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A PRACTICAL GUIDE TO DESIGNING COST-EFFICIENT RANDOMIZED EXPERIMENTS IN 
EDUCATION RESEARCH: FROM PILOT STUDIES TO INTERVENTIONS AT SCALE

Metin BULUS*

Abstract

This study aims to illustrate how to design cost-efficient randomized experiments from pilot studies to interventions at 
scale. There are two possible scenarios for optimal design of randomized experiments; first, we may want to maximize the 
power rate while keeping the total cost at or under a fixed amount, and second, we may want to minimize the total cost 
while keeping the power rate at or above a nominal power rate (often 0.80). Considering these two scenarios, the optimal 
design strategy ensures that we choose the design with the highest power rate among all possible cost-equivalent designs, 
or that we choose the design with the minimum cost among all possible power-equivalent designs. Further cost-efficiency 
can be achieved via collecting more information on the subjects/group of subjects, or via blocking subjects into homogenous 
subsets. We used the excel sheet provided by Bulus (2021) and cosa R package (Bulus & Dong, 2021a, 2021b) to determine 
cost-efficient designs. Scholars can justify their sample size in this fashion when they have resource constraints. 

Keywords: Optimal design, Randomized experiments, Randomized trials, Cluster-randomized trial, Blocked cluster-randomized 
trial, Randomized pretest-posttest control-group design, Cost-efficient experiments.

EĞİTİM ARAŞTIRMALARINDA UYGUN MALİYETLİ SEÇKİSİZ DENEYLER TASARLAMAK İÇİN 
PRATİK BİR KILAVUZ: PİLOT ÇALIŞMALARDAN BÜYÜK ÖLÇEKLİ MÜDAHALELERE

Öz

Bu çalışma, pilot çalışmalardan büyük ölçekli müdahalelere kadar uygun maliyetli seçkisiz deneylerin nasıl tasarlanacağını 
göstermeyi amaçlamaktadır. Seçkisiz deneylerin optimal tasarımı için iki olası senaryo vardır; ilk olarak, toplam maliyeti sabit 
bir miktar veya altında tutarken güç oranını maksimize etmek isteyebiliriz ve ikinci olarak, güç oranını nominal güç oranı 
(genellikle 0,80) veya üzerinde tutarken toplam maliyeti minimize etmek isteyebiliriz. Bu iki senaryo göz önüne alındığında, 
optimal tasarım stratejisi maliyet açısından eşdeğer olası tüm tasarımlar arasından en yüksek güç oranına sahip tasarımı 
seçmemizi veya istatistiksel güç açısından eşdeğer olası tüm tasarımlar arasından en az maliyete sahip tasarımı seçmemizi 
sağlar. Katılımcılar/katılımcı grupları hakkında daha fazla bilgi toplanarak veya katılımcılar homojen alt kümelere bloke 
edilerek maliyet düşürülebilir. Maliyeti düşük tasarımları belirlemek için Bulus (2021) tarafından sağlanan excel sayfası ve cosa 
R paketi (Bulus & Dong, 2021a, 2021b) kullanılmıştır. Akademisyenler kaynak kısıtlamaları olduğunda örneklem büyüklüklerini 
bu şekilde gerekçelendirebilirler. 

Anahtar Kelimeler: Optimal tasarım, Seçkisiz deneyler, Seçkisiz küme deneyleri, Bloklanmış seçkisiz küme deneyleri, Seçkisiz 
öntest-sontest kontrol grubu olan tasarımlar, Uygun maliyetli deneyler.
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Introduction 

From developing an intervention to data collection, conducting scholarly research requires funding. Sadly, 
quality and impact of the research output somewhat depends on the available funds (Heyard & Hottenrott, 
2021). The fund, whether from researcher’s own pocket or through an organization, is needed to cover direct 
and indirect costs, including but not limited to, paid staff, development of an intervention program, office space 
and materials, data collection tools and printing. The larger the study the more resources are needed. Thus, 
sample size of a study, and consequently its statistical power during hypothesis testing, is directly affected by the 
amount of acquired fund. If the reason to avoid an adequately powered study is the cost, the least a researcher 
can do is to acknowledge this limitation and justify their sample size accordingly (Lakens, 2022). This study aims 
to demonstrate one such justification using optimal design strategy. In the optimal design strategy, one can 
design a cost-efficient experiment in two ways. First, one may want to maximize the power rate while keeping 
the total cost at or under a fixed amount, and second, one may want to minimize the total cost while keeping 
the power rate at or above a nominal power rate (Bulus & Dong, 2021a). The methodology for designing cost 
efficient experiments has become popular in the past several decades (Bulus & Dong, 2021a; Hedges & 
Borenstein, 2014; Konstantopoulos, 2009, 2011, 2013; Liu, 2003; Raudenbush, 1997; Raudenbush & Liu, 2000; 
Wu et al., 2017; van Breukelen & Candel, 2018). Implementation in software packages shortly pursued 
(CRTPower, Borenstein et al., 2012; cosa R package, Bulus & Dong, 2021b; OD+, Raudenbush et al., 2011). 
However, experiments in social science have hardly echoed these developments. This study aims to illustrate 
how to design cost-efficient randomized experiments from pilot studies to interventions at scale. The optimal 
design strategy ensures that we choose the design with the highest power rate among all possible cost-
equivalent designs, or that we choose the design with minimum cost among all possible power-equivalent 
designs. We will use Optimal Design excel sheet provided by Bulus (2021) for optimal design of simple 
randomized experiments and cosa R package (Bulus & Dong, 2021a, 2021b) for optimal design of multilevel 
randomized experiments1.  

First, we will begin with describing a hypothetical case. Assume we want to explore whether the use of 
interactive computer animations relying on predict-observe-explain (ICA-POE) approach improves elementary 
school students’ understanding of static electricity concepts (e.g. Akpinar, 2014). We are planning to take the 
following steps: (i) randomly assign students to treatment and control groups, (ii) administer pretest, (iii) 
implement the ICA-POE intervention spanning to ten weeks, (iv) administer the posttest, and finally (v) estimate 
the difference in posttest scores between the two groups while controlling for the pretest scores. The diagram 
of this randomized pretest-posttest control-group design is presented below.  

Treatment group R Opretest X Oposttest 

Control group R Opretest  Oposttest 

R refers to the randomization procedure before collecting pretest information, X refers to implementation of 
the intervention in treatment group after pretest but before posttest, O refers to the measurement points before 
and after the intervention. Assume we want to conduct a pilot study in one of the schools to learn about ICA-
POE intervention’s initial impact. In the process, we may want to bring ICA-POE intervention to maturity with 
respect to materials and implementation. Then, if the intervention is successful and scalable enough, it will be 
implemented in more schools to see whether initial impact holds at a larger sample (potentially consisting of 
students and schools with diverse backgrounds). Effects found from pilot studies usually diminish during scale-
up process due to, including but not limited to, unrepresentativeness of the pilot sample, heterogeneity in the 
intervention effects across diverse populations, and improper handling of the scale-up process that dilute 
intervention effects.  

