap g)(x) = \min\{f(x), g(x)\},\$$

 $(f \cup g)(x) = max \{f(x), g(x)\}$ for all $x \in S$. The product $f \Gamma g$ is defined as follows;

; if there exist $y, z \in S$, such that x = yz; otherwise.

for all $x, y \in S, \gamma \in \Gamma$, if f is both fuzzy left and right Γ -ideal of S, then f is called a fuzzy Γ -ideal of S [24]. It is easy that f is a fuzzy Γ -ideal of S if and only if $f(x\gamma y) \ge max\{f(x), f(y)\}$ for all $x, y \in S, \gamma \in \Gamma$ and any fuzzy left (right) Γ -ideal of S is a fuzzy sub Γ -LA-semigroup of S. Equivalently, We can prove easily that A is a (left, right) Γ -ideal of S if and only if the characteristic function f_A of A is a fuzzy (left, right) Γ -ideal of S [6].

Lemma 2.1. [6, 24] If *S* is an Γ -LA-semigroup and f, g, h are fuzzy subsets of *S*, then $(f\Gamma g)\Gamma h = (h\Gamma g)\Gamma f$.

Proof. The proof is available in [6, 24].

Lemma 2.2. [6, 24] If S is an Γ -LA-semigroup with left identity and f, g, h, k are fuzzy subsets of S, then

1.
$$f\Gamma(g\Gamma h) = g\Gamma(f\Gamma h);$$

2. $(f\Gamma g)\Gamma(h\Gamma k) = (k\Gamma h)\Gamma(g\Gamma f).$

Proof. The proof is available in [6, 24].

Lemma 2.3. [6, 24] Let f be a fuzzy subset of an Γ -LA-semigroup S. Then the following properties hold.

1. $f\,$ is a fuzzy sub Γ -LA-semigroup of $\,S\,$ if and only if $\,f\Gamma f \subseteq f.\,$

2. f is a fuzzy left Γ -ideal of S if and only if $S\Gamma f \subseteq f$.

3. f is a fuzzy right Γ -ideal of S if and only if $f\Gamma S \subseteq f$.

4. f is a fuzzy Γ -ideal of S if and only if $S\Gamma f \subseteq f$ and $f\Gamma S \subseteq f$.

Proof. The proof is available in [6, 24].

Lemma 2.4. [6] Let f be a fuzzy left ideal of an Γ -LA-semigroup S. Then

1. $S\Gamma S = S$.

2.
$$S\Gamma f = f$$
.

Proof. The proof is available in [6].

Definition 2.5. A fuzzy subset f of an Γ -LAsemigroup S is called fuzzy quasi-semiprime if for any fuzzy left Γ -ideal g of S such that $g\Gamma g \subseteq f$ implies $g \subseteq f$.

Definition 2.6. A fuzzy subset f of an Γ -LAsemigroup S is called fuzzy semiprime of S if for any fuzzy Γ -ideal g of S such that $g\Gamma g \subseteq f$ implies $g \subseteq f$.

It is easy to see that every fuzzy semiprime Γ -ideal is fuzzy quasi-semiprime.

Definition 2.7. A fuzzy subset f of an Γ -LAsemigroup of S is called fuzzy weakly completely semiprime if $f(x) \ge f(x^2)$, for all $x \in S$.

Lemma 2.8. A fuzzy Γ -ideal f of an Γ -LAsemigroup of S is fuzzy weakly completely semiprime if and only if $f(x) = f(x^2)$, for all $x \in S$.

Proof. It is straightforward by Definition 2.7.

Theorem 2.9. Let S be an Γ -LA-semigroup. Then f is fuzzy sub Γ -LA-semigroup of S if and only if 1-f is fuzzy weakly completely semiprime.

Proof. (\Rightarrow) Assume that f is a fuzzy sub Γ -LAsemigroup of S. Since $f(x^2) \ge f(x)$, we have $1-f(x^2) \le 1-f(x)$, for all $x \in S$. Then 1-f is fuzzy weakly completely semiprime.

(\Leftarrow) Suppose that 1-f is fuzzy weakly completely semiprime of *S*. Since

$$1-f(x) \ge 1-f(x^2),$$

we have $f(x^2) \ge f(x)$, for all $x \in S$. Hence f is a fuzzy sub Γ -LA-semigroup of S.

Theorem 2.10. Let S be an Γ -LA-semigroup. If $P_i, i \in I$ are fuzzy weakly completely semiprime subsets of S, then $\bigcup_{i \in I} P_i$ is fuzzy weakly completely semiprime subset of S.

Proof. Suppose that $P_i, i \in I$ are fuzzy weakly completely semiprime subset of S. Then $P_i(x^2) \leq P_i(x)$, for all $x \in S$, and for $i \in I$. Since $\bigcup_{i \in I} P_i(x) \geq P_i(x^2)$, for all $i \in I$, we get $\bigcup_{i \in I} P_i(x) \ge \bigcup_{i \in I} P_i(x^2).$ Hence $\bigcup_{i \in I} P_i$ is a fuzzy weakly completely semiprime subset of *S*.

