BEU Fen Bilimleri Dergisi BEU Journal of Science
4(2), 103-111, 2015 4(2), 103-111, 2015

Arastirma Makalesi | Research Article

An Object- Oriented Approach to Counter-Model Constructions in
A Fragment of Natural Language

Selcuk TOPAL”

Bitlis Eren University, Faculty of Science and Arts, Department of Mathematics, Bitlis, Tiirkiye

Abstract

This article presents a technical construction of reasoning and counter-models for some sentences called
fragments as in [9] in English. Speaking English and logical inferences are brought together in computer based
approach to natural language. Not only the inferences in the language [7] are given but also counter-model
constructions in case of no inference from input sentences. Approach of this construction considers usage of
minimal number of set elements.

Keywords: Logic in Computer Science, Logic of Natural Languages, Applications of Logic

Dogal Dilin Bir Parcasindaki Karsit Model Yapilarina Nesne Yonelimli
Bir Yaklasim

Ozet

Bu makale, Ingilizce dili icindeki [9] kaynagindaki gibi parcalar olarak adlandirilan bazi ciimleler igin tiiretimler
ve karsit modellerin bir teknik insasini sunar. Giinliik Ingilizce ile mantiksal tiiretimleri dogal dile bilgisayar
temelli yaklasim icinde bir araya getirilmistir. Sadece [7] dil i¢indeki tiiretimleri degil aym1 zamanda girdi
ciimlelerinden bir tliretim olmamasi durumunda karsit model insalar1 da verilmistir. Bu insa yaklagimi enaz
sayida kiime elemanlar1 kullanmay1 g6z 6niinde bulundurur.

Anahtar Kelimeler: Bilgisayar Biliminde Mantik, Dogal Dillerin Mantigi, Mantigin Uygulamalari

1. Introduction

Most of information and computer system focus on checking that queries correct or not. These queries
are responded in the form of yes or no. We give algorithms and an illustrating implementation
regarding the reason of a query is answered yes or no. This fragment has their origins in Aristotle
‘syllogism. Aristotle presented syllogism notion by helping approach of categories [2] and [12].
Aristotelian syllogism was begun to evaluate as an issue of formal logic by Lukasiewicz [6]. Corcoran
gave a completeness theorem for Aristotelian syllogism as named “Completeness of an ancient logic”
[5]. A modern completeness theorem was given by Moss [7]. Some complexity results of syllogistic
sentences of English, completeness results of some syllogistic logics and algorithms and completeness
results of some relational syllogistic logics were given in order of by [9], [7] and [10]. The fragment
we consider in this paper is contained by [9] in view of complexity and by [7] in view of
completeness. We integrate this fragment having efficient time complexity and logical completeness in
to natural language. We give a general construction method in addition to we uploaded an instance of

“Corresponding Author: s.topal@beu.edu.tr

103

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

the construction script to sagemathcloud.com [14] to share it. Some algorithms shall be given in the
syntax of Python [11] others in the pseudo-code for readability.

2. Preliminaries
Definition 2.1 [4] A context-free grammar (CFG) is a tuple G = (M, X, R, S) where:

e Mis a set of non-terminal symbols

e X is a set of terminal symbols

e Risasetof rules of the form A—B; B, ...B,suchthatn>0,AeM,B;e (MUZY)
e S e Misaseveralised start symbol

Example 2.2 A basic example in English for CFG:
M ={S, DT, Vt, NP, N}

¥ = {All, cats, are, animals}
S=S

R=:S—NPVP

VP — VBP NP

NP —- DTN

DT — All

VBP — are

N — cats

N — animals

Definition 2.3 [7] Language of S starts by set P with p, g, r, ...variables (plural nouns) and a finite
universe M. For every p € P, [[p]] € M where [[]] is an interpretation function from P to subsets of M.
A model M = (M, [[]], P) has the following truth properties:

M E All p are q :< [[p]]1<[[a]]
M E Some p are q :< [[p]] N [[q]] # @

MENopareq:< [[p]] N[[aq]] =9

Table 1. Proof system for S

——— (axiom)

All zarex
Nozarex (niod) Allzarey Allyarez
—— (n
All z arey & All z are z
Nozxaren Allzx arey Noyarez
22 (Con) d Y OV (ANo)
Noyarex Nozarez
Somezxa AlL : y Some: e 2
SVO"HC Tarey B All z aTe y Somezxare (AllSome)
Someyarex Someyare z

Somezxarey Noxzarey
C

s

104

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

The symbol X in Table 1 means that if I' - Some x are y and I" - No x are y then model is
inconsistent. Every sentence in S can be derived from the model in the present case and C means any
sentences in S.

Definition 2.4 [13] Reachability Problem in Directed Graph: Given a directed graph G = (V, E) and a
vertex v in G which other vertices can be reached by a path starting from v.

Definition 2.5 [7] Let I" be a set of sentences in S. A proof tree over I’ is a finite tree T whose nodes
are labeled with sentences, and each node is either a leaf node labeled with an element of I', or else
matches one of the rules in the proof system S in Table 1. I" - & means that there is a proof tree T for
over I whose root is labeled @. We read this as " proves @, or I derives @ or that @ follows from I in
our proof system S.