Stage 1 – Pilot Study 

The choice of the analytic model determines the power analysis routine. In this section, we would like to use 
the Analysis of Covariance (ANCOVA) framework. In the ANCOVA framework, we can control for the pretest and 

1 Bulus (2021) derived the formula for optimal design of simple randomized experiments (no multilevel structure) in which one can design 
an unbalanced design which minimizes treatment effect variance under differential cost per treatment and control group units. The formula 
is implemented in an excel sheet called Optimal Design which can be downloaded from https://osf.io/uerbw/download. Bulus and Dong 
(2021a) proposed a bound constrained numerical optimization framework for optimal design of multilevel randomized experiments and 
regression discontinuity designs and implemented the framework in the cosa R package (Bulus & Dong, 2021b). In the cosa R package 
treatment group sampling rate and sample size at one or more levels can be optimized under differential costs. The package can be 
downloaded from https://cran.r-project.org/package=cosa. 

https://osf.io/uerbw/download
https://cran.r-project.org/package=cosa
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other covariates while comparing treatment and control groups on the posttest. The reason for this practice is 
two-fold; (i) one may wish to control for observable factors on which treatment and control groups differ 
(especially in weak-experiments, see Bulus [2021] for details), (ii) to increase the statistical power of the test to 
detect smaller differences between treatment and control groups. Denoting the treatment condition with 𝑇𝑇𝑖𝑖, 
pretest with 𝑋𝑋𝑖𝑖, and posttest with 𝑌𝑌𝑖𝑖 for subject i, the analytic model can be formulated as 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1(𝑇𝑇𝑖𝑖) + 𝛽𝛽2(𝑋𝑋𝑖𝑖) + 𝑟𝑟𝑖𝑖 (1) 

which indicates that the posttest of student i (𝑌𝑌𝑖𝑖) can be predicted by their treatment status (𝑇𝑇𝑖𝑖) and their 
pretest score (𝑋𝑋𝑖𝑖). This formulation is common among power analysis literature for experimental designs. 𝛽𝛽0 is 
the intercept and can be interpreted as the expected posttest score for a student in the control group who had 
the average pretest score (because the control group is coded as 0). 𝛽𝛽1 is the treatment effect on the posttest, 
𝛽𝛽2 is the effect of pretest on the posttest beyond treatment effect, and 𝑟𝑟𝑖𝑖 is the residual (the part that cannot be 
explained by the model). Our main interest is the magnitude of 𝛽𝛽1 coefficient. 𝛽𝛽1 gives an estimate of the 
difference between treatment and control group on the posttest while adjusting for pretest differences. It is 
common to see differences on the pretest for non-randomized studies. Failure to adjust for pretest may produce 
mostly overly-optimistic, or rarely, pessimistic estimates for the treatment effect (Bulus & Koyuncu, 2021). In 
small scale experiments, adjusting for the pretest not only increases precision of the estimate but also reduces 
bias due to baseline differences.  

To conduct the pilot study, assume we received 1,000 TL funding from a university’s academic research grants 
division (known as BAP in Turkey’s public universities). There are two possible scenarios. In the first scenario, the 
researcher might have allocated a fixed budget in the grant proposal. The cost per student in the treatment group 
may be greater than the cost per student in the control group due to staff and materials specific to the treatment 
group. Assume that there will be 20 TL cost per student in the treatment group and 5 TL cost per student in the 
control group. Our goal is to find an allocation rate that maximizes statistical power given the fixed budged. Bulus 
(2021) provided the Optimal Design excel sheet (https://osf.io/uerbw/download) to determine optimal 
allocation of students to treatment and control groups that would produce maximum power rate.  

Optimal Sample Size Allocation under Fixed Cost 

The next step is to find the optimal allocation of students to treatment and control groups given the cost per 
student in treatment and control groups, and the total cost. Details of the derivation for optimal allocation to 
treatment and control groups is available in Bulus (2021). Yellow highlighted cells in Figure 1 are to be changed. 
As a result, green highlighted cells provide the optimal allocation rate (or optimal treatment group sampling rate) 
and the total number of students. We can recruit 100 students if the total cost is fixed at 1000 TL, of which 33 
are in treatment group and 67 are in control group (p x n=100 x 0.33 = 33).  

Figure 1. The optimal treatment group sampling rate and total number of students. 

Although we found that the optimal allocation rate is 0.33, which is associated with the maximum power rate 
among cost-equivalent designs, we do not know the value of the power rate. In order to find the value of power 
rate given the optimal allocation rate we need to know two other parameters; the model R-squared value and 
the minimum relevant effect size.  

Experimental designs with higher R-squared values (else being equal) have greater precision (see Bulus, 2021; 
Bulus, 2022; Bulus & Koyuncu, 2021; Bulus & Dong, 2021a). This means that the experiment can detect smaller 
differences between treatment and control groups. In other words, they have greater statistical power. From 
this point of view, this means the experiment with higher R-squared value (else being equal) can detect the 
specified (true) difference more often had this experiment been conducted over and over again on repeated 

https://osf.io/uerbw/download
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samples (see Bulus, 2021; Bulus, 2022; Bulus & Koyuncu, 2021; Bulus & Dong, 2021a). In the power analysis, R-
squared value can be obtained from previous studies of similar kind. Alternatively, it can be estimated using 
existing data having similar sample characteristics and similar measures. Unfortunately, among the 155 
experiments (categorized as true, quasi, and weak) reviewed by Bulus and Koyuncu (2021) only 7% reported R-
squared values. Using the sim.r.squared() R function in the Appendix, the approximate adjusted R-squared
value can be found as 0.25 using t-test results reported in Akpinar (2014) (see details in the Appendix).  

Another question the researcher needs to answer is “What is the minimum meaningful effect (or minimum 
relevant effect size)?” The standardized treatment effect in Akpinar (2014) is 1.01, which is a large effect per 
Cohen’s (1988) guidelines. Designing an experiment with an effect size as large as 1.01 would be misleading. 
While the R-squared value is obtained from the earlier literature, the minimum meaningful effect is based on 
intuition, expert opinion, and policy standards. It can be more complicated to justify a meaningful effect. For the 
moment, assume we decided 0.50 as the minimum meaningful effect to continue with the experiment. In other 
words, if the experiment produce a standardized effect of 0.50 or more, it is worth continuing or scaling up the 
intervention.  

Using power.ira() function in the PowerUpR package (Bulus et al., 2021), an optimal treatment group
sampling rate of p = 0.33 produces a power rate of 0.77 (see the code chunk below). This is a little below 
commonly accepted nominal power rate of 0.80. es = 0.50 means the minimum meaningful standardized
treatment effect is 0.50. g = 1 means only pretest is included as the covariate. r2 = .25 means explanatory
power of the pretest and treatment variable together is 0.25 (R-squared).  p = .33 means the treatment group
sampling rate is 0.33. Finally, n = 100 means the total sample size 100 (treatment + control groups).