Theorem 2.11. [24] Let I be a non-empty subset of an Γ -LA-semigroup S and $f_I: S \rightarrow [0,1]$ be a fuzzy subset of S such that

$$f_I(x) = \begin{cases} 1; x \in I \\ 0; x \notin I \end{cases}$$

Then I is a left Γ -ideal (right Γ -ideal, Γ -ideal) of S if and only if f_I is a fuzzy left Γ -ideal (resp. fuzzy right Γ -ideal, fuzzy Γ -ideal) of S.

Proof. The proof is available in [24].

Theorem 2.12. Let I be an Γ -ideal (left, right Γ -ideal) of an Γ -LA-semigroup $S, m \in (0,1]$. If f_I is fuzzy set of S such that

$$f_I(x) = \begin{cases} m; x \in I \\ 0; x \notin I, \end{cases}$$

then f_I is a fuzzy Γ -ideal (fuzzy left, fuzzy right Γ -ideal) S.

Proof. It is straightforward by Theorem 2.11.

Definition 2.13. [24] Let S be an Γ -LA-semigroup, $x \in S$ and $t \in [0,1]$. A fuzzy point x_t of S is defined by the rule that

$$x_t(y) = \begin{cases} t; x = y \\ 0; x \neq y \end{cases}$$

It is accepted that x_t is a mapping from S into [0,1], then a fuzzy point of S is a fuzzy subset of S. For any fuzzy subset f of S, we also denote $x_t \subseteq f$ by $x_t \in f$ in sequel. Let tf_A be a fuzzy subset of Sdefined as follows:

$$tf_{A}(x) = \begin{cases} t \in (0,1]; x \in A \\ 0 ; x \notin A \end{cases}$$

Lemma 2.14. Let A be a subset of an Γ -LA-semigroup

S and f be a fuzzy set of S. Then the following statements are equivalent

1.
$$tg_A \subseteq f, t \in [0,1]$$

2. $A \subseteq f_t, t \in [0,1]$.

Proof. It is straightforward by Definition 2.13.

Definition 2.15. A fuzzy subset f of S is said to be a weakly fuzzy semiprime if $tg_A \Gamma tg_A \subseteq f$ implies $tg_A \subseteq f$, for the Γ -ideal A in S and for all $t \in (0,1]$.

Definition 2.16. A fuzzy subset f of S is said to be a weakly fuzzy quasi-semiprime if $tg_A \Gamma tg_A \subseteq f$ implies $tg_A \subseteq f$, for the left Γ -ideal A in S and for all $t \in (0,1]$.

It is easy to see that every weakly fuzzy semiprime is weakly fuzzy quasi-semiprime.

3. FUZZY QUASI-SEMIPRIME Γ -ideals of Γ - semigroups

The results of the following lemmas seem to play an important role to study fuzzy semiprime Γ -ideals in Γ -LA-semigroups; these facts will be used frequently and normally we shall make no reference to this lemma.

Lemma 3.1. Let A, B be any non-empty subset of an Γ -LA-semigroup S. Then for any $t \in (0,1]$ the following statements are true.

1.
$$tf_A \Gamma tf_B = tf_{A \Gamma B}$$
.
2. $tf_A \cap tf_B = tf_{A \cap B}$.
3. $tf_A \cup tf_B = tf_{A \cup B}$.
4. $tf_A = \bigcup_{a \in A} a_t$.
5. $S\Gamma tf_A = tf_{S\Gamma A}, \ tf_A \Gamma S = tf_{A\Gamma S}$ and $S\Gamma(tf_A \Gamma S) = tf_{S\Gamma(A\Gamma S)}$.

6. If A is a left Γ -ideal (right, Γ -ideal) of

S, then tf_A is a fuzzy left Γ -ideal (fuzzy left, fuzzy Γ -ideal) of S.

Proof. 1. If $x \in A\Gamma B$, then $tf_{A\Gamma B}(x) = t$, and $x = a\gamma b$, for some $a \in A, b \in B$ and $\gamma \in \Gamma$. Thus $tf_A\Gamma tf_B(x) = sup(min\{tf_A(a), tf_B\}) = sup(min\{t, t\}) = t$. If $x \notin A\Gamma B$, then $f_{A\Gamma B}(x) = 0$. We now prove that $(tf_A\Gamma tf_B)(x) = 0$. If $x \neq \gamma\gamma z$, then

$$(tf_A\Gamma tf_B)(x) = 0,$$

and $(tf_A\Gamma tf_B)(x) = tf_{A\Gamma B}(x)$. If $x = y\gamma z$ and $y \in A$ and $z \in B$, then $y\gamma z \in A\Gamma B$, so $x \in A\Gamma B$, which is impossible. Thus $y \notin A$ or $z \notin B$. If $y \notin A$, then $tf_A(y) = 0$. Since $tf_B(z) \ge 0$, we have $min\{tf_A(y), tf_B(z)\} = 0$. If $z \notin B$ then, as in the previous case, we also have $min\{tf_A(y), tf_B(z)\} = 0$. Therefore,

$$(tf_A\Gamma tf_B)(x) = min\left\{tf_A(y), tf_B(z)\right\} = 0.$$

2. We will show that

$$(tf_A \cap tf_B)(x) = tf_{A \cap B}(x),$$

for all $x \in S$. If $x \in A \cap B$, then $tf_{A \cap B}(x) = t$. Since $x \in A$ and $x \in B$, we have

$$tf_A(x) = tf_B(x) = t,$$

so that $(tf_A \cap tf_B)(x) = tf_A(x) \wedge tf_B(x) = t$. If $x \notin A \cap B$, then $tf_{A \cap B}(x) = 0$. Suppose that $x \notin A$. Then $(tf_A \cap tf_B)(x) \leq tf_A(x) = 0$. Thus we obtain that $(tf_A \cap tf_B)(x) = tf_{A \cap B}(x)$, for all $x \in S$.