Example 2.6 A proof tree for given I = { Some p are q, All p are h, All h are m, Allmare t } - Some
paret:

Some p are q
Some p are p All p are h All h are m All m are t
Some p are h All h are t

Some p are t

Definition 2.7 [7] Let I be a finite set of All sentences. We say p —™" q:< I" All p are . In other
saying, there is a path from node p to node q if taking variables as nodes of graph obtained from I" and

p—"'q is a directed edge from p to q of the graph.

3. Derivation Algorithms in S

We take a set of input sentences I" as a set of premises and I' = @ means that query sentence @ is
derivable from I'. On the other hand, I" ¥ @ means that @ is not derivable from I".
Algorithm 1 An algorithm to check I" - All p are q for given a finite set I' < S.
1: If there is a path from node p to g Then Print the path
2: IfNoparepinI Then Print All p are g from the rule (nol)
3: IfI' is inconsistent Then Print T+ All p are g from the rule X
4: Else Counter-Model
Algorithm 2 An algorithm to check " - Some p are q for given a finite set I € S.
1. f{Allnarepe T orI All nare p} and {T' - All m are g or All m are g € T'} and
{Some mare n € I' or Some n are m € I'} Then Print Some p are q from the rule (All, Some)
[11].
2: If T is inconsistent Then Print T Some p are ¢ from the rule X
3: Else Counter-Model
Algorithm 3 An algorithm to check I" + No p are q for given a finite set ' € S.
1. f{AllpareneTlorI + All paren}and {I' - All g are m or All g are m € T'} and
{Nomaren eI or Nonarem eI} Then Print No p are g from the rule (All, No) [11]
2: If T is inconsistent Then Print T + No p are g from the rule X
3: Else Counter-Model
Algorithm 4 An algorithm to check I' - No p are q and I' - Some p are q for given a finite set I" € S.

105

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

1: If Algorithm 2 satisfies I' - Some p are q and Algorithm 3 satisfies I' - No p are g except
inconsistencies Then Print I is inconsistent.

4. Counter-Model Constructions in S

We use sets in order to construct counter-models since S logic has set-theoretic model. [[p]] and [[q]]
have to have at least one common element since Some p are g means [[p]] N [[q]] # @.We prefer to
assign {p,q} to both [[p]] and [[q]] in order that they have a common element (see Algorithm 5).

Algorithm 5 An algorithm for assigning set values to variables of input sentences in S.
1: If theinputis All p are q then [[p]] < @ and [[q]] < @
2: If the input is Some p are g then [[p]] < { p1, p2 .{p,q}} and [[q]] < {91, 92 .{p.a}}
3: If the input is No p are q then, if p = g then [[p]] = [[q]] « @ Else [[p]] « {pl} and
[[a]] < {q1}.
[[p1] and [[q]] has not any common elements since No p are g means [[p]] N [[g]] = @. If notT" - No p
are p or not I' - then we do not know [[p]] = @ or [[q]] = @ accurately. Thus we make assignment [[p]]

={p1} and [[p]] = {p2} (see Algorithm 6).

Algorithm 6 An algorithm for constructing steps of counter-models for queries that are not derived
from input set in S.

1: IfI'w Allpareq Then [[q]] < [[a]] U {q1} and [[p]] — [[p]] U @

2: IfI'v# Nopareq Then [[q]] < [[q]] U {al, a2, {p,a}} and [[p]] < [[p]] U {p1.p2,{p,a}}

3: IfI' ¥ Some p are g Then [[q]] < [[q]] U @ and [[p]] < [[p]] LU @

4:
Algorithm 7 An algorithm for updating process of model to construct counter-model in S.

1: [[a]] < [[al]Vl[p]] for all variable p € Pay N Psome and for all variable g € P where T - All p

are q If I' ¥ No p are g Then [[q]] < [[a]] U {al, a2, {p.a}} and [[p]] < [[p]] U
{p1.p2{p.a}}

2: [[a]] < [[a]lV[[p]] for all p € P, N Py, and for all variable g € P where I' - All p are g

3. [[a]] < [[a]] Y [[p]] for all variable p € Psyne but p & P,y and for all variable q € P where
I'-Allpareq

4: [[q]] <« @ for all variables p € P but p & Py, and for all variable q € P where ' - No p are p
andT" - All garep

5. Integrating Algorithms of S with Natural Language

In this section, we consider how to be detected whether a sentence is or not in the grammar of
language of S. We use certain properties of NLTK module of Python Program [3] to do this. We prefer
to utilize the tools of POS-tagger function and WordNet package in NLTK for the purpose of checking
sentences whether to be or not in natural spoken English and the grammar of language of S.

The function POS-tagger determines syntactic symbols of words of a sentence. Therefore the
function provides to specify the grammar of intended sentences which are as in Figure 1 by using tree
and tagging functions of part of speech tagging as in Table 2. WordNet is a lexical database for
English. We use WordNet in order to test whether words of input sentences in language of S is or not
in English. WordNet package which is provided by NLTK serves online query for English words.

