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Abstract 
To obtain complex part geometries at one pass using machining processes, it is important to employ the tools with non-

conventional geometries. A circular paraboloid is a solid of revolution, which can be obtained by rotating a parabola. The swept 

volume of an end mill can be defined as the unification of all sets of points on the tool for every instant as it moves, and its 

derivation is an obligation to determine the machined part geometry prior to an actual machining process. After derivation of 

the swept volume of the tool, machined part geometry is obtained by subtracting the swept volume of the tool from the volume 

of the initial workpiece. However, derivation of the swept volume of the tool is not a straightforward task. In this work, an 

analytical model was introduced to derive a complete set of points on the machined part by means of well-defined and 

constrained tool geometry and tool path. In the model, a plane that passes through the screw axis was used to observe the instant 

cross-section of the tool as it moves along the helical path. By overlapping the instant cross-sections of the tool in the plane, 

the final cross-section was derived. Since all cross-sections that pass through the screw axis are identical, the method gives an 

entire set of points on the machined surface. To validate the model, a computer-aided design program was utilized. 
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Öz  

Talaşlı imalat yöntemlerini kullanarak tek pasoda karmaşık parça geometrileri elde etmek için, geleneksel olmayan 

geometrilere sahip takımların kullanılması önemlidir. Dairesel paraboloit, bir parabolün döndürülmesiyle elde edilebilen katı 

bir cisimdir. Bir parmak frezenin süpürme hacmi, takım hareket ettikçe üzerindeki tüm noktaların her an için birleştirilmesi 

olarak tanımlanabilir ve bunun elde edilmesi gerçek bir talaşlı imalat işleminden önce işlenmiş parça geometrisini belirlemek 

için bir zorunluluktur. Takımın süpürme hacminin türetilmesinden sonra, işlenmiş parça geometrisi takımın süpürme hacminin 

ilk iş parçasının hacminden çıkarılmasıyla elde edilir. Ancak takım süpürme hacminin elde edilmesi basit değildir. Bu 

çalışmada, iyi tanımlanmış ve kısıtlanmış takım geometrisi ve takım yolu kullanılarak işlenmiş parça üzerindeki tüm noktaları 

elde etmek için analitik bir model sunulmuştur. Modelde takımın helisel yörünge boyunca hareket ederken anlık kesitini 

gözlemlemek için vida ekseninden geçen bir düzlem kullanılmıştır. Bu düzlemde takımın anlık kesitleri üst üste getirilerek, 

son kesit elde edilmiştir. Vida ekseninden geçen tüm kesitler özdeş olduğundan, yöntem işlenmiş parça yüzeyi üzerindeki 

noktaların kümesini vermektedir. Modeli doğrulamak için bilgisayar destekli tasarım programı kullanılmıştır. 

Anahtar Kelimeler: Frezeleme, Dairesel paraboloit parmak freze, Helisel yörünge, Süpürme hacmi. 

 

I. INTRODUCTION 
There are several milling processes in which the tool path is a helix. One of them is the helical milling process. 

The helical milling is usually utilized as an alternative hole-making process that provides some advantages as 

compared to conventional drilling such as less tool wear, low cutting forces, better chip evacuation, and improved 

hole quality [1]. Another milling process that uses the helical path is thread milling which brings versatility to the 

thread-making as compared to thread tapping. Some of the advantages of thread milling are as follows. The threads 

with different diameters can be produced by the same tool as long as the tool diameter is less than the thread 

diameter, and thread milling provides better chip evacuation as compared to thread tapping [2]. In addition, spindle 

speed – feed synchronization is not required in the thread milling, thus higher cutting speeds can be employed [3].  

Apart from hole-making and thread-making, a milling process with a helical path can be used to create internal 

and external helical grooves when the cutting tools that can machine undercuts are employed. A circular paraboloid 

end mill is one that can achieve this requirement. In a milling process with a helical tool path, the cross-section of 

the machined part is not merely determined by the tool geometry. An overcut caused by the helical path also affects 

the cross-section. This issue was pointed out for the thread milling process in which the cutting tool can machine 

undercuts [4]. A similar overcut occurs when the helical grooves are milled by using a helical path. 
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Swept volume generation is a common problem for 

many different areas. It is required for the path planning 

of the robots [5], collision detection [6], verification of 

NC machining [7], and solid modeling [8]. In the 

literature, several approaches have been introduced to 

derive the swept volumes such as Jacobian rank 

deficiency method [9], Sweep-envelope differential 

equation method [10], and Envelope theory [11]. 