3. The proof is similar to the proof of 1 with suitable modification by using the definition.

4. If $x \in A$, then $\bigcup_{a \in A} a_t(x) = \sup_{a \in A} a_t(x) = t = tf_A(x).$

If $x \notin A$, then $tf_A(x) = 0$. Since $x \notin A$, we have $x \neq a$, for all $a \in A$, and so $a_i(x) = 0$. It

implies that

$$\bigcup_{a \in A} a_t(x) = \sup_{a \in A} a_t(x) = 0 = tf_A(x)$$

5. The proof is similar to the proof of 1 with a slight modification.

6. Suppose that A is a left Γ -ideal of S. Then $tf_A(x\gamma y) \ge tf_A(y)$, for all $x, y \in S, \gamma \in \Gamma$. If $y \notin A$, then $tf_A(y) = 0$. Since tf_A is a fuzzy subset of S, we have $tf_A(x\gamma y) \ge 0 = tf_A(y)$. If $y \in A$, then $tf_A(y) = t$. Since A is a left Γ ideal of S and $x \in S, y \in A, \gamma \in \Gamma$, we then have $x\gamma y \in A$. Thus, $tf_A(x\gamma y) = t = tf_A(y)$.

Theorem 3.2. Let P be a fuzzy left Γ -ideal of an Γ -LA-semigroup with left identity S. Then the following statements are equivalent:

1. P is a weakly fuzzy quasi-semiprime of S.

2. For any $x \in S$ and $t \in (0,1]$, if $x_t \Gamma(S \Gamma x_t) \subseteq P$, then $x_t \in P$.

3. For any $x \in S$ and $t \in (0,1]$, if $tf_x \Gamma tf_x \subseteq P$, then $x_t \in P$.

4. If A is a left Γ -ideal of S such that $tf_A \Gamma tf_A \subseteq P$, then $tf_A \subseteq P$.

Proof. $(1 \Longrightarrow 2)$ Let *P* be a weakly fuzzy quasisemiprime of *S*. For any $x \in S$ and $t \in (0,1]$, if $x_t \Gamma(S \Gamma x_t) \subseteq P$, then $tf_{S \Gamma(x \Gamma S)} \Gamma tf_{S \Gamma(x \Gamma S)}$

- $= (S\Gamma(x_{t}\Gamma S))\Gamma(S\Gamma(x_{t}\Gamma S))$
- $= (S\Gamma S)\Gamma((x_{t}\Gamma S)\Gamma(x_{t}\Gamma S))$
- $= (S\Gamma S)\Gamma((x_t\Gamma x_t)\Gamma(S\Gamma S))$
- $= (S\Gamma S)\Gamma((S\Gamma S)\Gamma(x_t\Gamma x_t))$
- $\subseteq S\Gamma(S\Gamma(x_t\Gamma x_t))$

$$= S\Gamma(x_t\Gamma(S\Gamma x_t))$$

 $\subseteq S\Gamma P$ $\subseteq P.$

Since *P* is a weakly fuzzy quasi-semiprime, we get $tf_{xyx^2} \subseteq tf_{S\Gamma(x\Gamma S)} \subseteq P$. Hence $x_t \in tf_x \subseteq P$.

 $(2 \Longrightarrow 3)$ Let $x \in S, t \in (0,1]$ and $tf_x \Gamma tf_x \subseteq P$. Then

$$x_{t}\Gamma(S\Gamma x_{t}) \subseteq tf_{x}\Gamma(S\Gamma tf_{x})$$
$$= S\Gamma(tf_{x}\Gamma tf_{x})$$
$$\subseteq S\Gamma P$$
$$\subseteq P.$$

Thus, by hypothesis $x_t \in P$.

 $(3 \Longrightarrow 4)$ Let A be a left Γ -ideal of S. Then, by Lemma 3.1, we get tf_A is a fuzzy left Γ -ideal of S. Suppose that $tf_A\Gamma tf_A \subseteq P$ and $tf_A \not\subset P$, then there exists $x \in A$ such that $x_t \notin P$. By Lemma 3.1 and hypothesis, we have

$$tf_{x}\Gamma tf_{x} = tf_{x^{2}}$$

$$\subseteq tf_{A\Gamma A}$$

$$= tf_{A}\Gamma tf_{A}$$

$$\subseteq P.$$

Since $x_t \notin P$, which implies $tf_x \not\subset P$. But this leads to a contradiction.

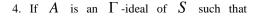
 $(4 \Longrightarrow 1)$ By Definition 2.16, the following corollary is obvious.

Corollary 3.3. Let P be a fuzzy Γ -ideal of an Γ -LAsemigroup with left identity S. Then the following statements are equivalent:

1. P is a weakly fuzzy semiprime Γ -ideal of S.

2. For any $x \in S$ and $t \in (0,1]$, if $x_t \Gamma(S \Gamma x_t) \subseteq P$, then $x_t \in P$.

3. For any $x \in S$ and $t \in (0,1]$, if $tf_x \Gamma tf_x \subseteq P$, then $x_t \in P$.



 $tf_A \Gamma tf_A \subseteq P$, then $tf_A \subseteq P$.