The power rate for the optimal design with p = 0.33 is 0.77. This is the maximum power rate we could obtain 
with 1000 TL. Before we continue with the optimal design, we should check the power rate and the increase the 
total cost had we chosen the balanced design (p = 0.50). The code chunk below re-runs the design with p = 0.50. 
The output indicates that if we preferred a balanced design with 100 students, the experiment would have had 
a power rate of 0.82. However, the total cost would have been 1,250 TL (50 x 20 + 50 x 5 = 1250). Since the total 
cost is fixed, our best option is to use the unbalanced design.  

In the next section, we will assume that the total cost is not fixed. This may happen if we did not write a 
preset amount in the grant proposal and would like to justify incurred cost for an adequately powered 
experiment for accountability purposes. We could afford using more money from the allocated BAP fund. We 
want to demonstrate that we opted for a more cost-efficient design while preserving the nominal power rate of 
0.80.  

# total cost = 1250 
# total cost = 50*20 + 50*5 = 1250
power.ira(es = 0.50, g = 1, r2 = 0.25, 

p = 0.50, n = 100) 
Statistical power: 
--------------------------------------- 
 0.815 
--------------------------------------- 
Degrees of freedom: 97 
Standardized standard error: 0.173 
Type I error rate: 0.05 
Type II error rate: 0.185 
Two-tailed test: TRUE
 

power.ira(es = 0.50, g = 1, r2 = 0.25,
p = 0.33, n = 100) 

Statistical power: 
--------------------------------------- 
 0.767 
--------------------------------------- 
Degrees of freedom: 97 
Standardized standard error: 0.184 
Type I error rate: 0.05 
Type II error rate: 0.233 
Two-tailed test: TRUE
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Cost-efficient Sample Size Allocation under Flexible Cost 

In this step, we may try to find the sample size that would produce a power rate of 0.80 (power = 0.80 is
the default, not shown in the code chunk), for the optimal treatment group sampling rate (p = 0.33) and for the 
balanced treatment group sampling rate (p = 0.50). Using mrss.ira() function in the PowerUpR package we
reach a sample size of 108 for p = 0.33 and 96 for p = 0.50. Since in both cases the power rate is 0.80 by default, 
one would prefer to choose the design with the least total cost. 

Entering sample sizes obtained from the code chunk above in the excel sheet (shaded in yellow), we find the 
cost associated with the unbalanced and balanced design (see Figure 2). An unbalanced design will cost 1,080 TL 
whereas a balanced design will cost 1,200 TL. If we use the optimal design (cost-efficient) with p = 0.33, we save 
120 TL.  

Figure 2. Cost-efficient design under flexible total cost. 

The amount saved is not substantial. However, if the cost is covered from our own pocket it may matter. If 
we request the amount form the funding agency we can also prefer the balanced design. A balanced design have 
some other benefits in the estimation; it is less likely that the assumption of homogeneity of variance across 
treatment and control groups will be violated.  

Stage 2 – Scaling Up 

Assume that the earlier pilot study produced the expected impact of Cohen’s d > 0.50 on the student 
outcomes. When an intervention is considered as effective and scalable, the next step is to expand the 
intervention to serve more people covering greater geographical areas and evaluate its effectiveness. However, 
more people and larger geographical area also means, more often than not, that there isn’t a single population. 
In other words, for example, people may differ culturally and socioeconomically. Also, people may live in places 
with different geographical characteristics and climate. At smaller scale people may resemble each other 
(homogeneity) but at larger scale they also differ (heterogeneity). Surely, culture, socioeconomic factors, 
geographical area, and climate are not the only factors on which people differ. For example students in the same 
school academically resemble each other because they have similar opportunity to learn at schools (share the 
same teachers and school resources) but they academically differ from other schools. Evaluation of programs 
deployed at larger scale requires specialized statistical tools to take into account sources of homogeneity and 

mrss.ira(es = 0.50, g = 1, r2 = 0.25,
p = 0.33) 

n = 108 
mrss.ira(es = 0.50, g = 1, r2 = 0.25, 

p = 0.50) 
n = 96 
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heterogeneity. Thus, multilevel models (also known as mixed models or hierarchical models) are often used to 
evaluate effectiveness of programs. To learn more about evaluation of social programs using multilevel models 
refer to Bulus (2022), Bulus and Dong (2021, 2022), Bulus and Sahin (2019), Dong and Maynard (2013), Dong et 
al. (2021), and references therein.  

For the next stage, assume we want to deploy the intervention at a larger scale. Also assume we applied 
Scientific and Technological Research Council of Türkiye (known as TÜBİTAK) to fund our research with a preset 
amount of 50,000 TL in the budget proposal. There are two possible options. We can randomly assign students 
into the treatment and control groups within schools, or we can randomly assign schools into the treatment and 
control groups. For the former, the intervention takes place at the student level, for the latter, it is at the school 
level. However, assigning students into the treatment control groups within a school comes with several 
drawbacks. First, depriving some students from the intervention within the same organization may be unethical 
and create social and behavioral inequalities among students (“I am in the intervention group, you are not!”). 
Second, if one classroom is assigned to treatment while the other to control, comparability of groups within the 
school is questionable. On the other hand, if students are randomly assigned into the treatment and control 
group regardless of which classrooms they belong, it raises contamination issues. Students in the treatment and 
those in the control group are in the same classroom; thus, they can interact and learn from each other.  Third, 
it might be more manageable to deploy the intervention at the school level; therefore, it is reasonable to assign 
schools into the treatment and control groups rather than students within schools. This type of design is referred 
to as cluster-randomized trials (see, Bloom, 2005; Bloom et al., 1999; Boruch, 2005; Boruch et al., 2002; Boruch 
& Foley, 2000; Bulus & Sahin, 2019; Cook, 2002; 2005; Mostseller & Boruch, 2002, among many others).  