However, the methods based on the solution of 

complex differential equations are not appropriate in 

application due to the fact that they require numerical 

calculations resulting in high computation cost and 

time [12]. Approximate solution techniques based on 

time and tool discretization were also proposed for the 

simulation of machining processes [13, 14]. However, 

an approximation error exists for such methods. An 

analytical model for the swept volume of a solid is very 

difficult to obtain when considering an arbitrary path 

for the solid. In this work, it was possible due to well-

defined and constrained tool geometry and tool path. 

 

The proposed method in this paper gives the equation 

of the exact cross-sectional profile of the machined 

surface without numerical calculation when a circular 

paraboloid end mill is used along a helical path. Since 

the path is a helix and the tool is axis-symmetrical, 

every cross-section of the machined part is identical 

except for a shift in the cross-section along the screw 

axis. Therefore, the equation of the cross-sectional 

profile in a plane is once found, this can be used to 

derive the entire set of points on the machined part 

surface. The model utilizes a fixed observer plane (𝑥 −
𝑦) that passes through the screw axis. As the tool rotates 

about the screw axis along the helical path, it intersects 

the observer plane. At every value of the tool rotation 

angle, a different cross-section of the tool occurs in the 

observer plane. The cross-sectional profile of the 

machined part can be obtained by overlapping the 

instant cross-sections of the tool.  

 

In the following sections, first, the analytical model was 

introduced. Then, simulation work was presented. In 

the results and discussion section, analytical results 

were compared to those of simulation, and the cross-

section of the swept volume was evaluated. Finally, the 

outcomes of the work were given in the section of 

conclusions. 

 

II. ANALYTICAL MODEL 
Figure 1 illustrates the helical milling with a circular 

paraboloid end mill for both internal and external 

helical grooves. The tool contains upper and lower 

circular paraboloids that are symmetrical about the 

horizontal axis. For the model, only the upper portion 

was considered due to symmetry. The general equation 

of a circular paraboloid is given in Equation (1). 

 

 
Figure 1. The helical milling with a circular 

paraboloid end mill. a) External groove. b) Internal 

groove. 
 

(𝑦 − 𝑦0) = 𝑎(𝑥 − 𝑥0)2 + 𝑎(𝑧 − 𝑧0)2 + 𝑏                    (1) 

 

where a and b are the paraboloid constants and 𝑥0, 𝑦0, 

and 𝑧0 are center coordinates of the tool. As the tool 

moves along the helical path, the center coordinates of 

the circular paraboloid change with respect to the tool 

rotation angle, 𝜑 (Figure 2). These coordinates are 

expressed as the functions of 𝜑 in Equations (2-4). 

 

 
Figure 2. Illustration of the tool rotation angle. 

 

𝑥0 = 𝑅 cos 𝜑                                                               (2) 

𝑦0 =
𝑝

2
−

𝑝𝜑

2𝜋
                                                                    (3) 

𝑧0 = 𝑅 sin 𝜑                                                                   (4) 
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where 𝑝 is the pitch of the helix and 𝑅 is the radius of 

the helix. The first term on the right side of Equation 

(3) is the initial tool position. Substituting the right 

sides of the Equations (2-4) into 𝑥0, 𝑦0, and 𝑧0 in 

Equation (1), Equation (5) is derived. 

 

(𝑦 −
𝑝

2
+

𝑝𝜑

2𝜋
) = 𝑎(𝑥 − 𝑅 cos 𝜑)2 + 𝑎(𝑧 − 𝑅 sin 𝜑)2 + 𝑏         (5) 

 

Equation (5) is the equation of the circular paraboloid 

with the variable center for the helical path. Since the 

equation of the cross-section of the circular paraboloid 

is required in 𝑥 − 𝑦 plane, 𝑧 in Equation (5) is set to 

zero. Finally, Equation (6) is derived by arranging 

Equation (5). 