Proof. This follows from Theorem 3.2.

Theorem 3.4. Let *S* be an Γ -LA-semigroup with left identity. If $supf(a\Gamma(S\Gamma a)) = f(a)$, for all $a \in S$, then *f* is a fuzzy quasi-semiprime of *S*.

Proof. Let g be a fuzzy left Γ -ideal of S such that $g\Gamma g \subseteq f$. If $g \not\subset f$, then there exist $a \in S$ such that f(a) < g(a). Since

$$f(a) = supf(a\Gamma(S\Gamma a)),$$

there exists $s \in S, \gamma, \alpha \in \Gamma$ such that

$$f(a\gamma(s\alpha a)) \le f(a).$$

Then $f(a\gamma(s\alpha a)) < g(a)$ so that

$$g(a) > f(a\gamma(s\alpha a))$$

$$\geq g\Gamma g(a\gamma(s\alpha a))$$

$$\geq sup[min\{g(a), g(s\alpha a)\}]$$

$$\geq min\{g(a), g(s\alpha a)\}$$

$$= g(a)$$

since g is fuzzy left Γ -ideal of S. But this leads to a contradiction.

Theorem 3.5. Let S be an Γ -LA-semigroup with left identity. If f is a fuzzy quasi-semiprime of S, then $inf(f(a\Gamma(S\Gamma a))) = f(a)$, for all $a \in S$.

Proof. Suppose that $\inf (f(a\Gamma(S\Gamma a))) \neq f(a)$, for some $a \in S$. Since f is fuzzy left Γ -ideal of S, we get $f(a\gamma(s\alpha a)) \geq f(s\alpha a) \geq f(a)$, for all $s \in S, \gamma, \alpha \in \Gamma$. Then

$$f(a) < inf(f(a\Gamma(S\Gamma a))).$$

Let $inf(f(a\Gamma(S\Gamma a))) = m$ and $g_{a\Gamma S}$ be fuzzy subset of S such that

$$g_{a\Gamma S}(x) = \begin{cases} m; x \in a\Gamma S \\ 0; x \notin a\Gamma S. \end{cases}$$

Then by above Theorem 2.13, $g_{a\Gamma S}$ is a fuzzy left Γ ideal of S. If $g_{a\Gamma S}\Gamma g_{a\Gamma S}(x) = m$, then

$$m = \sup_{x=yz} [\min \{g_{a\Gamma S}(y), g_{a\Gamma S}(z)\}]$$

This means there exist some $u, v \in a\Gamma S$ such that $u\gamma v = x$. Put $u = a\alpha t, v = a\beta k$. Then

$$f(x) = f(u\gamma v)$$

= $f((a\alpha t)\gamma(a\beta k))$
= $f((a\alpha a)\gamma(t\beta k))$
= $f((k\beta t)\gamma(a\alpha a))$
 $\geq f(a\alpha a)$
= $f(a\alpha(e\delta a))$
 $\geq inf(f(a\Gamma(a\Gamma S)))$
= m

so that $g_{a\Gamma S}\Gamma g_{a\Gamma S} \subseteq f$ and hence $g_{a\Gamma S} \subseteq f$. Thus $g_{a\Gamma S}(a) = g_{a\Gamma S}(a\gamma e) = m$. But from

$$m = g_{a\Gamma S}(a) \le f(a) < inf(f(a\Gamma(S\Gamma a))) = m,$$

we have a contradiction.

Corollary 3.6. Let S be an Γ -LA-semigroup with left identity. If f is a fuzzy semiprime of S, then $inf(f(a\Gamma(S\Gamma a))) = f(a)$, for all $a \in S$.

Proof. This follows from Theorem 3.5.

Theorem 3.7. Let *S* be an Γ -LA-semigroup with left identity. A fuzzy Γ -ideal *P* of an Γ -LA-semigroup *S* is weakly fuzzy quasi-semiprime Γ -ideal if and only if $P(x^2) = P(x)$, for all $x \in S$.

Proof. (\Rightarrow) Suppose that P is a fuzzy Γ -ideal of S. Then $P(x^2) \ge f(x)$, for all $x \in S$. On the other hand, if $P(x^2) > P(x)$, then there exists $t \in (0,1)$ such that $P(x^2) > t > P(x)$. Thus

 $x_t \Gamma(S \Gamma x_t) = S \Gamma(x_t \Gamma x_t) \subseteq S \Gamma(x^2)_t \in S \Gamma P \subseteq P$, for all $x \in S$. Since P is a weakly fuzzy quasisemiprime Γ -ideal of S, we get $x_t \in P$, but $x_t \notin P$, which is impossible. Therefore, $P(x^2) = P(x)$, for all $x \in S$.

(\Leftarrow) Suppose that $x_t (t \in (0,1])$ are the fuzzy point of S such that $x_t \Gamma(S\Gamma x_t) \subseteq P$. Since

$$S\Gamma(x^2)_t = S\Gamma(x_t\Gamma x_t) = x_t\Gamma(S\Gamma x_t) \subseteq P$$

and $P(x^2) = P(x)$, we have $P(x^2) \ge t$, which implies that $P(x) \ge t$. Then $x_t \in P$.

