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The present study aims to examine the preservice middle school 

mathematics teachers’ ability to perform the process of mathematizing 

and to identify their competencies within this context. For this purpose, 

the study was conducted with 43 preservice teachers attending a state 

university. The research method used is descriptive research. As the data 

collection tool, a real-life problem called "cylinder packing problem" was 

presented to preservice teachers, with a view to finding the optimal and 

lowest-cost packing scheme for a hazelnut grower. The solutions 

presented by the preservice teachers were subjected to content analysis as 

well as descriptive analysis. The preservice teachers’ competencies were 

examined to see their level of effectiveness in the use of notations that are 

indicators of mathematizing, in achieving mathematical results in the 

process of problem-solving. The research findings indicate that the 

preservice teachers generally lacked sufficient comprehension of the 

problem in the real-life contexts and could not perform the requirements 

of important skills such as using notations, mathematical models and 

generalization method which are important in making abstract inferences 

in the mathematizing process. In light of these findings, further studies to 

contribute to preservice teachers’ mathematical sophistication levels are 

recommended in order to improve their competencies in mathematizing. 
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Introduction 

Supporting the comprehension of mathematical concepts within the applicable real-

life contexts, unlike the traditional approaches to mathematics education, mathematizing 

(Rosales, 2015) is basically the process of organizing the information at hand with various 

strategies, and thereby achieving mathematical generalizations (Freudenthal, 1973). 

Freudenthal (2002b), who defines the task of a mathematician as problem-solving, problem 

posing, and mathematizing events, states that students can also undertake this task, and that 

the main thing in mathematics teaching is to teach mathematization, not mathematics 

(Freudenthal, 1968). Writing “There is no mathematics without mathematizing”, Freudenthal 

(1973, p. 134) underlines the importance of mathematizing, and inspired several studies on 

mathematics education. 
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While mathematics is recognized as a deductive science in general, many mathematical 

results are reached by proving the generalizations achieved through induction (Polya, 1973; 

Yıldırım, 2008). Based on noticing patterns through a limited number of observations and 

defined as a certain type of inductive reasoning, generalization (Mason, Burton, & Stacey, 

2010) is addressed at the middle school level, while the deductive approach is the subject of 

high school mathematics classes. In generalization, one starts with small examples essentially 

based on observation, conclusion, formulation, etc., following the principle of deduction, and 

acts with the approach of heuristic thinking (Polya, 1973; Yıldırım, 2008). Heuristic approach 

aims to find appropriate methods and rules in the process of exploration and invention (Polya, 

1973), is an integral part of problem-solving in terms of improving and enhancing the 

reasoning skills (Mousoulides & Sriraman, 2014). According to this approach, it is essential 

to apply intuitive means to achieve the best result, while knowledge or learning attained thus 

is easier to retain (Gordon, 1962). 

The Link between Real Life Problem Solving and the Mathematizing Process 

Along with offering the means for rather conventional application, problem-solving 

also helps with mathematical thinking and enables acquiring mathematical information, which 

plays a crucial role in mathematizing (Archambeault, 1993; Freudenthal, 2002b; Polya, 1973; 

Schoenfeld, 1992; Tall, 2006). Problems are known as real-life problems in the literature 

function as a bridge between real life and mathematics and make mathematics a rather 

meaningful occupation (Boaler, 1993; Clarke & Roche, 2009). According to the approach of 

Realistic Mathematics Education pioneered by Freudenthal, problem-solving aims to acquire 

mathematical knowledge regarding the real-life situation (Gravemeijer, 2008; Gravemeijer & 

Terwel, 2000; Van den Heuvel-Panhuizen & Drijvers, 2014). In this mathematizing process, 

formal mathematical knowledge is acquired through references to informal knowledge 

covering elements of real problem situations (Freudenthal, 1968, 2002b). Mathematizing is a 

horizontally and vertically successive process: in horizontal mathematizing elements of the 

real world move into the world of symbols, and in vertical mathematizing abstraction takes 

place (Freudenthal, 2002b). In other words, whereas horizontal mathematizing leads to results 

based on various problem-solving strategies and the concrete problem case, in vertical 

mathematizing, these results are organized and generalized within an abstract construct, 

therefore leading to formal mathematical results (Gravemeijer, 2008; Rasmussen, Zandieh, 

King, & Teppo, 2005). Mathematizing is needed when solving real-life problems, and this 

process is usually described as modeling and completed with the help of various notations 

(Yerushalmy, 1997). According to Kant and Sarikaya (2021), notation is a key component of 

mathematizing and can be used to understand a situation through representations such as 

numbers, sketches or symbols. 

Real-life modeling activities that support the mathematizing process help students to perceive 

mathematics as a value by enabling them to comprehend the concrete relationship between 

mathematics and the effort put, and also improve their critical thinking, problem-solving, 

cooperation, and communication skills (Suh, Matson, & Seshaiyer, 2017). These activities 

also offer an effective learning environment (Lady, Utomu, & Lovi, 2018). However, the 

ability to address real-life situations in a mathematical context requires substantial preparation 

on part of the teachers, for finding or formulating appropriate problems, as well as applying 

them in the classroom (Clarke & Roche, 2009; Freudenthal, 2002a; Gravemeijer, 2008; Suh, 

Matson, & Seshaiyer, 2017). The observation that teachers can apply mathematical rules does 

not necessarily indicate that they know how to come up with those rules (Freudenthal, 1968, 

1973). The fact that the teachers can actualize the process of mathematizing, defined as the 
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process of obtaining knowledge and rules, can be considered an indicator of their ability to 

apply an alternative approach to the formation of knowledge. 

Purpose 

In Türkiye, the middle school mathematics curriculum is shaped around crucial 

concepts such as mathematical literacy and mathematical modeling, which allow one to work 

on real-life applications of mathematics (Ministry of National Education [MoNE], 2018). 

These concepts, in turn, are introduced on the basis of problem-solving and association skills 

which constitute integral parts of mathematics curricula. The middle school mathematics 

curriculum (MoNE, 2018) emphasizes at several points that the association between life and 

mathematics can contribute to meaningful mathematics teaching. Along the same lines, the 

Content-Specific Competencies of Mathematics Teacher text specifies teacher competencies 

regarding the problem-solving and association skills. Some are noted in the quotation below 

(MoNE, 2008, p. 144): 

Knows the importance of problem-solving skill’s contribution to mathematics learning. 

