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HOMOTHETIC MOTIONS IN THE GENERALIZED 3-SPACE 
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Abstract 
 

A complete treatment of one parameter homothetic motions in three and four dimensional 

Euclidean spaces is provided in the Yayli's PhD thesis [15]. Here we follow his idea to define one 

parameter homothetic motion in generalized 3-space 3E .
 By means of the generalized Hamilton 

operators, we also define a Hamilton motion and show that it is a homothetic motion. We investigate 

some properties of this motion and show that Darboux vector of the motion can be written as 

multiplication of two generalized quaternions.   
 

Keywords:  Darboux vector, generalize Hamilton operator, Generalized quaternion, Homothetic motion, 
Pole point. 

 

ÜÇ BOYUTLU GENELEŞTİRLMİŞ UZAYDA HOMOTETİK HAREKET 
 

Öz 
 

Üç ve dört boyutlu Öklid uzayinda, bir parametre homotetik hareketleri Yaylı’nın doktora 

tezin’de [15] tam olarak temın edilir. Burada biz bu fikri kulanarak, genelleştirilmiş 3-boyutlu uzayda 

bir parametre homotetik hareketi tanıtırdık. Genelleştirilmiş Hamilton operatörler ile, aynı zamanda 

Hamilton hareket tanımlar ve bu bir homototik hareket olduğunu göstermektedir.Bu hareketın bazı 

özelliklerini araştırdık ve gösterdik ki bu hareketin Darboux vektörü İki genelleştirilmiş 

kuaterniyonların çarpmasi yazilabilir. 
  

Anahtar Kelimeler: Darboux vektör, Genelleştirilmiş Hamilton operatör, Genelleştirilmiş kuaterniyon, 
homotetik hareket, Pol noktası. 

 

 

1. INTRODUCTION 

In the Euclidean space E ,n
 H.R. Müler [12] has studied the one-parameter singular motions and 

has given some characterizations for axoid surfaces. One-parameter homothetic motions of a rigid 

body in n-dimensional Euclidean space is investigated in [1] and some of its properties are given by 

Hacisalihoglu [2], showing that the motion is regular and has one pole point at every instant t. The 

homothetic motions in 
3E  and 

4E  via the Hamilton operators are studied by Yaylı [14,15]. 

Subsequently, Kula and Yaylı [10] expressed the Hamilton motions by means of Hamilton operators 

in semi-Euclidean space 4

2E  and have showed that these motions all are a homothetic motion. In 

Lorentz 4-space, properties of the homothetic motions are considered in [13].  In our previous work, a 

matrix corresponding to the Hamilton operators is defined for generalized quaternions, which 

determines a Hamilton motion in four-dimensional space 4E
. It is shown that this is a homothetic 

motion [6]. In this paper, the homothetic motions in an n-dimensional generalized space 3E
 are 

defined and some of their properties are investigated. Subsequently, with the aid of the generalized 

Hamilton operators, we define a Hamilton motion in three-dimensional space 3E .
 We demonstrate 

that this motion is a one-parameter homothetic motion. We investigate some properties of this motion 
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and show that Darboux vector of the motion can be written as multiplication of two generalized 

quaternions.   

 

Generalized Quaternions Algebra 

 

A generalized quaternion q  is an expression of the form 

0 1 2 3q a a i a j a k     

where 0 1 2, ,a a a  and 3a  are real numbers and , ,i j k   are quaternionic units which satisfy the 

equalities 
2 2 2, , ,

k , = = ,

i j k

ij ji jk i kj

  



     

   
 

and  

= = , , R.ki j ik     

The set of all generalized quaternions are denoted by H .
 A generalized quaternion q is a sum 

of a scalar and a vector, where called scalar part is, 
0 ,qS a  and vector part is 

3

1 2 3 E .qV a i a j a k      If 0,qS  then q is called pure generalized quaternion. The set of all the pure 

generalized quaternions is denoted by K. 

 

H
 is form a 4-dimensional real space which contains the real axis R  and a 3-dimensional 

real linear space 3E ,
 so that, 3H R E .    

 

Special cases: 

 

1. 1,   is considered, then 
 is the algebra of real quaternions. 

2. 1, 1,    is considered, then 
  is the algebra of split quaternions. 

3. 1, 0,   is considered, then 
  is the algebra of semi-quaternions [11]. 

