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ABSTRACT 

 

In this study, a general partitioned linear model    1 1 2 2, , , ,y X V y X X V      is considered to determine 

the best linear unbiased estimators (BLUEs) of subparameters 1 1X   and 2 2X  . Some results are given related to the 

BLUEs of subparameters by using the inverse partitioned matrix (IPM) method based on a generalized inverse of a 
symmetric block partitioned matrix which is obtained from the fundamental BLUE equation. 
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IPM yöntemi ile alt parametrelerin tahmini 
 

ÖZ 
 

Bu çalışmada, 1 1X   ve 2 2X   alt parametrelerinin en iyi lineer yansız tahmin edicilerini (BLUE’ larını) belirlemek 

için bir    1 1 2 2, , , ,y X V y X X V      genel parçalanmış lineer modeli ele alınmıştır. Temel BLUE 

denkleminden elde edilen simetrik blok parçalanmış matrisin bir genelleştirilmiş tersine dayanan parçalanmış matris 
tersi (IPM) yöntemi kullanılarak alt parametrelerin BLUE’ ları ile ilgili bazı sonuçlar verilmiştir. 
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1. INTRODUCTION 
 

Consider the general partitioned linear model  
 

1 1 2 2 ,y X X X          (1) 

 

where 1nxy R  is an observable random vector, 

 1 2: nxpX X X R   is a known matrix with 

1
1

nxpX R  and 2
2

nxpX R ,   1
1 2: pxR      is a 

vector of unknown parameters with 1 1
1

p xR   and 
2 1

2
p xR  , 1nxR   is a random error vector. Further, 

the expectation  E y X  and the covariance matrix 

  nxnCov y V R   is a known nonnegative definite 

matrix. We may denoted the model (1) as a triplet 
 

   1 1 2 2, , , ,y X V y X X V     . (2) 

 
Partitioned linear models are used in the estimations of 
partial parameters in regression models as well as in the 
investigations of some submodels and reduced models 
associated with the original model. In this study, we 
consider the general partitioned linear model   and we 
deal with the best linear unbiased estimators (BLUEs) of 
subparameters under this model. Our main purpose is to 

obtain the BLUEs of subparameters 1 1X   and 2 2X   

under   by using the inverse partitioned matrix (IPM) 
method which is introduced by Rao [1] for statistical 
inference in general linear models. We also investigate 
some consequences on the BLUEs of subparameters 
obtained by using IPM approach. 
 
Under the linear models, BLUE has been investigated by 
many statisticians. Some valuable properties of BLUE 
have been obtained, e.g., [2-6]. By applying matrix rank 
method, some characterizations of BLUE have been 
given by Tian [7,8]. IPM method for the general linear 
model with linear restrictions has been considered by 
Baksalary [9]. 
 

2. PRELIMINARIES 
 

The BLUE of X  under  , denoted as 

 BLUE X   , is defined to be an unbiased linear 

estimator Gy  such that its covariance matrix  Cov Gy  

is minimal, in the Löwner sense, among all covariance 

matrices  Cov Fy  such that Fy  is unbiased for .X  It 

is well-known, see, e.g., [10,11], that 

 Gy BLUE X    if and only if G satisfies the 

fundamental BLUE equation 
 

   : : 0 ,G X VQ X  (3) 

 
where xQ P    with xP  is orthogonal projector onto 

the column space  C X . Note that the equation (3) has 

a unique solution if and only if  :rank X V n  and the 

observed value of Gy  is unique with probability 1 if and 

only if   is consistent, i.e., 

   : :y C X V C X VQ   holds with probability 1; see 

[12]. In the study, it is assumed that the model   is 
consistent.  
 
The corresponding condition for Ay  to be BLUE of an 

estimable parametric function K  is 

   : : 0A X VQ K . Recall that a parametric function 

K  is estimable under   if and only if 

   C K C X   and in particular, 1 1X   and 2 2X   is 

estimable under   if and only if 

     1 2 0C X C X  ; see [13,14].  

 
The fundamental BLUE equation given in (3) 
equivalently expressed as follows. 

 Gy BLUE X    if and only if there exists a matrix 

pxnL R  such that G  is solution to, 
 

0

0

V X G

X L X

    
         

, i.e , 
0G

Z
L X

   
      

. (4) 

 
Partitioned matrices and their generalized inverses play 
an important role in the concept of linear models. 
According to Rao [1], the problem of inference from a 
linear model can be completely solved when one has 
obtained an arbitrary generalized inverse of the 
partitioned matrix Z . This approach based on the 
numerical evaluation of an inverse of the partitioned 
matrix Z  is known as the IPM method, see [1-15]. 
 