[…] Enables students in terms of questioning the problem-solving process and 

confirming the results they came up with. […] Knows the significance of an awareness of 

mathematics’ connections within and with other disciplines as well as with daily life, in 

terms of contributing to learning mathematics and reflects this awareness on her 

practices. 

Managing the mathematizing process based on concrete events in line with the 

recommendations of decision makers in education, requires significant skills and preparations 

on part of the teachers, as indicated in previous research. Nevertheless, there is only a very 

limited number of studies performed with teachers and preservice teachers, on how 

mathematics education in Türkiye is actually being carried out (Tabak, 2019). In this context, 

the present study aimed to examine the preservice middle school mathematics teachers’ 

process of acquiring mathematical information within the context of a real-life problem and to 

identify their competencies within this context. To that end, the preservice teachers were 

assessed to see their level of effectiveness in the use of notations that are indicators of 

mathematizing (Kant, & Sarıkaya, 2021), in achieving mathematical results in the process of 

solving a given real-life problem. 

Method 

As the study aimed to explore an existing situation in the existing state of affairs, the 

descriptive research method was utilized (Knupfer, & McLellan, 1996). Since the aim of the 

research was to reveal an existing situation in its reality, descriptive research method was 

used in accordance with this purpose. In descriptive research, events are defined, data are 

tabulated and explained with descriptions (Glass & Hopkins, 1984). The solutions provided 

by the preservice teachers for the given real-life problem constituted the research data. As the 

data were to be qualitatively analyzed, the study can be considered an example of qualitative 

research. 

Participants 

The participants of this study were 43 preservice teachers (14 men and 29 women) 

attending the third grade of middle school mathematics teaching program at a state university 

in Türkiye.  
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Pre-service teachers were selected with the convenient sampling method, one of the purposive 

sampling methods. A prerequisite for inclusion in the sample is that the participant has taken a 

course on problem-solving. First, 53 preservice teachers’ comprehension of the problem who 

took lessons and volunteered for the research were evaluated, and it was found that ten of 

them could not comprehend what was expected of them in the problem. Hence, these 

preservice teachers were excluded from data analysis, and the solutions of 43 preservice 

teachers were examined in detail. In the research, the preservice teachers were coded as T1, 

T2, T3... to ensure confidentiality. 

Data Collection 

The data of this study were collected through a real-life problem. The collection tool 

was created by the researcher through the adaptation of a problem in the literature, to a real-

life problem. How to roll an A4 paper to get the largest cylinder in terms of volume is a 

classic problem in the literature (Basden, et al., n.d.; Joye-Bortolotti & Vilmart, 2013). 

Although cylinders formed by connecting the edges of an A4 paper horizontally or vertically 

as illustrated in Figure 1 have the same lateral surface areas, their volumes are different. 

 

Figure 1. In what way should we roll an A4 paper so as to get the cylinder with the greatest 

volume? (Joye-Bortolotti & Vilmart, 2013, p. 1). 

This problem was then envisaged as a real-life problem in the form of a packing problem. For 

years, packing problems have been drawing the interest and curiosity of researchers (Fasano, 

2014). They are often formulated to require the placement of two- or three-dimensional 

objects in a given area or volume in the most optimal way possible (Birgin, Martı́nez, & 

Ronconi, 2005). In real life, especially in industry, these problems aim to find the most 

economic configuration of products in terms of area or volume as well as packing cost, in 

various operations including packaging, storage or transportation (Castillo, Kampas, & Pintér, 

2008). In this sense, the problem was posed by the researcher as the data collection tool is 

about looking for the most suitable option of packing the product with the lowest packing 

cost, for a hazelnut grower. The cylinder packing problem used as the data collection tool is 

as follows: 

A hazelnut grower wants to offer her product in a cylindrical container. 

A) Rectangular cardboards of a standard size will be used for each product, as the lateral 

surface of the cylinder. How should the grower, who wants to minimize the packing cost, 

use the cardboard? Mathematically prove the validity of your proposal. 

B) Base and cover of the container will be cut out of an aluminum sheet. Is your proposal 

still valid, taking these costs into account, as well? Please provide proof. 

The hazelnut grower wants to launch her product in a cylindrical container, made of 

cardboard in terms of its lateral surface, and of aluminum in terms of its base. No dimensions 

are provided in the problem, for the cylindrical container. The first step (A) of the two-step 

problem is about the lateral surface, and the second step (B) is about the bases (see 

Appendices for a detailed description of the mathematizing processes regarding the solving of 
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the problem, and possible mathematical results).  

In the first step (A) which tries to find the condition required to minimize the product’s 

packing cost, one needs to arrange the use of the packing material so that the packaging 

produced provides the greatest volume for the product. To that end, since the lateral surface of 

the cylinder is made of rectangular cardboard, one should try to find which edges of the 

cardboard to connect to meet the required condition. In addition to the written instructions, the 

participants were verbally told that rectangular cardboard cannot be cut into smaller pieces 

and shall thus form the lateral surface in one piece. On the other hand, since the participants 

were asked to confirm the result mathematically, they are also expected to actualize the 

mathematizing process. In this context, two starting points that should be identified when 

looking for the solution in step A of the problem, and that is decisive in problem’s solution 

are as follows: 

A1. It is necessary to arrange the packing material so that the packages produced 

correspond to the greatest-volume product. 

A2. The cardboard can be used in two different ways to form the lateral surface of a 

cylinder. 

Identifying the starting points A1 and A2 through the association of the problem data is an 

indicator of understanding the context of the problem. In this problem that can be solved by 

means of algebraic expressions as no measurements are provided, one can commence the 

work on the solution by identifying the variables, through actualization of vertical 

mathematization. The solution process leads to the first mathematical result as follows: 

Result 1: The volume of a cylinder formed by bringing together the short edges of a 

rectangle is greater than the volume of a cylinder formed by connecting the long ones. 