Corollary 3.8.Let S be an Γ -LA-semigroup with left identity. If P is a fuzzy weakly completely semiprime, then P is weakly fuzzy quasi-semiprime of S.

Proof.One can easily show by induction method.

4. PRODUCT OF FUZZY Γ -ideals of Γ -semigroups

We start with the following theorem that gives a relation between product of fuzzy Γ -ideal and fuzzy Γ -ideal in Γ -LA-semigroup. Our starting points are the following definitions:

Let S_1 and S_2 be two Γ -LA-semigroups. Then

$$S_1 \times S_2 := \{(x, y) \in S_1 \times S_2 \mid x \in S_1, y \in S_2\}$$

and for any $(a,b), (c,d) \in S_1 \times S_2, \gamma \in \Gamma$ we define $(a,b)\gamma(c,d) \coloneqq (a\gamma c, b\gamma d)$, then $S_1 \times S_2$ is an Γ -LA-semigroup as well. Let $f:S_1 \rightarrow [0,1]$ and $g:S_2 \rightarrow [0,1]$ be two fuzzy subsets of Γ -LAsemigroups S_1 and S_2 respectively. Then the product of fuzzy subsets is denoted by $f \times g$ and defined as $f \times g:S_1 \times S_2 \rightarrow [0,1]$, where

$$(f \times g)(x, y) = \min\{f(x), g(y)\}.$$

Lemma 4.1. If f and g are fuzzy sub Γ -LAsemigroups of S_1 and S_2 respectively, then $f \times g$ is a fuzzy sub Γ -LA-semigroup of $S_1 \times S_2$.

Proof.Let $(x_1, y_1), (x_2, y_2) \in S_1 \times S_2$ and $\gamma \in \Gamma$. Then $(f \times g)((x_1, y_1)\gamma(x_2, y_2))$

$$= (f \times g)(x_{1}\gamma x_{2}, y_{1}\gamma y_{2})$$

$$= min \{ f(x_{1}\gamma x_{2}), g(y_{1}\gamma y_{2}) \}$$

$$\geq min \{ f(x_{1}), f(x_{2}), g(y_{1}), g(y_{2}) \}$$

$$\geq min \{ min \{ f(x_{1}), g(y_{1})) \}, min \{ f(x_{2}), g(y_{2}) \} \}$$

$$= min \{ (f \times g)(x_{1}, y_{1}), (f \times g)(x_{2}, y_{2}) \}.$$

Therefore $f \times g$ is a fuzzy sub Γ -LA-semigroup of $S_1 \times S_2$.

Lemma 4.2. If f and g are fuzzy left Γ -ideals (fuzzy right Γ -ideals, fuzzy Γ -ideals) of S_1 and S_2 respectively, then $f \times g$ is a fuzzy left Γ -ideal (fuzzy right Γ -ideal, fuzzy Γ -ideal) of $S_1 \times S_2$.

Proof. Let $(x_1, y_1), (x_2, y_2) \in S_1 \times S_2$ and $\gamma \in \Gamma$. Then $(f \times g)((x_1, y_1)\gamma(x_2, y_2))$

$$= (f \times g)(x_{1}\gamma x_{2}, y_{1}\gamma y_{2})$$

= $min\{f(x_{1}\gamma x_{2}), g(y_{1}\gamma y_{2})\}$
 $\geq min\{f(x_{2}), g(y_{2})\}$
= $(f \times g)(x_{2}, y_{2}).$

Therefore $f \times g$ is a fuzzy left Γ -ideal of $S_1 \times S_2$.

Corollary 4.3. Let $f_1, f_2, f_3, \ldots, f_n$ be a fuzzy subsets of Γ -LA-semigroups $S_1, S_2, S_3, \ldots, S_n$ respectively.

1. If f_1, f_2, \ldots, f_n are fuzzy sub Γ -LAsemigroups of S_1, S_2, \ldots, S_n respectively, then $\prod_{i=1}^n f_i$ is fuzzy sub Γ -LA-semigroup of $\prod_{i=1}^n S_i$.

2. If $f_1, f_2, f_3, \ldots, f_n$ are fuzzy left Γ -ideals (fuzzy right Γ -ideals, fuzzy Γ -ideals) of $S_1, S_2, S_3, \ldots, S_n$ respectively, then $\prod_{i=1}^n f_i$ is fuzzy left Γ -ideal (fuzzy right Γ -ideal, fuzzy Γ -ideal) of

$\prod_{i=1}^n S_i.$

Proof. This follows from Lemma 4.1 and Lemma 4.2.

Lemma 4.4. Let f, g be fuzzy subsets of Γ -LAsemigroup with left identity S_1, S_2 respectively such that $f \times g$ is a fuzzy sub Γ -LA-semigroup of $S_1 \times S_2$. Then f or g is fuzzy sub Γ -LA-semigroup of S_1 or S_2 respectively.

Proof. We know that

$$\min\{f(e_1), g(e_2)\} = (f \times g)(e_1, e_2)$$

$$\geq (f \times g)(x, y)$$

$$= \min\{f(x), g(y)\},$$

for all $(x, y) \in S_1 \times S_2$. Then $f(x) \leq f(e_1)$ or $g(y) \leq g(e_2)$. If $f(x) \leq f(e_1)$, then

$$f(x) \le g(e_2)$$
 or $g(y) \le g(e_2)$.

