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Abstract: This article consists of Improved Bernoulli Sub-Equation Function Method (IBSEFM) to get

the new solutions of nonlinear fractional Schrödinger equation described by beta-derivative. Foremost, it

is dealt with derivative of Atangana. Secondly, basic properties of the IBSEFM are given. Finally, the

proposed method has been applicated to the considered equation to get its new solutions. Moreover, the

graphs of the obtained solutions are plotted via Mathematica. It is inferred from the results that IBSEFM

is effectual technique for new solutions of nonlinear equations containing conformable derivatives.
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1. Introduction
Fractional equations are useful tool to determine numerous nonlinear phenomena of physics

such as chaotic systems, heat transmission, diffusion, acoustic waves, viscoelasticity, plasma waves

[12–17]. Lots of fractional operators have been defined, for instance: Riemann-Liouville, Caputo

derivative [19], Caputo-Fabrizio [9], Jumarie’s modified Riemann-Liouville [13], Atangana-Baleanu

[4]. By the aid of these derivative operators, lots of techniques have been advanced which supply

analytical solutions of fractional equations such as generalized Kudryashov [11], extended direct

algebraic [20], IBSEFM [5, 6], modified trial equation method [18].

In [14] the definiton of conformable derivative is given and then using this derivative exact

solutions of the time-heat differential equation have been investigated in [10]. In addition to this,

a new definition of fractional derivative called beta-derivative is obtained in [4]. Several analytical

methods are improved to get the exact solutions of fractional equations with beta-conformable

time derivative [22–24].

The aim of this study is to get the exact solutions of nonlinear time fractional Schrödinger
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equation with beta-derivative using IBSEFM. Before the solution process we will give the basic

properties of Atangana’s conformable derivative and fundamental steps of proposed method in the

rest of the paper.

2. Beta Derivative and It’s Specifications

This section contains some essential concepts of beta derivative that have been utilized in this

work.

Let f(t) be a function defined for all non-negative t. Then, β -derivative of f(t) of order

β is given by in [1, 4] as

Dβ (f(t)) = dβf(t)
dtβ

= lim
ε→0

f (t + ε (t + 1
Γ(β))

1−β
) − f(t)

ε
,

where 0 < β ≤ 1 . In fractional calculus, the β -derivative is known as the generalization of classical

derivative and it’s characteristics properties have been given in [1, 4]. Suppose that u(t) and

v(t) are β -differentiable functions for all t > 0 and β ∈ (0,1] . Then

i) Dβ (af(t) + bg(t)) = aDβ (f(t)) + bDβ (g(t)) (∀ a, b ∈ R),

ii) Dβ (f(t)g(t)) = g(t)Dβ (f(t)) + f(t)Dβ (g(t)) ,

iii)Dβ ( f(t)
g(t)) =

g(t)Dβ(f(t))−f(t)Dβ(g(t))
(g(t))2 ,

iv)Dβ (f(t)) = (t + 1
Γ(β))

1−β
df(t)
dt

.

It should be noted that these properties provide us an easy way to convert a nonlinear

partial differential equation with β -derivative to a nonlinear ordinary differential equation of

integer-order. There are many works with β -derivative in literature [2, 3].

3. Description of The Proposed Method

In this part, the fundamental properties of IBSEFM is given ([6–8]). There are five main steps of

the IBSEFM below the following:

Step 1: Let us consider following equation with beta derivative for a function according to

the two variables space x and time t ;

P (uA
0 ,D

β
t u,ux, uxx, ...) = 0, (1)

here P involves u(x, t) and partial derivatives. The goal is to exchange (1) to nonlinear ordinary

differential equation with a suitable wave transformation as

u(x, t) = V (η), η =mx − γ

β
(t + 1

Γ (β)
)
β

, (2)
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m and γ are arbitrary constants. Using (2), (1) turns into the ordinary differential equation in

the form

N(V,V ′, V ′′, ...) = 0, (3)

where N is the function of V,V ′, V ′′, ... and its derivatives with respect to η . Integrating (3) term

to term, we acquire integration constants which may be determined then.