In the second step (B), it is stated, as a second condition, that bases of the cylinder packing 

are to be cut out of an aluminum sheet. Here, the result reached in step A is expected to be in 

light of packing cost, from two potential aspects: Firstly, the bases of the packages (cylinders) 

are cut out of aluminum sheet (B1), and secondly, the packing cost is to be evaluated in terms 

of volume (B2). The process leads one to the second and the third (based on the problem 

context) mathematical result(s) as follows: 

Result 2: One can place identical circles on a rectangular area, with the minimal amount 

of wasted space in between, is to place them in a hexagonal arrangement. 

Result 3: When the base material of the cylinders costs more than the lateral surface 

material, cylinder packages formed by connecting the long edges of the cardboard cost 

less. 

For data collection, the preservice teachers were asked to individually and in writing solve the 

problem, which was presented to them in writing, in the classroom, out of course. They were 

allowed to use as much time as they needed to do so. In general, they used for two hours. In 

the problem-solving process, it was ensured that the researcher made no intervention so that 

the situation could be addressed in its whole reality. 

Data Analysis 

The study focused on preservice middle school mathematics teachers’ process of 

acquiring mathematical knowledge within the context of a real-life problem. Accordingly, the 
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data analysis was performed in two steps. In the first step, the notations used by the preservice 

teachers in their solutions for the problem were subjected to content analysis. In the second 

step, these notations were analyzed descriptively in terms of their accuracy. Content analysis 

allows for classification and interpretation of data, which cannot otherwise be explored in 

plain reading, through an analysis based on a methodological, systematic and quantitative 

approach (Cohen, Manion, & Morrison, 2007; Mialaret, 2004). Thereafter, descriptive 

analysis was used to obtain and summarize problem-related data from pieces of text, only to 

be organized under similar categories to come up with qualitative inferences (Cohen, Manion, 

& Morrison, 2007). 

The extent to which the preservice teachers took crucial information into account the 

information, and the process through which they reached mathematical results were analyzed. 

This examination found five distinct notations used for reaching the mathematical results: 

Experimental, visual, verbal, numerical and algebraic. These notations were at times utilized 

individually, and in groups in others. A three-point scale (0: incorrect, 1: incomplete, 2: 

correct) was used in the scoring of solutions. Scoring results were arranged in frequencies and 

percentages, followed by a discussion of the results. Notations and scoring are explained 

below. 

• Experimental notation: It is about utilizing the suggestion of comparing the volumes 

of different cylinders, by using sand or similar materials. 

• Visual notation: This notation refers to using drawings in setting up the cylinder. Such 

drawings, however, do not play an important role other than illustrating and 

supporting the source of data used in the solution. The presentation of the cylinder in 

from two distinct angles was accepted as correct while its presentation from just one 

angle was considered to be incomplete. 

• Verbal notation: It refers to providing a verbal explanation in writing. Since verbal 

explanation needs to be based on a mathematical inquiry in the process of 

mathematizing, the success of this process depends on the correctness of numerical or 

algebraic notations employed therein. 

• Numerical notation: This notation is about representing edge lengths of a rectangle, 

with numbers. For example, edge lengths of rectangle can be represented as “𝑎 = 12 

units” and “𝑏 = 6 units”. If the generalization was based on a single example, it was 

considered incomplete; if a few different values were used, it was considered correct. 

• Algebraic notation: This notation is all about using algebraic calculations. Two 

different categories of algebraic notation were identified: variables and algebraic 

expressions. Variables were used to represent edge lengths of the rectangle with 

letters, while algebraic expressions were used to represent them with alphanumerical 

characters. Variables representing the edge lengths of the rectangle included 𝑎 and 

𝑏 or 𝑥 and 𝑦 whereas 2𝑎 and 𝑎 or ℎ and 2𝜋𝑟 were among the algebraic expressions. 

When the use of algebraic expressions was prone to incorrect generalizations, the case 

was considered to be incomplete. For example, when the edge lengths of rectangle are 

represented as 𝑎 and 2𝑎 respectively, a two-fold relation would also appear between 

the volumes based on these measurements. Even though such a finding does not affect 

the general outcome, such a result would still be erroneous. On the other hand, since 

no faulty relation occurred when lengths were taken as h and 2πr, these 

representations were considered correct. 

Some examples of data analysis are presented below. Figure 2 presents the solution of T20 

who utilized just the visual, verbal, and experimental notations in Problem A. 
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Translation of the text in the figure: 

There are two options, as seen in the figure. 

A) To confirm this proposition through experimentation, when we fill cylinders I and II 

with sand and water and pour out the sand out and weigh them, we see that cylinder in 

figure I takes more sand. Because the cylinder in figure I has a greater volume than the 

one in shape II. Base area of the cylinder in figure I is larger than the base area of the one 

in figure II. 

Figure 2. Example of the correct use of visual, verbal, and experimental notations in Problem 

A’s solution (T20). 

Although notations used by T20 were correct, it was accepted that the mathematizing process 

was not implemented as there were no numerical or algebraic notations. An example 

considered incomplete is presented in Figure 3. 
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Translation of the text in the figure: 

B) If the base and the cap are to be made of aluminum, we should compare the areas, as 

they are important. 

Base area of the long/short cylinder: 

𝜋 ∙ 𝑟2 = (
5

𝜋
)
2
∙ 𝜋 =

25

𝜋
 cm2           𝜋 ∙ 𝑟2 = (

10

𝜋
)
2
∙ 𝜋 =

100

𝜋
 cm2 

As we see here, capping the short cylinder with aluminum costs 4 times more than the 

comparable cost item for the long cylinder. But regarding the relation between volumes, 

the volume of the short one is 2 times greater than that of the long one; that is, we can 

pack 2 times more hazelnuts using the same cardboard if we choose the short cylinder. 

To compare the cost of the cardboards: assuming you pay 100 liras for the longer 

cardboard, and 50 liras for the shorter one... If we add the cost of aluminum, the 

following table appears: 

 Long cylinder Short cylinder 

Cardboard cost 100 liras 50 liras 

Aluminum cost 200 liras 800 liras 

Total 300 liras 850 liras 

As aluminum costs more, our proposition is not valid as seen in the table. For, when 

using aluminum, the long cylinder costs 300 liras while the short one costs 850 liras. 

Figure 3. Example of the incomplete use of numerical notation in Problem B’s solution (T18). 

T18 assumed the edge lengths of the cardboard to be 10 cm and 20 cm respectively: therefore, 

accepting the base radiuses as 5 cm and 10 cm. Although the participant reached the correct 

result in the end, the solution was considered to be incomplete due to the use of a single 

numerical example. 