Let $f(x) \le g(e_2)$. Then $(f \times g)(x, e_2) = f(x)$ so that

$$f(x\gamma y) = (f \times g)(x\gamma y, e_2)$$

= $(f \times g)((x, e_2)\gamma(y, e_2))$
 $\geq min\{(f \times g)(x, e_2), (f \times g)(y, e_2)\}$
= $min\{f(x), f(y)\}.$

Therefore f is a fuzzy sub Γ -LA-semigroup of S_1 . Now suppose that $f(x) \le g(e_2)$ is not true for all $x \in S_1$. If $f(x) > g(e_2)$ for some $x \in S_1$, then $g(y) \le g(e_2)$, for all $y \in S_2$. Therefore $(f \times g)(e_1, y) = g(y)$, for all $y \in S_2$. Similarly

$$g(x\gamma y) = (f \times g)(e_1, x\gamma y)$$

= $(f \times g)((e_1, x)\gamma(e_1, y))$
 $\geq min\{(f \times g)(e_1, x), (f \times g)(e_1, y)\}$
= $min\{g(x), g(y)\}.$

Hence g is a fuzzy sub Γ -LA-semigroup of S_2 .

Lemma 4.5. Let f, g be fuzzy subsets of Γ -LAsemigroups with left identity S_1, S_2 respectively such that $f \times g$ be a fuzzy left Γ -ideal (fuzzy right Γ ideal, fuzzy Γ -ideal) of $S_1 \times S_2$. Then f or g is fuzzy left Γ -ideal (fuzzy right Γ -ideal, fuzzy Γ -ideal) of S_1 or S_2 respectively.

Proof. We know that

$$\min\{f(e_1), g(e_2)\} = (f \times g)(e_1, e_2)$$

$$\geq (f \times g)(x, y)$$

$$= \min\{f(x), g(y)\},$$

for all $(x, y) \in S_1 \times S_2$. Then $f(x) \leq f(e_1)$ or $g(y) \leq g(e_2)$. If $f(x) \leq f(e_1)$, then

$$f(x) \le g(e_2)$$
 or $g(y) \le g(e_2)$.

Let $f(x) \le g(e_2)$. Then $(f \times g)(x, e_2) = f(x)$ so that

$$f(x\gamma y) = (f \times g)(x\gamma y, e_2)$$

= $(f \times g)((x, e_2)\gamma(y, e_2))$
 $\geq (f \times g)(y, e_2)$
= $f(y).$

Therefore f is a fuzzy left Γ -ideal of S_1 . Now suppose that $f(x) \leq g(e_2)$ is not true for all $x \in S_1$. If $f(x) > g(e_2)$ for some $x \in S_1$, then $g(y) \leq g(e_2)$, for all $y \in S_2$. Therefore $(f \times g)(e_1, y) = g(y)$, for all $y \in S_2$. Similarly

$$g(x\gamma y) = (f \times g)(e_1, x\gamma y)$$

= $(f \times g)((e_1, x)(e_1, y))$
 $\geq (f \times g)(e_1, y)$
= $g(y).$

Hence g is fuzzy left Γ -ideal of S_2 .

Corollary 4.6. Let $f_1, f_2, f_3, \dots, f_n$ be a fuzzy subsets

of Γ -LA-semigroups $S_1, S_2, S_3, \dots, S_n$ respectively.

1. If
$$\prod_{i=1} f_i$$
 is a fuzzy sub Γ -LA-semigroup of

 $\prod_{i=1}^{n} S_i, \text{ then } f_1 \text{ or } f_2 \text{ or } f_3 \text{ or } \dots \text{ or } f_n \text{ is a fuzzy}$ sub Γ -LA-semigroup of $S_1, S_2, S_3, \dots, S_n$ respectively.

2. If
$$\prod_{i=1}^{n} f_i$$
 is a fuzzy left Γ -ideal (fuzzy

right Γ -ideal, fuzzy Γ -ideal) of $\prod_{i=1}^{n} S_i$, then f_1 or f_2 or f_3 or ... or f_n is a fuzzy left Γ -ideal (fuzzy right Γ -ideal, fuzzy Γ -ideal) of $S_1, S_2, S_3, \ldots, S_n$ respectively.

Proof. This follows from Lemma 4.5.

Lemma 4.7. Let f, g be fuzzy subsets of Γ -LAsemigroups S_1, S_2 respectively and $t \in [0,1]$. Then $(f \times g)_t = f_t \times f_t$.

Proof. Let f, g be fuzzy subsets of Γ -LA-semigroup S_1, S_2 respectively and $t \in [0, 1]$. Then

$$(x, y) \in f_t \times g_t \iff x \in f_t \text{ and } y \in g_t$$
$$\Leftrightarrow f(x) \ge t \text{ and } g(y) \ge t$$
$$\Leftrightarrow \min\{f(x), g(y)\} \ge t$$
$$\Leftrightarrow (f \times g)(x, y) \ge t$$
$$\Leftrightarrow (x, y) \in (f \times g)_t$$

for all $x \in S_1$, $y \in S_2$. Hence $(f \times g)_t = f_t \times f_t$.