First, let’s describe the analytic model for a cluster-randomized trial. In addition to the analytic model in 
Equation 1, pretest score is group-mean centered (𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑋𝑋𝚥𝚥� ) at level 1 (student level) and group means (𝑋𝑋𝚥𝚥� ) are 
re-introduced at level 2 (school level). Schools are randomly assigned into the treatment and control groups. 
Thus, treatment variable (𝑇𝑇𝑖𝑖) is at level 2 (school level). The analytic model for the two-level cluster-randomized 
trial can be formulated as 

Level 1 (student): 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖 − X�𝑖𝑖� + 𝑟𝑟𝑖𝑖𝑖𝑖 

(2) 
Level 2 (school): 

𝛽𝛽0𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01�𝑇𝑇𝑖𝑖� + γ02�𝑋𝑋�𝑖𝑖� + 𝜇𝜇0𝑖𝑖   

𝛽𝛽1𝑖𝑖 = 𝛾𝛾10 

Mixed model: 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01�𝑇𝑇𝑖𝑖� + γ02�𝑋𝑋�𝑖𝑖� + 𝛾𝛾10�𝑋𝑋𝑖𝑖𝑖𝑖 − X�𝑖𝑖𝑖𝑖� + 𝜇𝜇0𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 (3) 

which indicates that the posttest score of student i in school j (𝑌𝑌𝑖𝑖𝑖𝑖) can be predicted by their treatment status 
(𝑇𝑇𝑖𝑖), mean pretest score (𝑋𝑋�𝑖𝑖) of the school, and group-mean centered pretest score (𝑋𝑋𝑖𝑖𝑖𝑖 − X�𝑖𝑖) of the student. 𝛾𝛾00 
is the intercept, 𝛾𝛾01 is the treatment effect, 𝛾𝛾02 is the coefficient for the mean pretest score, 𝛾𝛾03 is the coefficient 
for the group-mean centered pretest score, 𝜇𝜇0𝑖𝑖 is the random effect associated with school j, and 𝑟𝑟𝑖𝑖 is the residual 
at the student level (the part that cannot be explained by student level variables).   

Several additional parameters are needed for planning a cluster-randomized trial compared to the pilot study 
in Stage 1. One parameter of interest is the intra-class correlation coefficient (ICC, also denoted as 𝜌𝜌) which 
indicates the extent to which a measure of interest (e.g. science achievement) varies between schools. Zopluogu 
(2012) reported ICC values for 4th grade science achievement measure using two cycles of TIMSS (2003 and 2007). 
The average of the ICC was 0.27 across all countries participating in TIMSS (Min: 0.21, Max = 0.36). This is the ICC 
value we will use in power analysis (for pedagogical purposes); however, one should prefer a specific ICC based 
on Türkiye’s data (assuming the research will take place in Türkiye).  

The other parameter that needs to be known is the explanatory power of the pretest at student and school 
levels (level 1 and 2). Small scale pilot studies are often conducted within a school, R-squared value from these 
models can be substituted for student level R-squared value (𝑅𝑅12) in a two-level model. Therefore, the 𝑅𝑅12, which 
is the explanatory power of the pretest at the student level can be specified as the approximate value of 0.25 
obtained via simulation. Let’s assume that the approximate R-squared for level 1 extends to level 2 (𝑅𝑅22 = 0.25). 
Nonetheless, it is preferable that 𝑅𝑅22 value is also gleaned from earlier studies or data (see Bulus & Sahin, 2019).  

Number of students per school is another parameter that needs to be justified. It is reasonable to have 25 
students in a classroom and have two classrooms per school (50 students in total). Earlier, we decided that 0.50 
is the minimum meaningful standardized effect. Often, when a program is implemented at a larger scale, the 
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treatment effect could differ substantially from the pilot study. One may find a smaller effect due to diversity in 
the larger sample, problems with up-scaling the intervention, or program fidelity. For illustration purposes, 
assume we decided on a minimum meaningful standardized effect of 0.25. This means, for the intervention to 
be considered effective at scale (applying to all schools in a region or country) the experiment should produce 
an effect 0.25 or above. One could also consider a three-level cluster-randomized trial (students: level 1, 
classrooms: level 2, schools: level 3), however often the variance attributed to the classroom level is small and 
can be ignored (see Bulus & Dong, 2022; Zhu et al., 2011). We will continue designing a two-level cluster-
randomized trial (students: level 1, schools: level 2).  

Assume the unique cost per student in a treatment school is 20 TL and in a control school is 5 TL. By “unique” 
cost we mean that costs at the higher level (overhead costs, staff, and intervention; simply anything at the school 
level) has not been reflected on the student level costs. Further assume there are some unique costs associated 
with each school (500 TL for each treatment schools, 50 TL for each control school). Again, by “unique” cost we 
mean that costs at the lower level (testing, copying; simply anything at the student level) has not been reflected 
on the school level cost.  

As in the “Stage 1 – Pilot Study” section earlier, in what follows we will consider two scenarios. In the first 
scenario, we will assume that the total cost is fixed (determined by the TÜBİTAK). In this case, we want to show 
that we choose a design that maximized the power rate among cost-equivalent designs. In the second scenario, 
perhaps before submitting the grant proposal to the TÜBİTAK, we want to show that we opted for a cost efficient 
sample for a desired level of accuracy (flexible cost). In this case, we want to show that we choose a design that 
minimized the total cost among power-equivalent designs. 

Optimal Sample Size Allocation under Fixed Cost 

We will use cosa.crd2() function in the cosa R package (Bulus & Dong, 2021a, 2021b) to find the optimal
sample size in treatment and control groups, and the number of schools under cost constraints. Arguments in 
the cosa.crd2() function can be interpreted in the following fashion:

o order = 0: This is a cluster-randomized trial. Unlike a cluster-level regression discontinuity
design, treatment group assignment is random. Thus, we do not need to model the assignment 
mechanism.  

o round = FALSE: The solution will not be rounded. If TRUE, the solution takes into account
the discrete nature of the sample in calculating the power rate or the total cost. 

o cn1 = c(20,5): The marginal cost per student in treatment and control group is 20 TL and
5 TL, respectively. The order is important. If confused, check the output. 

o cn2 = c(500,50):  The marginal cost per treatment and control school is 500 TL and 50 TL,
respectively. The order is important. If confused, check the output. 

o constrain = "cost": The constraint is placed on the total cost because total cost is fixed
which is cost = 50000.  When round = TRUE (the default) the total cost in the output may slightly
change.  

o es = 0.25: The minimum meaningful effect size is 0.25. Warning: This should not be the
estimate from earlier research. Instead, it should be justified using substantive knowledge, and via 
consulting experts and stake-holders as to what amount of minimum improvement matters to policy 
and practice.  

o rho2 = 0.27: The ICC is 0.27. In this context, ICC can be defined as the ratio of the school
level variance to the total variance in the outcome obtained from the unconditional random-intercepts 
model.  

o r21 = 0.25: The explanatory power of pretest and covariates at level 1 (student level) is
0.25. 

o g2 = 1: Only school mean pretest score is included in the model (one covariate at level 2 – or
school level). 

o r22 = 0.25: The explanatory power of pretest and covariates at level 2 (school level) is 0.25.
Warning: Note that power formulas assume that the R-squared value includes explanatory power of the 
treatment variable, school mean pretest score and other covariates at the school level (for a cluster-
randomized trial). When R-squared is gleaned from existing data the treatment variable is often absent. 
Using only school mean pretest score and covariates to compute the R-squared value provides a slightly 
pessimistic scenario in which we may need extra few clusters to reach the desired level of accuracy or 
power rate. Since we will have a larger sample this does not constitute a problem.    
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o n1 = 50:  There are 50 students per school. This number can be obtained from administrative
records, published literature or data (e.g. TIMSS, PIRLS, and PISA) using averages or harmonic means 
(see Dong & Maynard, 2013).  

o p = c(0.20,0.50): The treatment group sampling rate will be optimized within the bounds 
0.20 and 0.50. Providing reasonable bounds helps with the convergence. 

o n2 = NULL: The sample size at level 2 will be calculated, which is the number of schools. This
argument need not be specified since this is the default specification. 