Let the matrix 1 2

3 4

C C
C

C C

 
  

 
 be an arbitrary 

generalized inverse of Z , i.e., C  is any matrix 

satisfying the equation ZCZ Z , where 1
nxnC R  and 

2
nxpC R . Then one solution to the (consistent) equation 

(4) is  
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1 2 2

3 4 4

0C C C XG

C C C XL X

       
               

. (5) 

 
Therefore, we see that 

  2 3BLUE X XC y XC y   , which is one 

representation for the BLUE of X  under  . If we 

let C  vary through all generalized inverses of Z  we 
obtain all solutions to (4) and thereby all representations 
Gy  for the BLUE of X  under  . As further 

reference for submatrices iC , 1,2,3,4,i   and their 

statistical applications, see [16-23]. 
 

3. SOME RESULTS ON A GENERALIZED 
INVERSE OF Z  

 
Some explicit algebraic expression for the submatrices of 
C  was obtained in [15, Theorem 2.3]. The purpose of 
this section is to extend this theorem to 3 3x  symmetric 
block partitioned matrix to obtain the BLUEs of 
subparameters and their properties. 
 

Let  D Z  , expressed as  

 

0 1 2 1 2

1 1 2 1

2 3 4 2

0 0 ,

0 0

D D D V X X

D E F F X

E F F X


   
         

       

 (6) 

 

where 0
nxnD R , 1

1
nxpD R , 2

2
nxpD R , 1E , 2E , 1,F

2F , 3F , 4F  are conformable matrices and  Z   stands 

for the set of all generalized inverse of Z . In the 
following theorem, we collect some properties related to 
the submatrices of D  given in (6). 
 
Theorem 1. Let ,V  1,X  2 ,X  0 ,D  1,D  2 ,D  1,E  2 ,E  

1,F  2 ,F  3F , 4F  be defined as before and let 

     1 2 0C X C X  . Then the following hold:  

 

(i) 

1 2 0 1 2

1 1 1 3

2 2 2 4

0 0

0 0

V X X D E E

X D F F

X D F F


     

           
          

  

is another choice of a generalized inverse.  
 

(ii) 0 1 1 1 1 2 2 1 1VD X X E X X E X X   , 1 0 1 0X D X  , 

2 0 1 0X D X  . 

 

(iii) 0 2 1 1 2 2 2 2 2VD X X E X X E X X   , 1 0 2 0X D X  , 

2 0 2 0X D X  . 

 

(iv) 0 1 1 2 2VD V X E V X E V V   , 1 0 0X D V  , 

2 0 0X D V  . 

 

(v) 1 1 1 1 1 2 3 1VD X X F X X F X    , 1 1 1 1X D X X  , 

1 1 2 0X D X  . 

 

(vi) 2 2 1 2 2 2 4 2VD X X F X X F X    , 2 2 2 2X D X X  , 

2 2 1 0X D X  . 

 
Proof: The result (i) is proved by taking transposes of 
either side of (6). We observe that the equations 
 

1 2 1Va X b X c X d   , 1 0X a  , 2 0X a   (7) 

 

are solvable for any d , in which case 0 1a D X d , 

1 1b E X d , 2 1c E X d  is a solution. Substituting this 

solution in (7) and omitting d , we have (ii). To prove 
(iii), we can write the equations 
 

1 2 2Va X b X c X d   , 1 0X a  , 2 0X a   (8) 

 

which are solvable for any d . Then 0 2a D X d , 

1 2b E X d , 2 2c E X d  is a solution. Substituting this 

solution in (8) and omitting d , we have (iii). To prove 

(iv), the equations which are solvable for any d   
 

1 2Va X b X c Vd   , 1 0X a  , 2 0X a   (9) 

 

are considered. In this case, one solution is 0a D Vd , 

1b E Vd , 2c E Vd . If we substitute this solution in (9) 

and omit d , we have (iv). In view of the assumption 

     1 2 0C X C X  , we can consider the equations 

 

1 2 0Va X b X c   , 1 1 1X a X d  , 2 0X a   (10) 

 
and  
 

1 2 0Va X b X c   , 1 0X a  , 2 2 2X a X d   (11) 

 
for the proof of (v) and (vi), respectively, see [18, 

Theorem 7.4.8]. In this case 1 1 1a D X d , 1 1 1b F X d  , 

3 1 1c F X d   is a solution for (10) and 2 2 2a D X d , 

2 2 2b F X d  , 4 2 2c F X d   is a solution for (11). 