Step 2: We hypothesize that the solution of (3) may be presented below;

V (η) = ∑
n
i=0 aiQ

i(η)
∑m

j=0 bjQ
j(η)

= a0 + a1Q(η) + a2Q2(η) + ... + anQn(η)
b0 + b1Q(η) + b2Q2(η) + ... + bmQm(η)

, (4)

where a0, a1, ..., an and b0, b1, ..., bm are coefficients which will be determined later. m ≠ 0, n ≠ 0

are chosen arbitrary according to the balance principle and considering the form of Bernoulli

differential equation below the following;

Q′(η) = σQ(η) + dQM(η), d ≠ 0, σ ≠ 0, M ∈ R ∖ {0,1,2} , (5)

here Q(η) is a polynomial.

Step 3: The positive integer m,n,M (are different from zero) are found respect to the bal-

ance principle that is both nonlinear term and the highest order derivative term of (3). Substituting

(4) and (5) into (3) an equation of polynomial Ω(Q) of Q is acquired below the following;

Ω(Q(η)) = αsQ(η)s + ... + α1Q(η) + α0 = 0,

where αi are coefficients that will be determined later.

Step 4: The coefficients of Ω(Q(η)) which will give us an algebraic equations systems;

αi = 0, i = 0, ..., s.

Step 5: When we solve (5), we get the following two cases with respect to σ and d ,

Q(η) = [−de
σ(ϵ−1)η + ϵσ
σeσ(ϵ−1)η

]
1

1−ϵ

, d ≠ σ, (6)

Q(η) =
⎡⎢⎢⎢⎣

(ϵ − 1) + (ϵ + 1) tanh (σ(1 − ϵ)η
2
)

1 − tanh (σ(1 − ϵ)η
2
)

⎤⎥⎥⎥⎦
, d = σ, ϵ ∈ R. (7)

Using a complete discrimination system for polynomial of Q(η) , exact solutions of (1) are get via

Wolfram Mathematica and categorize the exact solutions of (1). To achieve better results, 2D and

3D graphs of exact solutions might be plotted taking proper values of parameters.
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4. Mathematical Analysis of The Model

Let us consider the nonlinear Schrödinger equation in β -derivative sense

iA0 D
β
t u + puxx + q ∣u∣2 u = 0, 0 < β ≤ 1 (8)

and apply the transformation

u(x, t) = eiθU(ξ), θ = τx + λ

β
(t + 1

Γ(β)
)
β

, ξ = x − 2rλ

β
(t + 1

Γ(β)
)
β

. (9)

Here τ, λ and r are constants, using the basic properties of β -derivative and substituting (9) into

(8), we get the following equation containing the real and imaginary part;

i [−2rλdU
dξ
+ 2pτ dU

dξ
] + pd

2U

dξ2
− (λ + pτ2)U + qU3 = 0. (10)

From the imaginary part of (10), r = pτ
λ
. Moreover, the real part of (10) is

pU ′′ − (λ + pτ2)U + qU3 = 0. (11)

When we reconsider (11) for balance principle between U ′′ and U3 , we get the relationship as

follow;

M = n −m + 1. (12)

(12) shows us the different cases of the solutions of (11) and we can obtain some analytical solutions.

According to the balance, we consider M = 3,m = 1, n = 3 for (12) and the following equations

hold:

U(ξ) = a0 + a1Q(ξ) + a2Q2(ξ) + a3Q3(ξ)
b0 + b1Q(ξ)

≡ Υ(ξ)
Ψ(ξ)

, (13)

U ′(ξ) = Υ′(ξ)Ψ (ξ) −Υ(ξ)Ψ′(ξ)
Ψ2(ξ)

(14)

and

U ′′(ξ) = Υ′(ξ)Ψ (ξ) −Υ(ξ)Ψ′(ξ)
Ψ2(ξ)

− [Υ(ξ)Ψ
′ (ξ)]′Ψ2(ξ) − 2Υ(ξ)[Ψ′(ξ)]2Ψ(ξ)

Ψ4(ξ)
, (15)

where Q′ = σQ+dQ3, a3 ≠ 0, b1 ≠ 0, σ ≠ 0, d ≠ 0. Using (13)-(15) in (11), we get from coefficients

of polynomial of Q as follow;

Q0 ∶ qa30 − λa0b20 − pτ2a0b20 = 0,

Q1 ∶ 3qa20a1 − λa1b20 + pσ2a1b
2
0 − pτ2a1b20 − 2λa0b0b1 − pσ2a0b0b1 − 2pτ2a0b0b1 = 0,
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⋮

Q7 ∶ 3qa3a22 + 3qa1a23 + 15d2pa3b20 + 9d2pa2b0b1 + 12dpσa3b21 = 0,

Q8 ∶ 3qa2a23 + 21d2pa3b0b1 + 3d2pa2b21 = 0,

Q9 ∶ qa33 + 8d2pa3b21 = 0.