After specifying these arguments we can run the function as in the following code chunk. Make sure the 
installed cosa R package is called into the current R session with library(cosa) command.

There are several things that should be noted in the output above. Considering differential cost per treatment 
and control groups, the optimal treatment group sampling rate is 0.309 and researchers can afford to recruit 
around 75 schools (0.309 x 75 in treatment group). Such a design produce a power rate of 0.567.  

A natural question to ask is “Does increase in power rate due to using an unbalanced design worth it?” To 
answer this question, one can specify p = 0.50 and check the power rate for the balanced design. While
preserving the total cost of 50,000 TL, one would need to sample around 56 schools (see the code chunk below). 
The power rate for this balanced design is 0.508. The more cost for treatment and control group units differ the 
more discrepancy in power rates will be observed. If power loss due to using a balanced design is trivial, one 
could opt for the balanced design. In this case, although power rate is higher in the optimal design earlier, it is 
still well below the nominal power rate of 0.80. If 50,000 TL is all researchers have, the unbalanced design is the 
best bet.  

library(cosa)
# fixed total cost - optimal p and n2 
cosa.crd2(order = 0, round = FALSE, 

cn1 = c(20,5), cn2 = c(500,50), 
constrain = "cost", cost = 50000, 
es = 0.25, rho2 = 0.27, 

    r21 = 0.25, g2 = 1,  r22 = 0.25, 
n1 = 50, p = c(0.20,0.50), n2 = NULL) 

Solution converged with LBFGS 
Rounded solution: 
--------------------------------------------------- 
 [n1]     n2   <p< [cost]  mdes 95%lcl 95%ucl power 
   50 74.536 0.309  50000 0.329  0.098   0.56 0.567 
--------------------------------------------------- 
Per unit marginal costs: 
 Level 1 treatment: 20 
 Level 1 control: 5 
 Level 2 treatment: 500 
 Level 2 control: 50 
--------------------------------------------------- 
MDES = 0.329 (with power = 0.80) 
power = 0.568 (for ES = 0.25) 
--------------------------------------------------- 
[]: point constrained (fixed) 
<<: bound constrained 
Random assignment design
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Cost-efficient Sample Size Allocation under Flexible Cost 

We may want to justify the cost associated with the intervention and request the amount from a funding 
agency. In this case, we want to show that we opted for a cost-efficient design. Another scenario could be that 
we may have already received the fund without a declared fixed cost and may try to save money for some other 
unseen expenditures while preserving the precision of the experiment. Different from previous section, the total 
cost is flexible but the precision is fixed. In other words, researchers want to reach a desired power rate of 0.80 
(or higher).  Therefore, the fixed power rate can be specified with constrain = "power" and power = 
0.80. Other arguments remain the same except that cost = 50000 is removed because it is not fixed. If the
total cost is specified accidentally the argument will be ignored. The following code chunk demonstrates how to 
find the sample size for the cost-efficient design. 

# flexible total cost - cost efficient p and n2 
cosa.crd2(order = 0, round = FALSE, cn1 = c(20,5), cn2 = c(500,50), 

constrain = "power", power = 0.80, 
es = 0.25, rho2 = 0.27, 

    r21 = 0.25, g2 = 1, r22 = 0.25, 
n1 = 50, p = c(0.20,0.50), n2 = NULL) 

Solution converged with SLSQP 
Exact solution: 
--------------------------------------------------- 
 [n1]      n2   <p<     cost mdes 95%lcl 95%ucl [power] 
   50 128.192 0.306 85526.92 0.25  0.075  0.425     0.8 
--------------------------------------------------- 
Per unit marginal costs: 
 Level 1 treatment: 20 
 Level 1 control: 5 
 Level 2 treatment: 500 
 Level 2 control: 50 
--------------------------------------------------- 
MDES = 0.25 (with power = 0.80) 
power = 0.80 (for ES = 0.25) 
--------------------------------------------------- 
[]: point constrained (fixed) 
<<: bound constrained 
Random assignment design

# fixed total cost - balanced design 
cosa.crd2(order = 0, round = FALSE, 

cn1 = c(20,5), cn2 = c(500,50), 
constrain = "cost", cost = 50000, 
es = 0.25, rho2 = 0.27, 

    r21 = 0.25, g2 = 2, r22 = 0.25, 
n1 = 50, p = 0.50, n2 = NULL) 

Solution converged with LBFGS 
Exact solution: 
--------------------------------------------------- 
 [n1]     n2 [p] [cost]  mdes 95%lcl 95%ucl power 
   50 55.556 0.5  50000 0.354  0.105  0.603 0.508 
--------------------------------------------------- 
Per unit marginal costs: 
 Level 1 treatment: 20 
 Level 1 control: 5 
 Level 2 treatment: 500 
 Level 2 control: 50 
--------------------------------------------------- 
MDES = 0.354 (with power = 80) 
power = 0.508 (for ES = 0.25) 
--------------------------------------------------- 
[]: point constrained (fixed) 
<<: bound constrained 
Random assignment design
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The treatment group sampling rate did not change from the previous section because marginal cost 
information did not change (p = 0.306). However, we need to recruit about 128 schools which costs 85,516 TL. 
How much would it cost, if were to plan for a balanced design? To answer this question, we need to fix treatment 
group sampling rate at 0.50 and re-run the code (see the code chunk below). Had we decided on a balanced 
design, it would have cost 92,258 TL while preserving the same precision level. By using a cost-efficient design 
we save 6,742 TL. This is a non-trivial amount. Again, as marginal cost per unit in treatment group and per unit 
in control group differ, the difference between cost-efficient design and balanced design will be greater.   