Substituting these solutions into corresponding equations 

and omitting 1d  and 2d , we obtain the required results. 
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4. IPM METHOD FOR SUBPARAMETERS 
 
The fundamental BLUE equation given in (4) can be 
accordingly written for Ay  being the BLUE of estimable 

K , that is,  Ay BLUE K   if and only if there 

exists a matrix pxnL R  such that A  is solution to 
 

0A
Z

L K

   
      

. (12) 

 

Now, assumed that 1 1X   and 2 2X   are estimable under 

 . If we take  1 : 0K X  and  20 :K X , 

respectively, from equation (12) , we get the BLUE 

equations of subparameters 1 1X   and 2 2X  . There exist 

1

1
p xnL R , 2

2
p xnL R , 1

3
p xnL R , 2

4
p xnL R  such that 

1G  and 2G  are solution to following the equations, 

respectively, 
 

 1 1 1G y BLUE X    

1 2 1

1 1 1

2 2

0

0 0

0 0 0

V X X G

X L X

X L

    
          
        

 (13) 

and 
 

 2 2 2G y BLUE X    

1 2 2

1 3

2 4 2

0

0 0 0

0 0

V X X G

X L

X L X

    
         
         

. (14) 

 
Therefore, the following theorem can be given to 
determine the BLUE of subparameters by the IPM 
method. 
 
Theorem 2. Consider the general partitioned linear 
model   and the matrix D  given in (6). Suppose that 

     1 2 0C X C X  . Then  

 

 

 

1 1 1 1 1 1

2 2 2 2 2 2

and

.

BLUE X X D y X E y

BLUE X X D y X E y





 

 





 (15) 

 
Proof: The general solution of the matrix equation given 
in (13) is  
 

1 0 1 2

1 1 1 2 1

2 2 3 4

0

0

G D D D

L E F F X

L E F F

    
          
         

 

0 1 2 1 2

1 1 2 1

2 3 4 2

0 0

0 0

D D D V X X

E F F X U

E F F X

   
          

       

  

 

and thereby we get  

 

   
1 1 1 1 0 1 1 2 2

2 1 0 3 2 0 .

G y X D y U VD X D X D y

U X D y U X D y

         

        
 

 

Here y  can be written as 1 1 2 2 3y X L X L VQL    for 

some 1L , 2L  and 3L  since the model   is assumed to 

be consistent. From Theorem 1, we see that  
 

  1 0 1 1 2 2 1 1 2 2 3 0,U VD X D X D X L X L VQL           

   2 1 0 1 1 2 2 3 0,U X D X L X L VQL      

    3 2 0 3 2 0 1 1 2 2 3 0.U X D y U X D X L X L VQL          

 
Moreover, according to Theorem 1 (i), we can replace 

1D  by 1E . Therefore, 

 1 1 1 1 1 1BLUE X X D y X E y    is obtained.

 2 2 2 2 2 2BLUE X X D y X E y    is obtained by 

similar way 
 
The following results are easily obtained from Theorem 
1 (v) and (vi) under  . 
 

  

  

1 1 1 1

2 2 2 2

and

,

E BLUE X X

E BLUE X X

 

 









 (16) 

 

  

  

1 1 1 1 1

2 2 2 4 2

and

,

Cov BLUE X X F X

Cov BLUE X X F X













 (17) 

 

    1 1 2 2

1 2 2 1 3 2

,

.

Cov BLUE X BLUE X

X F X X F X

 

   

 
 (18) 
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5. ADDITIVE DECOMPOSITION OF THE BLUES 
OF SUBPARAMETERS 

 
The purpose of this section is to give some additive 
properties of BLUEs of subparameters under  . 
 
Theorem 3. Consider the model   and assume that 

1 1X   and 2 2X   are estimable under  . 

    1 1 2 2BLUE X BLUE X    is always 

BLUE for X  under  .  

 

Proof: Let  1 1BLUE X    and  2 2BLUE X    

be given as in (15). Then we can write  
 

   
 
1 1 2 2

1 1 2 2 .

BLUE X BLUE X

X D X D y

 

  

 
 

 
According to fundamental BLUE equation and from 
Theorem 1 (v) and (vi), we see that

    1 1 2 2 1 2 1 2: : : : 0X D X D X X VQ X X    for all 

 :y C X VQ . Therefore the required result is 

obtained. 
 
The following results are easily obtained from Theorem 
1 (iv) and (16)-(18). 
 

    1 1 2 2 ,E BLUE X BLUE X X      

    1 1 2 2

1 1 1 2 4 2 1 2 2 2 3 1.

Cov BLUE X BLUE X

X F X X F X X F X X F X

 

      

 
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