 

𝑦 = 𝑎𝑥2 − 2𝑎𝑥𝑅 cos 𝜑 + 𝑎𝑅2 + 𝑏 +
𝑝

2
−

𝑝𝜑

2𝜋
               (6) 

 

Since the upper portion of the tool is investigated, the 

constant 𝑎 must be negative for the concave downward 

curve. Equation (6) must be constrained along 𝑦 axis by 

Equation (7) that passes through the center of the tool. 

Otherwise, it produces an infinitive curve along the 

negative direction of 𝑦 axis. 

 

𝑦 =
𝑝

2
−

𝑝𝜑

2𝜋
                                                                 (7) 

 

As 𝜑 varies in Equation (6), a different curve occurs in 

𝑥 − 𝑦 plane belonging to the instant cross-section of the 

tool. To determine the curve that surrounds the curves, 

Fermat’s theorem was applied to Equation (6). 

According to this, the critical value of 𝜑 that maximizes 

𝑦 value can be found by taking the partial derivative of 

Equation (6) with respect to 𝜑 and then equating to zero 

in Equation (8). Equation (9) is derived by solving 

Equation (8) for the second quadrant of 𝑥 − 𝑦 plane. 

Substituting the right side of Equation (9) into 𝜑 in 

Equation (6), the equation of the cross-section of the 

machined part can be found in Equation (10) for the 

second quadrant of 𝑥 − 𝑦 plane. 

 
𝜕𝑦

𝜕𝜑
= 0                                                                        (8) 

 

𝜑 = 𝜋 − sin−1 (
𝑝

4𝜋𝑎𝑅𝑥
)                                                   (9) 

 

𝑦 = 𝑎𝑥2 + 2𝑎𝑥𝑅√1 − (
𝑝

4𝜋𝑎𝑅𝑥
)

2

+ 𝑎𝑅2 + 𝑏             (10) 

     +
𝑝

2𝜋
sin−1 (

𝑝

4𝜋𝑎𝑅𝑥
) 

 

However, Equation (10) was derived without 

constraining Equation (6). Therefore, the path of the 

intersection point of Equation (6) and Equation (7) was 

used in the second quadrant of 𝑥 − 𝑦 plane in order to 

obtain the remaining portion of the cross-section. 𝜑 in 

Equation (7) was derived as a function of 𝑦 in Equation 

(11). Then, the right side of Equation (11) was 

substituted into 𝜑 in Equation (6). Finally, Equation 

(12) was derived in the second quadrant of 𝑥 − 𝑦 plane, 

which gives the path of the intersection point. 

 

𝜑 = 𝜋 −
2𝜋

𝑝
𝑦                                                             (11) 

 

𝑦 =
𝑝

2𝜋
cos−1 (−

𝑎𝑥2+𝑎𝑅2+𝑏

2𝑎𝑥𝑅
)                                     (12) 

 

The entire cross-section of the machined part is mostly 

formed by Equation (10), and Equation (12) gives the 

remaining portion. The intersection point of these 

curves can be found by equating Equation (10) and 

Equation (12). 

 

III. SIMULATION WORK 
Helical milling with a circular paraboloid end mill 

resembles creating swept volume by using a solid of 

revolution along a helix in terms of created geometry. 

Therefore, a computer-aided design program was used 

to compare the analytical results. Many computer-aided 

design programs do not have a feature to create the 

swept volume of a solid. On the other hand, some of 

them provide the swept volume for limited solids. 

Solidworks 2016 is one of them that gives the 

approximate remaining volume after subtracting the 

swept volume of a solid by means of swept cut 

command, but the limitation is that the solid must be 

created by the revolution of lines and arcs rather than a 

parabola. Since a circular paraboloid is investigated, 

the command can be used after approximating the 

parabola. The parabola was created by line segments 

with constant intervals along 𝑥-axis. The interval was 

chosen as 0.2 mm for the simulation work. According 

to this value, the maximum deviation from the parabola 

was 0.0005 mm along 𝑦-axis. In Table 1, selected 

values of the parameters are shown for both analytical 

model and simulation work. 
 

Table 1. Selected values of the parameters. 

Parameter Value 

R (mm) 20 

a (1/mm) -0.05 

b (mm) 7.2 

p (mm) 20 

 

In Figure 3, steps are shown for the simulation work. 