4. 1, 0,    is considered, then 
 is the algebra of split semi-quaternions [8].   

5. 0, 0,    is considered, then 
 is the algebra of quasi-quaternions[3].   

                                         

If 
0( , )qq a V and 

0( , )pp b V are two quaternions, their sum is defined as 

0 0( , )q pq p a b V V     

and their product (non-commutative) as  

0 0 0 0   ( , ,  ),q p p q p qq p a b V V a V b V V V      

 here "<,>" and "×" are the inner and vector products in 
3E , respectively. The conjugate quaternion of 

q  is defined as 
0( , )qq a V   and the length or norm as 

qN q q 2

0q q a   2 2 2

1 2 3 R.a a a      

Note that .qp q pN N N Every non-zero quaternion has a multiplicative inverse given by its 

conjugate divided by its norm: 
1 / .qq q N  The generalized quaternion with a norm of one, 

1,qN  is a unit generalized quaternion.  
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If a generalized quaternion is looked at as a four-dimensional vector, the generalized quaternion 

product can be described by a matrix-vector product as 

0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

.

a a a a b

a a a a b
q p

a a a a b

a a a a b

  

 

 

     
   


   
   
   

   

 

Let q  be a unit generalized quaternion, then : Hqh 



H  and : H Hqh  



 are defined 

as follows:  

( ) , ( ) H .q qh x q x h x x q x 

 

    

In both cases, considering H to be 
4E  spanned by the usual basic elements. We suspect that 

both these maps correspond to rotation, since it easy to show that they are norm and angle preserving. 

For example, considering the map ,qh


 we have already seen that if , , Hx y q   and 1,qN  then 

.qx q x xN N N N   

The generalized Hamilton operators 
+

H  and ,H


 could be represented as the matrices; 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( ) (1)

a a a a

a a a a
H q

a a a a

a a a a

  

 

 



   
 


 
 
 

 

 

and 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( ) . (2)

a a a a

a a a a
H q

a a a a

a a a a

  

 

 



   
 


 
 
 

 

 

A direct consequence of the above operators is the following identities: 
+ + + +

4 1 2 3(1) , (i ) , ( j) , (k) ,H I H E H E H E     

and 

4 1 2 3(1) , (i ) , ( j) , (k) ,H I H F H F H F
   

     

where 
4I  is a 4×4 identity matrix. Note, that the properties of the 

nE  and
nF  ( 1,2,3)n   are identical 

to those of generalized quaternionic unit i , j, k. Since 
+

H and H


 are linear, it follows that; 
+ + + + +

0 1 2 3

0 4 1 1 2 2 3 3

( ) (1) (i ) ( j) (k)

,

H q a H a H a H a H

a I a E a E a E

   

   

 

and 

0 1 2 3

0 4 1 1 2 2 3 3

( ) (1) (i ) ( j) (k)

.

H q a H a H a H a H

a I a F a F a F

    

   

   

 

Using the definitions of 
+

H  and ,H


 the multiplication of the two generalized quaternions q  and 

p  is given by 
+

( ) ( ) .q p H q p H p q
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Theorem 1: If q and p are two generalized quaternions, λ is a real number and 
+

H and H


 are 

operators as defined in equations (1) and (2), respectively, then the following identities hold: 

i. 
+ +

( ) ( ) ( ) ( ).q p H q H p H q H p
 

      

ii. ( ) ( ) ( ), ( ) ( ) ( ).H q p H q H p H q p H q H p
     

       

iii. ( ) ( ), ( ) ( ).H q H q H q H q   
   

   

iv. ( ) ( ) ( ), ( ) ( ) ( ).H q p H q H p H q p H p H q
     

   

v. 

1 1

1 1 2( ) ( ) , ( ) ( ) , ( ) 0.qH q H q H q H q N

 
   

    
        

 

vi. ( ) ( ) , ( ) ( ) .

T T

H q H q H q H q
      

       
 

vii. 2 2det ( ) ( ) , det ( ) ( ) .q qH q N H q N
    

       
 

viii. 
0 0( ) 4 , ( ) 4 .tr H q a tr H q a

    
       

 

 

Proof: The proof can be found in [4]. 