Further Reduction in Cost by Collecting Information on Schools and Students 

Collecting more information and increasing explanatory power of covariates at the school level will bump up 
the power rate (Bulus, 2022; Bulus & Sahin, 2019). For example, including students’ socioeconomic status (𝑆𝑆𝑖𝑖𝑖𝑖) 
along with their pretest score (𝑋𝑋𝑖𝑖𝑖𝑖) may increase level 1 R-squared value from 0.25 to 0.50. Likewise, including 
schools’ mean socioeconomic status (𝑆𝑆�̅�𝑖) along with the schools’ mean pretest (𝑋𝑋�𝑖𝑖) may increase level 2 R-squared 
value from 0.25 to 0.50. Of course, the choice of socio-economic status variable is not arbitrary. It is one of the 
most studied variable in education research that is of interest to policy and practice (e.g., Bulus & Koyuncu, 2021; 
Dong et al., 2022; Koyuncu et al., 2022; Ozcan & Bulus, 2022). It may be the main research interest or it may be 
an important variable that should be statistically controlled for. In the context of ICA-POE intervention, it is likely 
that students coming from well-to-do families may already be familiar with computer assisted educational 
games. Thus, it is reasonable to statistically control for socioeconomic status. Such practice not only adjusts 
treatment effect estimates for socioeconomic status but also increases its precision. An increase in the precision 
is due to an increase in the explanatory power of the covariates. This means that the experiment will have a 
higher power rate for the minimum meaningful standardized effect of interest. 

In addition to the analytic model in Equation 3, group-mean centered socio-economic status (𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆�̅�𝑖) is 
added at the student level and group means (𝑆𝑆�̅�𝑖) are added at the school level. The analytic model for the two-
level cluster-randomized trial can formulated as 

# flexible total cost - balanced design 
cosa.crd2(order = 0, round = FALSE, 

cn1 = c(20,5), cn2 = c(500,50), 
constrain = "power", power = 0.80, 
es = 0.25, rho2 = 0.27, 

    r21 = 0.25, g2 = 1, r22 = 0.25, 
n1 = 50, p = 0.50, n2 = NULL) 

Solution converged with SLSQP  
Exact solution:  
--------------------------------------------------- 
 [n1]      n2 [p]     cost mdes 95%lcl 95%ucl [power] 
   50 109.194 0.5 98274.99 0.25  0.075  0.425     0.8 
--------------------------------------------------- 
Per unit marginal costs:  
 Level 1 treatment: 20  
 Level 1 control: 5  
 Level 2 treatment: 500 
 Level 2 control: 50  
--------------------------------------------------- 
MDES = 0.25 (with power = 0.80)  
power = 0.80 (for ES = 0.25)  
--------------------------------------------------- 
[]: point constrained (fixed)  
<<: bound constrained  
Random assignment design
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Level 1 (student): 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖 − X�𝑖𝑖� + 𝛽𝛽2𝑖𝑖(𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆�̅�𝑖) + 𝑟𝑟𝑖𝑖𝑖𝑖  

(4) 
Level 2 (school): 

𝛽𝛽0𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01�𝑇𝑇𝑖𝑖� + 𝛾𝛾02�𝑋𝑋�𝑖𝑖� + 𝛾𝛾03�𝑆𝑆�̅�𝑖� + 𝜇𝜇0𝑖𝑖   

𝛽𝛽1𝑖𝑖 = 𝛾𝛾10 

𝛽𝛽2𝑖𝑖 = 𝛾𝛾20 

Mixed model: 
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01�𝑇𝑇𝑖𝑖� + γ02�𝑋𝑋�𝑖𝑖� + γ03�𝑆𝑆�̅�𝑖� + 𝛾𝛾10�𝑋𝑋𝑖𝑖𝑖𝑖 − X�𝑖𝑖� + 𝛾𝛾20�𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆�̅�𝑖� +
           𝜇𝜇0𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 

(5) 

In addition to the analytic model in Equation 3, 𝛾𝛾03 is the coefficient for schools’ socio-economic status and 
𝛾𝛾20 is the coefficient for students’ group-mean centered socio-economic status.  Explanatory power of covariates 
at level 1 is re-specified to reflect addition of students’ group-mean centered socio-economic status (r21 = 
0.50). Number of covariates and explanatory power of covariates at level 2 are re-specified to reflect addition
of schools’ socioeconomic status (g2 = 2 and r22 = 0.50). Number of schools, treatment group sampling
rate, and total cost for the cost-efficient design can be found using the code chunk below.  

Results indicate that we need about 87 schools. The treatment group sampling rate is 0.304. If we assign 
0.304 of 87 schools to treatment condition and the rest to control group, the total cost will be 57,485 TL. The 
earlier cost-efficient design had a total cost of 85,527 TL. The difference is striking. By collecting more information 
on students and schools we save 28,042 TL while preserving the nominal power rate of 0.80.  

Further Reduction in Cost by Block-randomization 

So far, designs assumed that there is a single population to which we would like to generalize results. In this 
case, we can randomly sample schools from the sampling frame2. However, there are regional differences within 
the country with respect to geographical characteristics, socio-economic profile, and regional development 
plans. These regional differences may not be represented in the sample. Thus, the assumption that all schools 
come from the same population may pose problems with generalizations. Turkish Statistical Institution (known 
as TÜİK) divided the Türkiye into 12 primary statistical regions using population size, geographical characteristics, 
socio-economic profile, and regional development plans. Within these 12 primary statistical regions, there are 

2 Sampling frame includes a list of all schools in the country. 

# flexible total cost - cost efficient p and n2 
# further reduction by increasing R-squared values 
cosa.crd2(order = 0, round = FALSE, 

cn1 = c(20,5), cn2 = c(500,50), 
constrain = "power", power = 0.80, 
rho2 = 0.27, r21 = 0.50, g2 = 2, r22 = 0.50, 
n1 = 50, p = c(0.20,0.50), n2 = NULL) 

Solution converged with SLSQP  
Exact solution:  
--------------------------------------------------- 
 [n1]     n2   <p<    cost mdes 95%lcl 95%ucl [power] 
   50 86.427 0.304 57485.1 0.25  0.075  0.425     0.8 
--------------------------------------------------- 
Per unit marginal costs:  
 Level 1 treatment: 20  
 Level 1 control: 5  
 Level 2 treatment: 500 
 Level 2 control: 50  
--------------------------------------------------- 
MDES = 0.25 (with power = 0.80)  
power = 0.80 (for ES = 0.25)  
--------------------------------------------------- 
[]: point constrained (fixed)  
<<: bound constrained  
Random assignment design
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26 secondary, and 81 tertiary statistical regions. We should make sure that each of these statistical regions is 
represented in the sample so that we can confidently generalize results. For illustration purposes, we will only 
consider 12 primary statistical regions.  