First, the circular paraboloid was created by rotating the 

approximated parabola. This was followed by the 

creation of the helical path. Since the command only 

works for subtracting the swept volume, an initial 

workpiece volume was created. Finally, the remaining 

volume was obtained by using the swept cut command. 

Calculation time was 558 seconds with an Intel i5 8265 

1.6 GHz processor - 8 GB ram computer. 
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Figure 3. Simulation steps. a) Circular paraboloid was 

created by rotating the approximated parabola. b) 

Helical path was created. c) Initial workpiece volume 

was created. d) After swept cut command. e) Cross-

sectional view. 

 

IV. RESULTS AND DISCUSSION 
The cross-sections which were obtained by both 

analytical model and computer-aided design program 

are shown in Figure 4. Some regions of the overlapped 

curves are scaled 20 times in the balloons. When the 

cross-sections are compared, it is observed that a 

deviation occurs in the cross-section of the swept 

volume derived by the computer-aided design program. 

This deviation cannot be attributed to the 

approximation error for the parabola because the 

deviation is greater than the approximation error. 

 

The cross-section of the swept volume created by the 

computer-aided design program consists of the joined 

splines. Therefore, the form error between the curves 

created by both methods cannot be compared directly. 

For the comparison, coordinates of the points which 

were located with 0.1 mm interval along the horizontal 

axis on the curve were collected. The comparison was 

done for the upper portion of the cross-section since it 

is symmetrical about the horizontal axis. After 

collecting the points, the sum of squares of the errors 

along the vertical axis with respect to the curve derived 

by the analytical model was calculated, and the 

coefficient of determination (R2) was obtained as 0.999 

which indicates the goodness of the fit. Apart from the 

fit of the curve, the maximum deviations from the 

analytical curve were 0.008 mm for the upper bound 

and 0.052 mm for the lower bound. Another 

comparison between the curves is the intersection 

points of the curve along x-axis, which should be -8 and 

-32 for the investigated case. However, these values 

were found as -8.040 and -31.999 in the simulation. The 

highest relative percentage form error is 0.5% for the 

end points. Based on these findings, it reveals that the 

deviation is relatively high in the end portions of the 

curve with respect to the remaining portions. 

Generation of swept volume in a CAD program is based 

on meshing. If the mesh size is decreased, a better 

approximation can be obtained. However, this 

increases the calculation time. On the other hand, the 

introduced model directly gives the cross-section of the 

swept volume. 

 

Analytical model can be used to investigate the 

overcuts caused by the helical path. In Figure 5, the 

cross-section of the circular paraboloid end mill is 

compared to that of the swept volume. In this figure, 

overcuts produced by the tool can be observed in grey. 

Based on this illustration, it can be revealed that 

although the cross-section of the tool is symmetrical 

about the vertical axis, the cross-section of the swept 

volume is not symmetrical about the vertical axis. 

Besides, the overcut is higher for the external groove. 

It should be noted that the diameter of the internal 

groove is higher than that of external groove as seen in 

Figure 1. 

 

 

Figure 4. Overlapped image of the cross-sectional 

profiles derived by analytical model and computer-

aided design program. 
 

 
Figure 5. Overlapped image of the cross-section of 

the circular paraboloid end mill and the cross-section 

of the swept volume. 
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Although the helical path of the cutting tool was 

considered in this work, Equation 10 can be used to 

obtain the cross-section of the swept volume for the 

cutting tool moving along a circular path by 

substituting 0 into 𝑝. The approach can also be 

applicable to the case in which the tool path is linear. In 

such a case, the linear tool path should be fitted by a 

helix to obtain the cross-section of the swept volume 

approximately. 

 

V. CONCLUSIONS 
In this work, swept volume of the circular paraboloid 

end mill for a helical path was derived analytically. A 

case study was also presented for the selected values of 

the parameters of the circular paraboloid end mill and 

tool path. A computer-aided design program was used 

to evaluate the analytical model. It was observed that 

the calculation time was very high, 558 seconds for the 

generated swept volume when a computer-aided design 

program was used. The reason for the high calculation 

time was that the parabolic tool profile was 

approximated by using lines. On the other hand, the 

exact profile of the swept volume could be derived 

immediately by using the introduced model. It was 

found that a deviation occurs in the cross-section of the 

swept volume when the computer-aided design 

program is used. The analytical model also enables the 

investigation of the overcuts. 
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