Certain precautions were taken to achieve validity and reliability in various steps of the study. 

In the light of research ethics concerns, voluntary participation and the privacy of the 

preservice teachers were deemed crucial. During data collection, no time limit was set for the 

preservice teachers to solve the problem; and they were provided verbal clarification about 
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the problem, when necessary. The suitability of the cylinder packing problem used as data 

collection tool for the research problem, and the kind of method used in data collection and 

analysis were explained in detail, with definitions, coding, and examples. The findings were 

presented with clear and complete coding and citations to enable the review thereof by 

researchers. Moreover, two experts specialized in mathematics teaching were consulted; and 

required corrections were affected in the light of recommendations about accuracy and clarity 

of the study. 

Findings 

Findings were grouped under the categories “the process of mathematizing” relating to 

Problem A and Problem B.  

Findings Regarding the Process of Mathematizing in Solving Problem A 

To go through the relevant mathematical processes and achieve Result 1 (The volume 

of a cylinder formed by bringing together the short edges of a rectangle is greater than the 

volume of a cylinder formed by connecting the long ones) which is the mathematical result 

expected for Problem A, one needs to understand that problem is about volume (A1: It is 

necessary to arrange the packing material so that the package produced corresponds to the 

greatest-volume of product) and that cylinders can be obtained by using a rectangle in two 

distinct ways (A2: The cardboard can be used in two different ways to form the lateral surface 

of the cylinder). Relevant findings are given in Figure 4 and Figure 5. 

  

Figure 4. Findings on the statement A1. Figure 5. Findings on the statement A2. 

Examining the data regarding the extent of the preservice teachers’ consideration of A1 and 

A2 which played a key role in the problem solution led to the finding that 

• 10 preservice teachers who incorrectly handled or did not declare only information 

A1, naturally achieved the incorrect result, 

• Two preservice teachers who handled A1 and A2 (T37), or just A2 (T34) incorrectly 

reached the incorrect result as they did not compare the volumes of the cylinders, 

• 32 preservice teachers processed both information correctly. Two of them (T17 and 

T39) made calculation errors (i.e., forgot squaring the pi; and assumed base radiuses 

of the cylinders to be equal) which could affect the result when calculating the volume 

and thus reached incorrect results. 
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Notations used in the solution of Problem A 

The distribution of notations utilized by the preservice teachers in solving Problem A 

is presented in Figure 6. 

 

Figure 6. Distribution of notations utilized in Problem A’s solution. 

It was observed that all preservice teachers with the exception of T7 and T19 often used 

verbal and visual notations in conjunction. In addition to these notations, with the exception 

of T30 and T33, they opted for either numerical or algebraic notations. In other words, among 

the preservice teachers, 14 preferred numerical notations while 24 chose to use algebraic 

notations. T8 used numerical and experimental notations whereas T7 and T20 only used the 

experimental notation in combination with the visual and verbal notations. Figure 7 presents 

the distribution of notations used for solving Problem A, by correctness. 

 

Figure 7. Distribution of notations utilized in Problem A’s solution, broken down by 

correctness. 

Rates of correctness for the notations are as follows, respectively: Experimental (100%), 

Visual (78%), Verbal (70%), Algebraic (58%), Numerical (13%). Nine of the preservice 

teachers used the visual notation incompletely by drawing only one of the cylinder images 

formed by connecting the long or the short edges of the rectangle. However, as these 

preservice teachers verbally stated that cylinder could be formed in two different ways also by 

connecting different edges, it was concluded that a total of 41 preservice teachers had the 

information A2. While the preservice teachers’ use of the experimental notation was always 

correct, the highest number of errors was observed with verbal notations. 30 verbal notations 

considered correct indicates that about three-fourths of the preservice teachers came up with a 

correct result. However, variation from this rate is still possible, given that the success in the 

mathematizing process depends on the correctness of numerical or algebraic notations. 17 of 
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the numerical and algebraic notations are correct. Therefore, about one-third of the preservice 

teachers carried out a correct mathematizing process. According to Figure 7, the preservice 

teachers who used numerical or algebraic notations usually preferred only one of them. 15 out 

of 26 preservice teachers who used the algebraic notation and 2 out of 16 preservice teachers 

who used the numerical notation carried out the operations correctly. Almost all of the 

numerical notations were found to be incomplete. In the case of algebraic notations, however, 

the number of correct operations was closer to that of incorrect ones. These findings are 

analyzed with reference to the values of numerical notations used by 16 preservice teachers as 

presented in Table 1. 

Table 1. Numerical Notations used for Cardboard Dimensions and Scoring. 
T 1 2 3 8 13 17 18 26 27 28 30 33 36 38 39 42 

a 60 12 20 12 10 8 20 8 12 6 G G 12 4 8 10 

b 30 4 10 6 6 5 10 4 6 3 G G 6 2 1 8 

S 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 

Note. T = preservice teacher; a, b = cardboard dimensions; G = use of different values for 

generalization; S = scoring; 1 = incomplete; 2 = correct. 

In terms of numerical values, more often than not, a two-fold relation was preferred in the 

context of the edge lengths of the rectangle. The two-fold relation between the values was 

also observed in terms of volume values, supporting the generalization. For example, the 

numerical values used by T36 were 𝑎 = 12 𝑐𝑚, 𝑏 = 6 𝑐𝑚, expressing a two-fold relationship 

(Figure 8).  
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Translation of the text in the figure: 

As understood from here, if we accept short edge of rectangle as height (situation II), its 

volume is greater. Therefore, packing cost becomes lower. 

Figure 8. Example of the incomplete use of numerical notation in Problem A’s solution (T36). 

However, the answer provided by this preservice teacher is not considered a complete one, as 

examples with different values were not provided. 

With the exception of two preservice teachers, the generalizations were always made with just 

one numerical value, and therefore, are considered incomplete. After having calculated the 

volume based on just one numerical value, T30 and T33, who used the numerical notation 

correctly, suggested that this operation could be deductively repeated with different values. 