We will make sure that within each statistical region there is at least one school in treatment group and one 
school in control group. Therefore, schools will be randomly assigned to treatment and control groups within 
each statistical region. Statistical regions can be referred to as blocks. Randomly assigning schools to treatment 
and control groups within each statistical region is called block-randomization. It is likely that intercept and 
treatment effect will change from block-to-block. Since the 12 blocks are not a random sample of larger pool of 
blocks, their effects are non-random. In other words, intercept and treatment effect may change from block-to-
block non-randomly. This can be modeled as fixed intercepts and fixed slopes for the treatment effect in the 
statistical model. If blocks were a random sample of a larger pool of blocks, we needed to introduce level 3 
(random blocks). Since they are fixed, block information will be introduced as level 2 covariates at the school 
level. The analytic model takes the form of  

Level 1 (student): 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖 − X�𝑖𝑖� + 𝛽𝛽2𝑖𝑖(𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆�̅�𝑖) + 𝑟𝑟𝑖𝑖𝑖𝑖 

(6) 
Level 2 (school): 

𝛽𝛽0𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01�𝑇𝑇𝑖𝑖� + 𝛾𝛾02�𝑋𝑋�𝑖𝑖� + 𝛾𝛾03�𝑆𝑆�̅�𝑖� + 𝛾𝛾04(𝐵𝐵2) + ⋯+ 𝛾𝛾0(14)(𝐵𝐵12) +
 𝛾𝛾0(15)�𝑇𝑇𝑖𝑖𝐵𝐵2� + ⋯+ 𝛾𝛾0(25)�𝑇𝑇𝑖𝑖𝐵𝐵12� + 𝜇𝜇0𝑖𝑖  

𝛽𝛽1𝑖𝑖 = 𝛾𝛾10 

𝛽𝛽2𝑖𝑖 = 𝛾𝛾20 

Mixed model: 
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01�𝑇𝑇𝑖𝑖� + γ02�𝑋𝑋�𝑖𝑖� + γ03�𝑆𝑆�̅�𝑖� + 𝛾𝛾10�𝑋𝑋𝑖𝑖𝑖𝑖 − X�𝑖𝑖� + 𝛾𝛾20�𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑆𝑆�̅�𝑖� +

 𝛾𝛾04(𝐵𝐵2) + ⋯+ 𝛾𝛾0(14)(𝐵𝐵12) + 𝛾𝛾0(15)�𝑇𝑇𝑖𝑖𝐵𝐵2� + ⋯+ 𝛾𝛾0(25)�𝑇𝑇𝑖𝑖𝐵𝐵12� +
 𝜇𝜇0𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖  

(7) 

In addition to the analytic model in Equation 5, 𝛾𝛾04 to 𝛾𝛾0(14) are intercepts for each block (𝐵𝐵2 to 𝐵𝐵12) , which 
are departures from the intercept of the first block (𝛾𝛾00 is the intercept for 𝐵𝐵1, which is designated as the 
reference). 𝛾𝛾0(15) to 𝛾𝛾0(25) are treatment effects for each block (𝐵𝐵2 to 𝐵𝐵12) , which are departures from the 
treatment effect in the first block (𝛾𝛾01 is the treatment effect for 𝐵𝐵1).  Explanatory power of covariates at level 2 
is re-specified to reflect addition of blocks as covariates (r22 = 0.70). Number of covariates at level 2 are re-
specified to reflect addition of 11 blocks and 11 blocks interacting with treatment variable (g2 = 2+11+11).
Number of schools, treatment group sampling rate, and total cost for the cost-efficient design can be found using 
the code chunk below. 
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Results indicate that we need about 58 schools across 12 blocks (4.83 schools per block on average). The 
treatment group sampling rate is 0.287 on average across 12 blocks. If we assign 0.287 (on average) of 58 schools 
to treatment condition and the rest to the control group, the total cost will be 37,164 TL. The earlier cost-efficient 
design had a total cost of 57,485 TL. The reduction in total cost is striking. By block-randomization, we save an 
additional 20,321 TL while preserving the nominal power rate of 0.80.  

Conclusion 

Developing, implementing, and gauging effectiveness of an intervention requires funding. The cost may be 
incurred by a novel method, materials, logistics, data collection, etc. The marginal cost per subject in treatment 
and control groups may differ. Often, per unit cost in treatment group is higher than per unit cost in control 
group. In such cases, it is possible to assign less subject to treatment group. This tutorial illustrates how to design 
cost-efficient randomized experiments from pilot studies to interventions at scale. One may want to maximize 
the power rate while keeping the total cost at or under a fixed amount, or they may want to minimize the total 
cost (flexible cost) while keeping the power rate at or above a nominal power rate (often 0.80). Cost-efficiency 
can be further achieved via including pretest/covariates at the cluster level and/or block-randomization which 
further improves experiment’s precision or reduce the cost (Bulus & Koyuncu, 2021; Bulus & Sahin, 2019).  

Caution is needed when optimal treatment group sampling rate (p) is of interest with severe cost differences 
between treatment and control group units. When marginal cost information is very different for treatment and 
control group units, the algorithm may produce sub-optimal solutions. Specification of bound constraints in the 
form of p = c(0.20,0.50) and/or local.solver = "MMA" is recommended. Alternatively, a range
of p can be specified manually in the function to check any abnormalities.

# flexible total cost - cost efficient p and n2 
# further reduction by including regions as blocks 
# eleven additional intercepts (one region is the reference) 
# eleven treatment effects (one region is the reference) 
cosa.crd2(order = 0, round = FALSE, 

cn1 = c(20,5), cn2 = c(500,50), 
constrain = "power", power = 0.80, 
es = 0.25, rho2 = 0.27, 
r21 = 0.50, g2 = 2+11+11,  r22 = 0.70, 
n1 = 50, p = c(0.20,0.50), n2 = NULL) 

Solution converged with SLSQP  
Exact solution:  
--------------------------------------------------- 
 [n1]     n2   <p<     cost mdes 95%lcl 95%ucl [power] 
   50 57.646 0.287 37163.75 0.25  0.074  0.426     0.8 
--------------------------------------------------- 
Per unit marginal costs:  
 Level 1 treatment: 20  
 Level 1 control: 5  
 Level 2 treatment: 500 
 Level 2 control: 50  
--------------------------------------------------- 
MDES = 0.25 (with power = 0.80)  
power = 0.80 (for ES = 0.25)  
--------------------------------------------------- 
[]: point constrained (fixed)  
<<: bound constrained  
Random assignment design
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Table 1. Commonly used Designs in the cosa R Package 

cosa R Function Design Characteristics (with Examples from Education) 
Use when:  

Multisite Randomized Trials 

cosa.bird2f1(order=0,) 

• There are several pre-determined schools (not randomly selected).
• Students are randomly assigned to treatment and control groups within

each school.
• Classroom information is ignored.
• The outcome data is at the student level.
• Treatment effect varies non-randomly across school (fixed treatment

effects). 
• School indicator variables and their interaction with the treatment

indicator are added to the statistical model.

cosa.bird2(order=0,) 

• Schools are randomly selected from a larger pool of schools.
• Students are randomly assigned to treatment and control groups within

each school.
• Classroom information is ignored.
• The outcome data is at the student level.
• Intercept and treatment effect varies randomly across schools (random

treatment effects).

cosa.bird3(order=0,) 

• Schools are randomly selected from a larger pool of schools.
• Students are randomly assigned to treatment and control groups within

each classroom.
• Classroom information is considered. 
• The outcome data is at the student level.
• Intercept and treatment effect varies randomly across classroom and

school levels (random treatment effects).