Corollary 4.8. Let $f_1, f_2, f_3, \dots, f_n$ be a fuzzy subsets of Γ -LA-semigroups $S_1, S_2, S_3, \dots, S_n$ respectively and $t \in [0,1]$. Then $(\prod_{i=1}^n f_i)_t = \prod_{i=1}^n (f_i)_t$.

Proof. This follows from Lemma 4.7.

Theorem 4.9. Let f and g be two fuzzy weakly

completely semiprime (fuzzy semiprime, quasisemiprime) Γ -ideals of an Γ -LA-semigroups S_1, S_2 respectively. Then $(f \times g)$ is a fuzzy weakly completely semiprime (fuzzy semiprime, quasisemiprime) Γ -ideal of $S_1 \times S_2$.

Proof. Let $(a,b) \in S_1 \times S_2$. Since f and g are fuzzy weakly completely semiprime Γ -ideals of S, we get

$$(f \times g)(a,b)^{2} = (f \times g)(a^{2},b^{2})$$

= $min\{f(a^{2}),g(b^{2})\}$
= $min\{f(a),g(b)\}$
= $(f \times g)(a,b).$

Hence $(f \times g)$ is a fuzzy weakly completely semiprime Γ -ideal of $S_1 \times S_2$.

Theorem 4.10. Let f, g be fuzzy subsets of Γ -LAsemigroup with left identity S_1, S_2 respectively such that $f \times g$ is a fuzzy weakly completely semiprime (fuzzy semiprime Γ -ideal, quasi-semiprime Γ -ideal) of $S_1 \times S_2$. Then f or g is fuzzy weakly completely semiprime (fuzzy semiprime Γ -ideal, quasi-semiprime Γ -ideal) of S_1 or S_2 respectively.

Proof. We know that

$$min\{f(e_1), g(e_2)\} = (f \times g)(e_1, e_2)$$
$$\geq (f \times g)(x, y)$$
$$= min\{f(x), g(y)\},\$$

for all $(x, y) \in S_1 \times S_2$. Then $f(x) \leq f(e_1)$ or $g(y) \leq g(e_2)$. If $f(x) \leq f(e_1)$, then

$$f(x) \le g(e_2)$$
 or $g(y) \le g(e_2)$.

Let $f(x) \le g(e_2)$. Then $(f \times g)(x, e_2) = f(x)$ so that

$$f(x^{2}) = (f \times g)(x^{2}, e_{2})$$

= $(f \times g)(x, e_{2})^{2}$

$$\leq (f \times g)(x, e_2)$$
$$= f(x).$$

Therefore f is a fuzzy weakly completely semiprime of S_1 . Now suppose that $f(x) \le g(e_2)$ is not true for all $x \in S_1$. If $f(x) > g(e_2)$ for some $x \in S_1$, then $g(y) \le g(e_2)$, for all $y \in S_2$. Therefore $(f \times g)(e_1, y) = g(y)$, for all $y \in S_2$. Similarly

$$g(y^{2}) = (f \times g)(e_{1}, y^{2})$$
$$= (f \times g)(e_{1}, y)^{2}$$
$$\leq (f \times g)(e_{1}, y)$$
$$= g(y).$$

Hence g is fuzzy weakly completely semiprime of S_2 .

Theorem 4.11. Let f_1, f_2 be a fuzzy subsets of Γ -LAsemigroups S_1, S_2 respectively. Then $f \times g$ is a fuzzy weakly completely semiprime Γ -ideal of $S_1 \times S_2$ if and only if the level subset $(f \times g)_t, t \in Im(f \times g)$ of $f \times g$ is a weakly completely semiprime Γ -ideal of $S_1 \times S_2$, for every $t \in [0,1]$.

Proof. (\Longrightarrow) Suppose that $f \times g$ is a fuzzy weakly completely semiprime Γ -ideal of $S_1 \times S_2$. Let $(x, y) \in S_1 \times S_2$ such that $(x, y)^2 \in (f \times g)_t$. Then $(f \times g)(x, y)^2 \ge t$ so that

$$(f \times g)(x^2, y^2) \ge t.$$

Since $f \times g$ is a fuzzy weakly completely semiprime Γ -ideal of $S_1 \times S_2$, we have

$$(f \times g)(x, y)^2 = (f \times g)(x, y).$$

Then $t \leq (f \times g)(x, y)$, so $(x, y) \in (f \times g)_t$.

(\Leftarrow) Suppose that $(f \times g)_t$ is a weakly completely semiprime Γ -ideal of $S_1 \times S_2$, for every $t \in [0,1]$. Let $(x, y) \in S_1 \times S_2$. By Definition fuzzy subset, we get $(f \times g)(x, y)^2 \ge 0$. Since

$$(x, y)^2 \in (f \times g)_{(f \times g)(x, y)}$$

by hypothesis, we have $(x, y) \in (f \times g)_{(f \times g)(x, y)^2}$. Thus $(f \times g)(x, y) \ge (f \times g)(x, y)^2$.