Among algebraic notations, 18 used variables while 8 used algebraic expressions. Variables 

were used to represent edge lengths of the rectangle with letters, while algebraic expression 

was used to represent them with alphanumerical characters. An exemplary solution utilizing 

the variables is given in Figure 9. 
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(i) 

 

 

(ii) 

 

 

 

 

 

 

 

 

 

 

 

(iii) 

 

 

 

 

(iv) 

 

 
 

Translation of the text in the figure: 

(i) I form a cylinder accepting short edge of rectangular cardboard as height because... 

(ii) Let us compare volumes of two cylinders made of the same cardboard; let the long edge 

be height in (I) and the short edge be height in (II).  

(iii) Since x < y, it is  
𝑦2𝑥

4𝜋
=

𝑥2𝑦

4𝜋
 . That is, it is more preferable to use cylinder II. 

(iv) Result: Comparing the volumes, because square of radiuses is in direct proportion to 

heights, the one with greater radius has a greater volume. 

Figure 9. Example of the correct use of visual, verbal and algebraic (variable) notations in 

Problem A’s solution (T29). 

In Problem A’s solution, T29 expressed cardboard edges with variables x and y and also used 

visual and verbal notations correctly (Figure 9).  

Table 2 shows the algebraic notations used by the preservice teachers for cardboard 

dimensions, along with the scoring. 

Table 2. Algebraic Notations used for Cardboard Dimensions and Scoring. 
T 9 11 21 23 24 30 41 43 

a H h 4πr 2a 2πr h 2πr1 2a 

b 2πr 2πr 2πr a 2πr’ 2πr 2πr2 a 

S 2 2 1 1 2 2 2 1 

Note. T = preservice teacher; a, b = cardboard dimensions; S = scoring; 1 = incomplete; 2 =  

correct. 
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Rather than assigning the variables 𝑎 and 𝑏 to represent the edge lengths of the rectangle, T24 

and T41 assigned the algebraic expressions of 2𝜋𝑟 and 2𝜋𝑟′ instead. Since notations allowed 

for obtaining base radiuses of the cylinders, therefore facilitating the calculation, this 

approach can be considered a smart and valid one. The notations presented by T21, T23 and 

T43, on the other hand, were considered incomplete, as designating the notations as 𝑎 and 2𝑎 

interdependently might cause misleading generalizations such defining them as multiples of 

each other (Table 2). 

In the case of Problem A, the solution was considered incomplete when there were important 

errors or incompleteness, other than calculation errors in algebraic notations. For example, 

after assuming the edge lengths to be 𝑎 > 𝑏, T40 assumed the base radiuses to be 𝑎/2 and 

𝑏/2, and proceeded with the algebraic operation. Although the calculation was based on 

incorrect values, it still did not change the result. However, the mathematizing process is 

assumed to be correct. 

Findings Regarding the Process of Mathematizing in Solving Problem B 

None of the preservice teachers attempted to reach 2 (One can place identical circles 

on a rectangular area, with the minimal amount of wasted space in between, is to place them 

in a hexagonal arrangement) which is one of the mathematical results expected for Problem B. 

Findings about the anticipated Result 3 are also presented below. 

Notations utilized in the solution of Problem B 

Figure 10 presents the distribution of notations utilized by the preservice teachers to 

get Result 3, one of the mathematical results expected for Problem B. 

 

Figure 10. Distribution of notations utilized in the solution of Problem B. 

While none of the preservice teachers utilized the experimental notation in the solution of 

Problem B, almost all of them (except T1, T40, and T42) used the verbal notation. One-third 

of the preservice teachers were found to utilize the visual notation, and all but T11 preferred 

either the numerical or algebraic the notation. In other words, among the preservice teachers 

who took part in the study, 12 preferred numerical and 14 preferred algebraic notations, 

whereas 13 produced their solutions without using numerical or algebraic notations. About 

one-third of the preservice teachers did not employ the mathematizing process. 

Figure 11 presents the distribution of notations utilized for Problem B’s solution, by 

correctness. 
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Figure 11. Distribution of notations utilized in the solution of Problem B, broken down by 

correctness. 

According to the data presented in Figure 11, although roughly three-fifths (27/43) of the 

preservice teachers came up with the correct result using the verbal notation, they were unable 

to support this result with numerical or algebraic notations. Only one preservice teacher (T23) 

used a correct algebraic notation (Figure 12). 
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Translation of the text in the figure: 

(i) As the area of container 1’s base and cap is the area of two circles with a diameter of 

r1, if area of circle is πr2,  

(ii) It is better to choose container 1. 

(iii) As the area of container 2’s base and cap is the area of two circles with a diameter of 

r2,   

(iv) Aluminum covering cost of container 2 is more, but container 2 is more advantageous 

for the volume. As for the volume, 

(v) My first proposition lost its validity when we proceeded with aluminum covering 

because cost of caps goes up in container 2. 

Figure 12. Example of the correct use of algebraic notation in Problem B’s solution (T23) 

Thus, it is understood that only T23 correctly performed the mathematizing process among all 

preservice teachers who took part in the study. However, it should be noted that, when 

beginning his/her solution, T23 assumed the edge lengths of the rectangle to be 𝑎 and 2𝑎. In 

verbal notations considered incomplete, the preservice teachers usually used informal logic 

during their efforts to achieve the correct result. That is to say, the preservice teachers 

emphasized the price difference between the materials (cardboard vs. aluminum) and 

preferred the model of cylinder with smaller radius which permitted using less aluminum. In 

numerical notations considered incomplete, the participants were observed to try to make an 

inference through a single numerical example. In most cases, they disregarded volume as a 

variable to take into account. An example is presented in the data analysis section (Figure 2). 

It was observed that the preservice teachers resorted to comparing the base areas without 

engaging in any comparison between the volumes, of different cylinder models. 
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Discussion 

The study explored whether the preservice middle school mathematics teachers could 

successfully perform the mathematizing process, which is defined as the process whereby 

applicable knowledge and rules can be put into practice concerning a real-life problem. The 

study was carried out with 43 preservice teachers enrolled in a state university and utilized as 

its data collection tool a problem looking for the most optimal packing option with the lowest 

packing cost. The solution of the problem called the “cylinder packing problem” requires 

actualizing mathematizing with reference to three mathematical results.  