Cluster-randomized Trials 

cosa.crd2(order=0,) 

• Schools are randomly selected from a larger pool of schools.
• Schools are randomly assigned to treatment and control groups.
• Classroom information is ignored.
• The outcome data is at the student level.

cosa.crd3(order=0,) 

• Schools are randomly selected from a larger pool of schools.
• Schools are randomly assigned to treatment and control groups.
• Classroom information is considered. 
• The outcome data is at the student level.

Multisite Cluster-randomized Trials 

cosa.bcrd3f2(order=0,) 

• There are several pre-determined states (not randomly selected).
• Schools are randomly assigned to treatment and control groups within

each state.
• Classroom information is ignored.
• The outcome data is at the student level.
• State indicator variables and their interaction with the treatment

indicator are added to the statistical model.

cosa.bcrd3r2(order=0,) 

• States are randomly selected from a larger pool of states.
• Schools are randomly assigned to treatment and control groups in each

state.  
• Classroom information is ignored.
• The outcome data is at the student level.
• Intercept and treatment effect varies randomly across state levels.

cosa.bcrd4f3(order=0,) 

• There are several pre-determined states (not randomly selected) in the
sample.

• Schools are randomly assigned to treatment and control groups within
each state.

• Classroom information is considered. 
• The outcome data is at the student level.
• State indicator variables and their interaction with the treatment

indicator are added to the statistical model.
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cosa.bcrd4r3(order=0,) 

• States are randomly selected from a larger pool of states.
• Schools are randomly assigned to treatment and control groups in each

state.  
• Classroom information is considered. 
• The outcome data is at the student level.
• Intercept and treatment effect varies randomly across state levels.

Note. The order=0 argument indicates that the function will be used to optimize treatment group sampling rate and/or 
sample size at one or more levels in a randomized trial (not regression discontinuity design). Further details can be 
found in the cosa R package. For example, type and run ?cosa.crd2 in the R console to access information on the 
cosa.crd2() function.  

One thing to keep in mind is that heterogonous target population is one of the main reasons average 
treatment effects diminish at scale. Treatment effect heterogeneity is an important part of the policy/program 
evaluation as indicates for whom the program works well and for whom it does not. One strategy is to divide the 
heterogeneous target population into homogeneous subsets known as blocks. Random sample is drawn within 
each block. Random assignment into the treatment and control group also takes place within each block. In this 
illustration, although blocks were considered fixed (an exhaustive list of blocks), they may very well be random 
(random sample of them). For example, instead of using the exhaustive list of 12 primary statistical regions, one 
may consider 81 tertiary statistical regions (states) as blocks, and randomly sample from them.  For example, 
they may randomly sample two states from each of the 12 primary statistical regions. In this case, one could use 
cosa.bcrd3r2() function in the cosa R library. Characteristics of commonly used designs are described in Table 1. 
Scholars can use this table to navigate through various designs.  
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Appendix 

In what follows R-squared value is approximated via simulation using commonly reported statistics (means 
and standard deviations of pretest and posttest for treatment and control groups). Copy, paste & run the 
sim.r.squared()code in the R console.

A high R-squared value is needed to avoid designing over-costly treatments. R-squared value is an indicator 
of explanatory of predictors in the model. Predictors may include pretest or any other covariates along with the 
treatment variable. Majority of small-scale experiments report results of the t-test for the differences between 
treatment and control groups on pretest and posttest scores. An approximate R-squared value can be obtained 
via simulation. Researchers can use sim.r.squared() R function provided in the Appendix to simulate R-
squared value given sample size, means, and standard deviations of pretest and posttest in each treatment 

sim.r.squared <- function(n.treatment = 30,
n.control = 27,
mean.pre.treatment = 4.30,
mean.pre.control = 3.81,
mean.post.treatment = 10.06,
mean.post.control = 6.88,
sd.pre.treatment = 1.85,
sd.pre.control = 1.61,
sd.post.treatment = 3.31,
sd.post.control = 1.88,
n.sim = 5000) {

  output <- matrix(nrow = n.sim, ncol = 4) 
  colnames(output) <- c("cohen.d", "adj.r.squared", 

"t-test (pre)", "t-test (post)") 
  for(i in 1:n.sim) { 
    # simulate responses 
    pre.treatment <- rnorm(n = n.treatment, 

mean = mean.pre.treatment, 
sd = sd.pre.treatment) 

    pre.control <- rnorm(n = n.control, 
mean = mean.pre.control, 
sd = sd.pre.control) 

    post.treatment <- rnorm(n = n.treatment, 
mean = mean.post.treatment, 
sd = sd.post.treatment) 

    post.control <- rnorm(n = n.control, 
mean = mean.post.control, 
sd = sd.post.control) 

    # create treatment variable 
    treatment <- rep(c(1,0), 

c(length(pre.treatment), length(pre.control))) 
    # combine data 
    pre.test <- c(pre.treatment, pre.control) 
    post.test <- c(post.treatment, post.control) 
    data.set <- data.frame(treatment = treatment, 

pre.test = pre.test, post.test = post.test) 
    # ANCOVA 
    result <- lm(post.test ~ treatment + pre.test, data = data.set) 
    # R-squared value and test statistics 
    cohen.d <- coef(result)["treatment"] / sd(data.set$post.test) 
    adj.r.squared <- summary(result)$adj.r.squared 
    ind.t.stat.pre <- t.test(pre.treatment, pre.control)$statistic 
    ind.t.stat.post <- t.test(post.treatment, post.control)$statistic 
    # fill the matrix 
    output[i,] <- c(cohen.d, adj.r.squared, 

ind.t.stat.pre, ind.t.stat.post) 
  } 
  colMeans(output) 
} # end 
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condition. Getting back to our example, we want to get an approximate R-squared value based on the t-test 
results reported in Akpinar’s (2014). Using information presented in Table 2 in Akpinar (2014, p. 533) R-squared 
value can be approximated using the following code chunk.  

Results indicate that the standardized treatment effect is equivalent to increasing an average student’s score 
by 1.00 standard deviation of the outcome (Cohen’s d). The approximate adjusted R-squared value is 0.25. The 
remaining values in the output are t-statistics for the difference between treatment and control groups on 
pretest and posttest scores. They are to be compared against those in the table. They are sufficiently close to t-
statistics reported in Akpinar (2014, p. 533). 
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# simulate R-squared from Table 2 in Akpinar (2014, p. 533) 
sim.r.squared(n.treatment = 30, 

n.control = 27,
mean.pre.treatment = 4.30,
mean.pre.control = 3.81,
mean.post.treatment = 10.06,
mean.post.control = 6.88,
sd.pre.treatment = 1.85,
sd.pre.control = 1.61,
sd.post.treatment = 3.31,
sd.post.control = 1.88)

  cohen.d adj.r.squared  t-test (pre) t-test (post) 
1.007064      0.253593      1.089295      4.594880 