Solving above the equation system of Q via Mathematica, the coefficients are obtained for

σ ≠ d :

Family1.

a0 = −
i
√
2
√
pσb0
√
q

, a1 = −
i
√
2
√
pσb1
√
q

, a2 = −
2i
√
2d
√
pb0

√
q

, a3 = −
2i
√
2d
√
pb1

√
q

, τ = −
√
−λ − 2pσ2

√
p

.

Substituting these coefficients along with (7) in (13), we obtain the following solution of (8)

as follows;

q1 (x, t) =
−1
2
exp

⎧⎪⎪⎨⎪⎪⎩
−
x
√
−λ − 2pσ2

√
p

+ λ

β
(t + 1

Γ(β)
)
β⎫⎪⎪⎬⎪⎪⎭

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−2xσ +
4rlσ (t + 1

Γ(β))
β

β
ϵ − d

σ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Figure 1: 3D-plots of q1(x, t) for the values β = 0.5 ; d = 0.4 ; r = 0.1 ; ϵ = 0.2 ; λ = 0.3 ; σ = 0.5 ;
p = 0.3 ; t = 0.4 ; −3 < x < 3 , 0 < t < 10 , 2D-plots and contoursurfaces

Family2. For σ ≠ d ,

a0 = −
i
√
−λ − pτ2b0√

q
, a1 = −

i
√
−λ − pτ2b1√

q
, a2 =

2i
√
2d
√
pb0

√
q

, a3 =
2i
√
2d
√
pb1

√
q

, σ =
√
−λ − pτ2
√
2
√
p

.

Substituting these coefficients along with (7) in (13), we obtain the following solution of (8)
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as follows;

q2 (x, t) =

exp{ixτ + iλ
β
(t + 1

Γ(β))
β
}(λ + pτ2)

⎛
⎜⎜⎜⎜
⎝

2d2 exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−
2
√

2
√
−λ−pτ2

⎛
⎜⎜
⎝
x−

2rλ(t+ 1
Γ(β) )

β

β

⎞
⎟⎟
⎠

√
p

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

p + ϵ2 (λ + pτ2)

⎞
⎟⎟⎟⎟
⎠

¿
ÁÁÁÀexp

⎧⎪⎪⎨⎪⎪⎩
−2xσ +

4rlσ(t+ 1
Γ(β) )

β

β
ϵ − d

σ

⎫⎪⎪⎬⎪⎪⎭

.

Figure 2: 3D- plots of q2(x, t) for the values β = 0.5 ; d = 0.4 ; r = 0.1 ; ϵ = 0.2 ; λ = 0.3 ; σ = 0.5 ;
p = 0.3 ; t = 0.4 ; −10 < x < 10 , −10 < t < 10 , 2D-plots and contoursurfaces

We can understand the characteristics of the solutions from the figures that for a few

parameter values, the displayed numerical analysis acknowledges that the solutions are periodic

wave shapes in exponential classes. According to the figures, one can see that the formats of exact

solutions in two and three dimensional surfaces are similar to the physical meaning of results.

5. Conclusion
In this paper, the IBSEFM is applied for fractional Schrödinger equation in β -derivative. Using

wave transformation the considered equation has been converted into the ordinary differential

equation which can be solved according to the IBSEFM. By means of this method, exact solutions

are obtained. Figures of all solutions according to the suitable parameters are plotted by showing

the main characteristic physical properties of the solutions with the help of Wolfram Mathematica.

It seems from the results that the more steps are developed and the better approximations are

obtained. It is inferred from the conclusions that IBSEFM is simple, effective and powerful. Thus,

in mathematical physics it is applicable to solve other nonlinear differential equations.
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