Corollary 4.12. Let $f_1, f_2, f_3, \dots, f_n$ be a fuzzy subsets of Γ -LA-semigroups $S_1, S_2, S_3, \dots, S_n$ respectively and and $t \in [0,1]$. Then $\prod_{i=1}^n f_i$ is a fuzzy

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- S. Abdullah, M. Aslam, M. Imran and M. Ibrar, Direct product of intuitionistic fuzzy sets in LAsemigroups-II, Annals of Fuzzy Mathematics and Informatics, 2 (2) (2011), 151 - 160.
- [2] S. Abdullaha, M. Aslama and M. Naeemb, Intuitionistic fuzzy Bi- Γ -ideals of Γ -LAsemigroups, International Journal of Algebra and Statistics, 1(2)(2012), 46 - 54.
- [3] S. Abdullah and M. Alsam, On intuitionistic fuzzy prime Γ -Ideals of Γ -LA-semigroups, J. Appl. Math. and Informatics, 30(3 4)(2012), 603 612.
- [4] M. Aslam, S. Abdullah and M. Nasreen, Direct product of intuitionistic fuzzy sets in LA-semigroups, Fuzzy Sets, Rough Sets and Multivalued Operations Applications, 3(1)(2011), 1 - 9.
- [5] M.A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math., 2(1972), 1 - 7.
- [6] M. Khan, S. Anis and Faisal, On fuzzy Γ -ideals of Γ -Abel-Grassmann's groupoids, Research Journal of Applied Sciences, Engineering and Technology, 6(8)(2013), 1326 - 1334.
- [7] M. Khan, S. Anis and S. Lodhi, A study of fuzzy Abel-Grassmann' s groupoids, International Journal of the Physical Sciences, 7(4)(2012), 584 - 592.
- [8] M. Khan, Y. Bae Jun and T. Mahmood, Generalized fuzzy interior ideals in Abel Grassmann's groupoids, Hindawi Publishing Corporation International

weakly completely semiprime Γ -ideal of $\prod_{i=1}^{n} S_i$ if and only if the level subset $(\prod_{i=1}^{n} f_i)_i, t \in Im(\prod_{i=1}^{n} S_i)$ is a weakly completely semiprime Γ -ideal of $\prod_{i=1}^{n} S_i$. **Proof.** This follows from Theorem 4.11.

ACKNOWLEDGEMENT

The authors are very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

Journal of Mathematics and Mathematical Sciences, 2010, 1 - 14.

- [9] M. Khan, Y. Bae Jun and F. Yousafzai, Fuzzy ideals in right regular LA-semigroups, Hacettepe Journal of Mathematics and Statistics, 44 (3)(2015), 569 - 586.
- [10] M. Khan and Faisal, On fuzzy ordered Abel-Grassmann's groupoids, Journal of Mathematics Research, 3 (2)(2011), 27 - 40.
- [11] M. Khan, M. Faisal Iqbal and M. Nouman A. Khan, On anti fuzzy ideals in left almost semigroups, Journal of Mathematics Research, 2 (3)(2010), 203 -210.
- [12] M. Khan and M.N. Khan, On fuzzy Abel Grassmann's groupoids, Advance in Fuzzy Math., 5(3)(2010), 349 - 360.
- [13] M. Khan and M. Nom an Aslam Khan, Fuzzy Abel-Grassmann's groupoids, arXiv:0904.0077v1 [math.GR], (2009).
- [14] N. Kuroki, Fuzzy semiprime quasi ideals in semigroups, Inform. Sci., 75 (3)(1993), 201 - 211.
- [15] J.N. Mordeson, Fuzzy semigroups, Springer-Verlag Berlin Heidelberg, (2003).
- [16] V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci., 158(2004), 277 - 288.
- [17] Q. Mushtaq and M. Khan, A note on an Abel-Grassmann's 3-band, Quasigroups and Related Systems, 15(2007), 295 - 301.
- [18] Q. Mushtaq and M. Khan, Direct product of Abel Grassmann's groupoids, J. Interdiscip. Math., 11(2008), 461 - 467.
- [19] Q. Mushtaq and M. Khan, Ideals in left almost semigroup, arXiv:0904.1635v1 [math.GR], (2009).

- [20] Q. Mushtaq and SM. Yousuf, On LA-semigroups, TheAlig. Bull. Math., 8(1978), 65 - 70.
- [21] Q. Mushtaq and S.M. Yousuf, On LA-semigroup defined by a commutative inverse semigroup, Math. Bech, 40(1988), 59 - 62.
- [22] M. Naseeruddin, Some studies in almost semigroups and flocks, Ph.D. thesis: Aligarh Muslim University: Aligarh: India, (1970).
- [23] M.K. Sen, On Γ -semigroups, Proceeding of International Symposium on Algebra and Its Applications, Decker Publication: New York, (1981), 301 - 308.
- [24] T. Shah, Inayatur-Rehman and A. Khan, Fuzzy Γ ideals in Γ -AG-groupoids, Hacettepe Journal of Mathematics and Statistics, 43(4)(2014), 625 - 634.
- [25] T. Shah and I. Rehman, Decomposition of locally associative Γ -AG-groupoids, Novi Sad J. Math., 43(1)(2013), 1 8.
- [26] F. Yousafzai, N. Yaqoob, S. Haq and R. Manzoor, A note on intuitionistic fuzzy Γ-LA-semigroups, World Applied Sciences Journal, 19(12)(2012), 1710 - 1720.
- [27] L.A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338 353.