The preservice teachers were observed to use five different notations (experimental, visual, 

verbal, numerical, and algebraic) in the problem-solving process. These notations are 

examined as an indicator of mathematizing for achieving the mathematical results. To be able 

to achieve Result 1 which is the mathematical result expected for Problem A, one needs to 

know that the problem is about volume, and that the cylinder can be obtained from a rectangle 

in two different ways. The findings initially revealed that 13 preservice teachers who utilized 

only one of the two statements correctly, or who made calculation errors, on the other hand, 

came up with incorrect results in the mathematizing process. It is understood from these 

findings that, grasping the problem and the ability to associate variables in the problem played 

a key role in problem solving, and that 30 preservice teachers, about three-fourths, had these 

skills. 

To achieve Result 1 expected for the solution of Problem A, the preservice teachers usually 

used verbal and visual notations together and preferred either numerical or algebraic notations 

for use in combination with these notations. Whereas all preservice teachers used verbal 

notation, the least frequently used notation was the experimental notation. Regarding the 

correctness of these notations, one can confidently state that all instances of experimental 

notation use were correct, while the rates of correctness for visual, verbal, algebraic, and 

numerical notations are 78%, 70%, 58%, and 13% respectively. Those who used the algebraic 

notation were found to be more successful than those who used the numerical notation. 

Previous research emphasized that algebraic thinking and abstraction play an unavoidable role 

in making mathematical generalizations (Davydov, 1990; Dumitrascu, 2017). Since 

abstraction requires mental reorganization, it is more complex than generalization which 

involves accustomed processes (Tall, 1991). In a study investigating the mathematical 

thinking levels of preservice teachers, Alkan and Bukova Güzel (2005) found that preservice 

teachers were incompetent at using the generalization method, and often resorted to 

performing operations, which led to negative outcomes in abstraction. 

Among the preservice teachers who used the numerical notation, all but two applied 

generalization based on a single numerical value. Producing one example is considered 

adequate only when used for falsification purposes, according to the counter-example method 

(Hammack, 2018). As often at least four or five examples are called for generalizations 

(Polya, 1973), one can forcefully argue that the preservice teachers were unable to use the 

numerical notation effectively. As one of the ways of accessing information in school 

mathematics, generalization is considered the lifeline of mathematics (Mason, Burton, & 

Stacey, 2010). It is emphasized that mathematical thinking will not occur as long as teachers 

are not aware of generalization, regarded as the core of mathematics, and do not give the 

students a chance to generalize (Mason, 1996). It was observed that the analysis of the fold 

relationship between lengths of the edges of the rectangle was often based on numerical 

values. Choosing the most suitable examples to comprehend and solve a problem occurs 

during the stage of specializing, which is among the basic processes of mathematical thinking, 

and it is expected to be followed by generalization (Mason, Burton and Stacey, 2010). Certain 
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examples in the study might have been preferred by the preservice teachers to facilitate 

calculation and to assist generalization. However, such generalizations were mostly limited to 

the fold relation, indicating that successful applications of the generalizations were rare, if not 

non-existent. 

In generalization, calculation with numerical data should be replaced by abstraction; only then 

mathematical deduction can be accepted as information. Most of the preservice teachers who 

used algebraic notation – the main indicator of abstraction– preferred variables such as (a, b), 

while others used algebraic expressions such as (h, 2πr), (2πr, 2πr'), (2a, a) to represent edge 

lengths of the rectangle. The fold relationship between the edge lengths, which led to a 

limited set of generalizations, was utilized in the choice of algebraic expressions, just like the 

case with the numerical notations, and that notations such as (2πr, 2πr') were preferred to 

obtain more practical figures for the base radiuses of the cylinders, so as to facilitate 

calculation. 

In the mathematizing process, visual and verbal notations are usually the tools to support and 

explain the solution and are not sufficient on their own. Experimental notation is utilized less 

frequently and, again, is incapable of reflecting the mathematizing process on its own. Given 

that a successful mathematizing process depends on the correctness of the numerical or 

algebraic notations, one can say that about one-third of the preservice teachers actualized a 

correct mathematizing process. 

None of the preservice teachers attempted to achieve Result 2, one of mathematical results 

expected for Problem B. It is possible that the statement provided as Problem B, “Base and 

cover of the container will be cut out of an aluminum plate. When taking these costs into 

account, is your suggestion still valid? Provide confirmation” did not lead preservice teachers 

to thinking that multiple circles could be cut out of a plate. Furthermore, while there was a 

clear question about how to use the cardboard so as to minimize the packing cost in Problem 

A, the lack of such a question about the use of the aluminum plate might have caused this 

outcome. The preservice teachers neglected the cost issues in the problem and looked for a 

limited solution. This finding indicates that the preservice teachers only focused on the clearly 

stated questions and did not apply the step of posing a subproblem in the problem-solving 

process. According to Polya (1973), when solving problems involving practices in different 

domains of mathematics, previously acquired information in the relevant domain is required, 

yet, of the need for such information is more complex and ambiguous compared to those of 

mathematical problems. 

The mathematical result expected to be reached in accordance with the problem context is a 

statement to the effect that the cost of cylinder packing formed by connecting long edges of 

the cardboard is lower when base material of the cylinder costs more than its lateral surface 

material (Result 3). Accordingly, in contrast to the result achieved in Problem A, the second 

problem is about achieving the minimum cost for unit of volume. It was observed that the 

preservice teachers did not use the experimental notation in Problem B’s solution. This might 

have been the case because experimental notation does not provide any solution to the 

problem. Visual notation which is a supportive tool in comprehending the solution was, again, 

not a frequent occurrence in this problem’s solution. Since the relevant visual notation was 

used in Problem A’s solution in general, one might think that it was not needed much in 

Problem B’s solution. Almost all preservice teachers used the verbal notation while about 

one-third of them preferred, in addition to the verbal notation, either numerical or algebraic 

notations. The preservice teachers who produced solutions without using either numerical or 
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algebraic notations are not deemed to have actualized the mathematizing process correctly. 

Although about three-fifths of the preservice teachers achieved the correct result, the 

mathematizing process was regarded unsuccessful as they did not support this result with 

numerical or algebraic notations. For example, the preservice teachers usually referred to the 

price difference between the materials (cardboard/aluminum) and stated that a cylinder 

packing with a smaller radius and containing less aluminum should be used. While this result 

is correct, it is not possible to speak of a mathematizing process because it does not involve a 

mathematical explanation. 