 

A matrix A  is called a quasi-orthogonal matrix if TA A  and det 1A  where  

0 0

0 0 ,

0 0



 



 
 


 
  

 

and , R.   The set of all quasi-orthogonal matrices, QO(3),with the operation of matrix 

multiplication is called rotations group in 3-spaces 3E
 [7]. 

 

2. HOMOTHETIC MOTIONS AT 
3E  

In this section, we define one-parameter homothetic motion along a curve in a generalized 3-

space and show this motion satisfy all of the properties in Euclidean 3-space which is investigated by 

Yaylı [15].  

 

In three-dimensional generalized space 3E
, one-parameter homothetic motions of a body are 

generated by the transformation 

,
1 0 1 1

Y hA C X     
     

     
 

where A  is a 3 3 quasi-orthogonal matrix and h is homothetic scalar. The matrix B hA  is called a 

homothetic matrix and ,Y X  and C are 3 1  real matrices. The homothetic scalar h and the elements 

of A  and C

 

are continuously differentiable functions of a real parameter .t
 

To avoid the case of affine transformation we suppose that 

 

( ) .h t cons  

and to avoid the case of a pure translation or a pure rotation, we also suppose that 

( ) 0,
d

hA
dt

   ( ) 0.
d

C
dt
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If we differentiate the equation ,TA A  we get 

( ) 0.T TA A A A    

By choosing TA A   and ( ) ,T TA A   we can see that  

0

0 ,

0

z y

z x

y x

  
 

    
   

 

is an anti-symmetric matrix in generalized 3-space, i.e., 
T  .   is called the instantaneous 

rotation vector (Darboux vector) of the motion.  

Theorem 1. The homothetic motions of generalized space 3E  are regular motions. 

Proof: Differentiating the equation B=hA with respect to t gives 

B hA Ah   
or 

( ).
h

B h A A
h

   

We may write det .det( ).n h
B h A A

h
   It is obviously, for any ,t det 0.B    

 

Pole Points and Pole Curves of the Motion 

 

To find the pole points, we have to solve the equation 

0. (3)BX C   

Any solution of the equation (3)  is a pole point of the motion at that instant in .R  Since B is regular, 

the equation (3) has only one solution, i.e., 1( ) 0X B C    at every instant .t  This pole point in 

the fixed system is 
1( ) .X B B C C    

Theorem 4. During the homothetic motion of generalized space of 3-dimensions, there is a unique 

instantaneous pole point at every time .t  

 

3. HAMILTON MOTIONS IN GENERALIZED 3-SAPCE 
 

Let us consider the curve 4: R EI     defined by 

0 1 2 3( ) ( ( ), ( ), ( ), ( )), (4)t a t a t a t a t   

for every .t I We suppose that ( )t is a differentiable curve of order r  which does not pass through 

the origin.    

Also, the map F acting on a pure quaternion is 

: K KF  , ( ) , (5)F      

where  is conjugate of the  and K is the set of all the pure generalized quaternions. We put 

( ) '.F   Using the definition of
+

H and H


the equation (5) is written as  

+

' ( ) ( ) .H H   


   

From (1) and (2), we obtain 
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2 2 2 2

0 1 2 3

2 2 2 2+
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 0 1 2 3 0 1 2 3

0 0 0

0 2 ( ) 2 ( )
( ) ( ) .

0 2 ( ) 2 ( )

0 2( ) 2( )

a a a a

a a a a a a a a a a a a
H H

a a a a a a a a a a a a

a a a a a a a a a a a a

  

     
 

     

    



   
 

     
     
 

      

 

This simplifies to 
+ ' 0

( ) ( ) ,
0

h
H H

B
 

  
  
 

 

where 
2 2 2 2

0 1 2 3h N a a a a        and  

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 13 3
2 2 2 2

1 3 0 2 0 1 2 3 0 1 2 3

2 ( ) 2 ( )

2 ( ) 2 ( ) .

2( ) 2( )

ij

a a a a a a a a a a a a

B b a a a a a a a a a a a a

a a a a a a a a a a a a

     

     

    


     
 

         
      

 

For the matrix ,B we have 2.TB B h   and 3det .B h  

The 1parameter Hamilton motions of a body in generalized 3 space are generated by transformation 

0
(6)

1 0 1 1

X B C X     
     

     
 

where B  is the above matrix. 
0,X X  and C  are 3 1  real matrices. B and C

 

are continuously 

differentiable functions of a real parameter t. X  and 
0X  correspond to the position vectors of the 

same point .P  

Theorem 5. The Hamilton motion determined by the equation (6) is a homothetic motion in 
3E .  