As it was found that, in general, the preservice teachers made efforts to make inferences 

through a single numerical example, one can argue, in parallel to previous findings, that they 

have significant shortcomings about generalization. Only one preservice teacher used verbal 

and algebraic notations correctly and employed a successful mathematizing process for the 

third mathematical result. 

Conclusion and Suggestions 

The research findings showed that the preservice teachers could not perform the 

requirements of important skills such as using notations, mathematical models and 

generalization method which are important in making abstract inferences in the 

mathematizing process and supporting the problem solution with mathematical models or 

explanations. Results similar to the findings of the present study were common in the 

literature. In two studies investigating the preservice teachers’ mathematical literacy skills, it 

was observed that preservice teachers had difficulty associating variables in a problem, 

translating the problem situation to mathematical language, and interpreting it within the 

daily-life context, and failed to express the solution algebraically while using verbal 

representations (Kabael and Ata Baran, 2019; Kabael and Barak, 2016). In a comparative 

study, Uygur-Kabael (2017) observed that Turkish preservice teachers, when compared 

against their American peers, performed poorly in mathematizing processes such as creating 

quantities in real-life problems, association, and using suitable mathematical representations. 

Seaman and Szydlik (2007) found that preservice teachers had inadequate levels of 

mathematical sophistication –a term referring to the command of mathematical descriptions 

used by the mathematics community, in problem-solving and instruction. According to the 

researchers, the approach used by the preservice teachers in problem-solving and instruction 

is closely related to their mathematical sophistication levels, mathematical experiences, and 

whether they can use the mathematical language which shapes their perspectives of 

mathematics. To boot, any improvements in regarding this level plays an important role in 

understanding how to teach mathematics. In parallel with current approaches in mathematics 

teaching, it is crucial to ensure that preservice and in-service mathematics teachers have the 

required competencies in taking real-life applications of mathematics to the school 

environment. Design of the environments so as to enable re-invention of mathematics, and 

improvement of conceptual understanding of how and why mathematics is developed requires 

diligence and attention (Lai, Kinnear and Fung, 2019). Although preservice teachers receive 

education shaped by the principles of realistic mathematics education, they remain incapable 

of putting it into practice in classroom and need assistance (Bozkurt, Kozaklı Ülger and 

Altun, 2019). Studies aimed at developing practical course materials and teacher and teacher 

candidates' skills such as problem- solving, and modeling can be recommended to contribute 

to teacher education. Research to identify and enhance mathematical sophistication levels of 

in-service and preservice mathematics teachers would certainly contribute to the literature. 
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Appendices: A Priori Analysis of the Cylinder Packing Problem 

Mathematizing Processes and Mathematical Results Regarding Problem A 

Taking the volumes to be achieved based on a and b, once dimensions of the 

cardboard which will form the lateral surface of packing are chosen as a being the long edge 

and b being the short edge (𝑎 > 𝑏), and it is taken into account that the lateral surface of 

cylinder can be formed using the cardboard in two distinct ways: 

If we represent the volume to be obtained when short edges of the cardboard are connected, 

with 𝒱1 , 

 

Since 𝒱1 = 𝜋𝑟1
2ℎ1, we get 

ℎ1 = 𝑏

𝑎 = 2𝜋𝑟1 ⇒ 𝑟1 =
𝑎

2𝜋

 } 𝒱1 = 𝜋𝑟1
2ℎ1 ⇒  𝒱1 = 𝜋 (

𝑎

2𝜋
)
2

∙ 𝑏 =
𝑎2𝑏

4𝜋
 

If we represent the volume to be obtained when long edges of the cardboard are connected, 

with 𝒱2 , 

 

Since 𝒱2 = 𝜋𝑟2
2ℎ2, we get 

ℎ2 = 𝑎

 𝑏 = 2𝜋𝑟2 ⇒ 𝑟2 =
𝑏

2𝜋

 }   𝒱2 = 𝜋𝑟2
2ℎ2 ⇒   𝒱2 = 𝜋 (

𝑏

2𝜋
)
2

∙ 𝑎 =
𝑏2𝑎

4𝜋
 

Since 𝑎 > 𝑏, simplifying the relations obtained to compare 𝒱1 and 𝒱2 , 

  𝒱1    𝒱2   

𝑎2𝑏

4𝜋
 

𝑏2𝑎

4𝜋
 Multiplying the two expressions by 4𝜋 

𝑎2𝑏 𝑏2𝑎 Dividing the two expressions by 𝑎𝑏 

𝑎 𝑏 we get 𝒱1 >𝒱2 , where 𝑎 > 𝑏, 

which indicates that the internal volume of the cylinder packing formed by connecting short 

edges of the cardboard is greater. Thus, the first mathematical result is reached:  

The volume of a cylinder formed by bringing together the short edges of a rectangle is 

greater than the volume of a cylinder formed by connecting the long ones. 

Mathematizing Processes and Mathematical Results Regarding Problem B 

Cutting the bases of packing (cylinder) out of aluminum plate (B1) 

The purpose of the activities known in mathematics as tessellation is to place objects 

or shapes onto a plane without any overlaps and gaps. When the shape to be placed onto the 

plane is a circle, one needs to investigate how the plane can be covered so as to leave the 
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fewest gaps. A plane can be properly covered with isodiametric circles in two different ways. 

The first is the quadratic tessellation and the second is the hexagonal tessellation. Circle 

density on the plane is higher with the hexagonal tessellation (Weisstein, n.d.)1. Intuitively 

and perceptively, it is obvious that there would be less material waste with the hexagonal 

tessellation, and this implication can be confirmed algebraically. A solution approach is given 

in Figure 1. 

  

Figure 1. Comparison of the gaps between circles in the quadratic and hexagonal packing 

models of 24 isodiametric circles. 

When the area of four quarter sectors is subtracted from the area of the square which is the 

combination of centers of four circles with a radius of r unit (u), the gap between the four 

circles is found to be 𝑟2(4 − 𝜋) u² in the quadratic model. In the hexagonal model, the gap 

between the four circles is found to be 𝑟2(2√3 − 𝜋) u² by subtracting the area of a circle from 

the area of a rhombus with edge length of 2r u and height 𝑟√3 𝑢 (the height can be obtained 

from the equilateral triangle relation: ℎ =  
2𝑟√3

2
= 𝑟√3 𝑢). 

In the context of comparing the gaps left in both models, a 4 > 2√3, one can argue that a 

hexagonal model with a gap of 𝑟2(2√3 − 𝜋) u² is the model that should be preferred to 

minimize the material cost. Thus the second mathematical result is reached:  

One can place identical circles on a rectangular area, with the minimal amount of wasted 

space in between, is to place them in a hexagonal arrangement. 

Furthermore, when achieving this result, strategies suitable for the middle school level can be 

developed based on area relations of known geometric shapes such as triangles, quadrangles 

and circles. 

Evaluating the packing cost in the context of volume (B2) 

It is known from step A of the problem that internal volume of the cylinder packing 

formed by connecting short edges of the cardboard is greater; therefore, base area of the 

cylinder packing is greater than the base area of the packing formed by connecting long edges 

of the cardboard. In this case, the fact that more of the aluminum material would be used and 

aluminum material is more expensive than cardboard material necessitates the comparison of 

larger volume vs. minimum cost. Intuitively, by the condition of minimizing the cost allocated 

for packing material, it seems probable that smaller bases would be preferred over larger 

bases. Considering this case mathematically, circle area per volume (amount of aluminum 

 

1 Weisstein, E. W. (n.d.). Circle packing. The MathWorld Wolfram. Retrieved from 

http://mathworld.wolfram.com/CirclePacking.html 
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plate required) needs to be calculated. Using the previous formulas (where a: long edge of 

cardboard; b: short edge of cardboard; 𝒱1: volume created by connecting the short edges of 

cardboard; 𝒱2: volume created by connecting the long edges of cardboard), if each volume 

of 𝒱1  and 𝒱2 is to be compared to two base areas respectively, we get 

𝐹𝑜𝑟  𝒱1 ,
2 ∙ 𝜋 (

𝑎
2𝜋)

2

𝜋 (
𝑎
2𝜋)

2

∙ 𝑏
=

𝑎2

2𝜋
𝑎2

4𝜋
 

∙ 𝑏
=
2

𝑏

𝐹𝑜𝑟  𝒱2 ,
2 ∙ 𝜋 (

𝑏
2𝜋)

2

𝜋 (
𝑏
2𝜋)

2

∙ 𝑎

=

𝑏2

2𝜋
𝑏2

4𝜋 ∙ 𝑎
=
2

𝑎

 

}
 
 
 
 

 
 
 
 

 𝑤𝑒 𝑔𝑒𝑡  
2

𝑏
>
2

𝑎
, 𝑤ℎ𝑒𝑟𝑒 𝑎 > 𝑏 

Consequently, it is seen that the circle area per volume is larger for 𝒱1 and the suggestion we 

have made in step A of the problem loses its validity. Thus, the third mathematical result 

based on the problem context is reached:  

When the base material of the cylinders costs more than the lateral surface material, 

cylinder packages formed by connecting the long edges of the cardboard cost less. 

Moreover, one should remember that choice of larger circle would mean more waste of 

aluminum plate, which might be considered as a further increase in the cost of a large circle. 

The lack of any measurements in the problem statement, and the use of materials of various 

value levels for packaging are the factors that make the solution different. As a different 

solution in such cases, it can be recommended to test the intuitive implication with easily 

computable values. For instance, if we take dimensions of the cardboard as  a = 20 u and b = 

10 u and calculate the volumes, we get 

 

ℎ1 = 10

20 = 2𝜋𝑟1 ⇒ 𝑟1 =
10

2𝜋

 }   𝒱1 = 𝜋𝑟1
2ℎ1 = 𝜋 (

20

2𝜋
)
2

∙ 10 =
1000

𝜋
 𝑢3 

ℎ2 = 20

10 = 2𝜋𝑟2 ⇒ 𝑟2 =
20

2𝜋

 }   𝒱2 = 𝜋𝑟2
2ℎ2 = 𝜋 (

10

2𝜋
)
2

∙ 20 =
500

𝜋
 𝑢3 

In this numerical example, when the height is set to be long edge of the cardboard, it is seen 

that the volume of the cylinder is half the volume of a comparable cylinder with height is set 

to the short edge of the cardboard. If one seeks to calculate the amount of packaging required 

to launch the same amount of product, the following conclusions are reached: 

For 𝒱1 : 1 cardboard + 2 aluminum bases of large circle 

For 𝒱2 : 2 cardboards + 4 aluminum bases of small circle 

Even if the cardboard is used two times more for a cylinder with the volume of 𝒱2 , what is to 

be considered here is the amount of aluminum plate which costs higher than cardboard. 
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Calculating total area of individual aluminum bases, one would get 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 = 𝜋𝑟1
2 = 𝜋 (

20

2𝜋
)
2

=
100

𝜋
 𝑢2 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑐𝑖𝑟𝑐𝑙𝑒 = 𝜋𝑟2
2 = 𝜋 (

10

2𝜋
)
2

=
25

𝜋
 𝑢2 

Here, while total of areas of two aluminum bases formed by large circles that are required for 

a cylinder with a volume of 𝒱1 is 
200

𝜋
 𝑢2, the total of area of four aluminum bases formed by 

small circles that are required for a cylinder with a volume of 𝒱2 is 
 100

𝜋
 𝑢2. It is understood 

from the calculations that there is an advantage in using small circles, and once this result is 

supported with different numerical examples, it can be observed that the circle area per 

volume increases for 𝒱1 as long as the length of the long edge (a) is kept fixed and length of 

short edge (b) is shortened. 

Technology plays a key role in producing mathematical models for the solutions of real-life 

problems and understanding the relationships (Yerushalmy, 1997)2. As seen in Figure 2, 

Dynamic Geometry software can be used as an effective tool in investigating the problem 

solution. However, the study was based on paper and pencil since the participating preservice 

teachers had not received enough training with the software. 

 
Figure 2. Investigating the problem solution on Dynamic Geometry (GeoGebra) 

 

2 Yerushalmy, M. (1997). Mathematizing verbal descriptions of situations: A language to support modeling. 

Cognition and Instruction, 15(2), 207-264. doi:10.1207/s1532690xci1502_3 