Proof: The matrix B  can be represented as 

11 12 13

21 22 23

31 32 33

,

b b b

h h h

b b b
B h h A

h h h

b b b

h h h

 
 
 
 

  
 
 
 
 

 

where : R R,h I  
 

               
2 2 2 2

0 1 2 3( ) ( ) ( ) ( ) ( ).t h t a t a t a t a t      
 

So, we find (3)A QO  and R.h . Thus B  is a homothetic matrix and the equation (6) determines a 

homothetic motion. 

 

Special cases: 

1) If 1,    then Theorem 5 holds for Euclidean three space 3E [5]. 

2) If 1, 1,     then Theorem 5 holds for Minkowski three space 3

1E [9]. 

Example 1. Let 4: R EI    be a curve given by 

( ) (cos , ,sin ,0),t t t t t   
for every .t I ( )t  is a differentiable regular of order .r  Since, ( )t does not pass though the origin, 

the matrix B can be represented as 
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2 2 2

2 2 2

2 2 2

2 2 2

cos sin 2 sin 2 (cos sin )

2 sin cos sin 2 ( t cos )

2(cos sin ) 2( cos ) cos sin

(cos sin ) ,

t t t t t t t

B t t t t t t

t t t t t t t

t t t A

   

   

 

 

  
 

    
    

  

 

where 2 2 2( ) cos sinh t t t t    , QO(3).A   Thus, B is a homothetic matrix and it determines a 

homothetic motion in 3E .  

 

4. DARBOUX VECTOR OF THE MOTION 

 

In Euclidean 3-space, Yaylı [15] has showed the the Darboux vector of the homothetic motion which 

is defined by the Hamilton operators, can be written as multiplication of two real quaternions. In this 

section, we obtain the Darboux vector of the homothetic motion in generalized 3-space and show that 

it can be written as multiplication of two generalized quaternions.  

Suppose that ( )t  is a curve as defined in (4). The Darboux matrix in the homothetic motion defined 

by homothetic matrix B, is 

.TB B   
So we obtain 

3 0 2 1 1 2 0 3 2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3 1 0 0 1 3 2 2 3

2 0 3 1 0 2 1 3 1 0 0 1 3 2 2 3

( )
2

2
( ) .

2

( )
2

h
a a a a a a a a a a a a a a a a

h
a a a a a a a a a a a a a a a a

h

h
a a a a a a a a a a a a a a a a

 

 

   

 
       

 
 

         
 
 

       
 

 

We investigate the Darboux matrix in special case h=1. In the case, we have 

3 0 2 1 1 2 0 3 2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3 1 0 0 1 3 2 2 3

2 0 3 1 0 2 1 3 1 0 0 1 3 2 2 3

0 ( )

( ) 0

( ) 0

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 

 

   

       
 

        
 
        

 

The Darboux vector corresponds to skew-symmetric matrix  is defined by  

( , , )x y z     

Therefore, the Darboux vector of the motion  

1 0 0 1 3 2 2 3 2 0 3 1 0 2 1 3 3 0 2 1 1 2 0 32( , , ),a a a a a a a a a a a a a a a a a a a a a a a a            
 

is obtained. This vector can be written as multiplication of two generalized quaternions as 

2( ).    

Special cases: 

1. 1,   is considered, then  is Darboux vector for homothetic motion in 3E [5].  

2. 1, 1,    is considered, then  is Darboux vector for homothetic motion in 3

1E [9].  
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Example 2. Let 4: R EI    be a curve given by 

1 1 3
( ) (cos , sin , ,0),

2
t t t


  

for every .t I ( )t  is a differentiable regular of order .r  Since, ( )t does not pass though the origin, 

the matrix B can be represented as 

2 2

2 2

3 31
sin cos

2 22

3 1 3
sin (cos sin ) sin cos .

4 4 22

3 1 1 3
cos sin cos (cos sin )

4 42 2

t t

B t t t t t

t t t t t

 



 



 

 
 
 
 
    
 
 
 
   
 

 

B  is a homothetic matrix and is defined a homothetic motion.  The Darboux vector of this motion is 

1 3 3
( (sin cos ), sin , cos ).
2 4 4

t t t t
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