106

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

S
NP NP
DT NNS vVBP NNS
I I
| I
All, Some, No Plural Noun e Bl iNeun

Figure 1. A tree for the grammar

In Algorithm 8, input sentences are strings and text «— nltk.word.tokenize (®) means that the
program turns the string @ into a list text such that a list is a data structure in Python (see Figure 2).
tagging < nltk.postag (text) means that the program turns the list text into the nested tagging such
that nested list is a list data structure in Python (see Figure 3). If a input string belongs to WordNet, it
belongs to spoken English, in other saying, natural English. Equivalent of this fact is that the function
wn.synset (a) returns a list data structure if it finds a data for the string a in WordNet and bool value
of a list is True in Python (see figure 4).

Table 2. Part of speech for the grammar

Syntactic Symbol Meaning
NNS Plural Noun
DT Determiner
VBP Verb, non-3rd person singular present

Algorithm 8 An algorithm for detections of sentences by using NLTK module.
1: While True do

2: Read the sentence @

3: @ « “'sentence > sentence is a string

4: If @==""no" Then Break > == means equality testing in Python

5: text < nltk.word tokenize(®) > parsing the sentence word by Word

6: tagging <« nltk.pos tag(text) > labeling each words by POS-tagger

7: If tagging[0][1] !'= DT Or bool(wn.synsets(tagging[0][0]))!=True Or tagging[0][0] in
(Call’’, “some™, "'no’) Then Break > I= means non-equality testing in Python

8: If tagging[1][1] '=""NNS ™ Or bool(wn.synsets(tagging[1][0])) !=True Then Break
9: If tagging[2][1]!'=""VBP"" Or bool(wn.synsets(tagging[2][0])) !=True Then Break
10: If tagging[3][1] !'=""NNS"" Or bool(wn.synsets(tagging[3][0])) '=True Then Break
11: End While

Figure 2 illustrates how Algorithm 8 works for an input sentence all cats are animals. The
sentence all cats are animals is segmented word by word. Words all, cats, are and animals are

107

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

tagged with non-terminal symbols. The words cats and animals are checked with WordNet whether
they are in English or not.

@ « “all cats are animals”
@ = "all cats are animals™
text < nltk.word_tokenize(y)

noon nwoon woow

text=["all", “cats™, “are”, “animals™]

text[0]="all", text[1]="cats", text[2]="are"”, text[3]="animals"

tagging « nltk.pos_tag(text)
tagging=[["all","DT"],["cats™,"NNS™],["are™,"VBP"],["animals™, "NNS™[]
tagging[0]=["all","DT"] tagging[0][0]="all" tagging[0][1]="DT"
tagging[1]=["cats™,"NNS"] tagging[1][0]="cats™ tagging[1][1]="NNS"
tagging[2]=["are™,"VBP"] tagging[2][0]="are" tagging[2][1]="VBP"
tagging[3]=["animals™ "NNS"] tagging[3][0]="animals"tagging[3][1]="NNS"
bool(wn.synsets(tagging[1][0])) = True tagging[1][0]="cats™

bool(wn.synsets(tagging[3][0])) = True tagging[3][0]="animals™

Figure 2. An Illustration of Algorithm 8 for ““all cats are animals™

input sentences

6 Algorithm 7
Algorithm 8 [Algorithm 5, Algorithm 6] 7
¥
3 [Output for Counter-Model]

Algorithm 1, Algorithm 2, Algorithm 3

Algorithm 4
e

Algorithm 8 for Query
[Output for Derivation]

Figure 3. Flow-chart with algorithms for the system

108

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

Figure 3 illustrates how entire system works. Arrows in the figure provides transition among used
algorithms and decisions. Algorithm 8 is used two times in order to check the grammar of input
sentences and query sentence. Tasks of the arrows are the following in detail:

Arrow 1:
Arrow 2:
Arrow 3:
Arrow 4.
Arrow 5:

Sending input sentences to NLTK module.

Asking back a sentence due to unaccepted sentences format.

Sending accepted sentences for asking a query and checking for a derivation.

If the derivation occur then sending it to output for visualization of proof.

If the derivation does not occur then sending variables to the constructing process to

assign set values to them.

Arrow 6:

Sending the input and the query to counter-model construction for updating set values

and entire model.

Arrow 7:

Sending updated model for visualization.

5.1. Technical Details

In this section, we consider a graph of input number-time (seconds) comparison of the implementation
that is implemented for this research. The implementation can be found as a project S Logic with
Counter-Model and NLTK on Sagemath Cloud [14] if request an access to the project. We here test
the script how much time (in seconds) to run for 10, 100 and 1000 input. We take the script as a
Python function to test on 8GB RAM, 64-bit operating system and 2.40 Ghz CPU.

Table 3. Running time of the script for 10, 100 and 1000 input number

L=0

>»> def test():

SLogicWithNLTK

> def test(): >>> def test()
SLogicWithNLTK

L=0 L=10

SLogicWithNLTK

for i in range(10):

L.append(i)

>> if __name__==’__main__’:

from timeit import Timer

t = Timer("test()","from __main__ import test")

print t.timeit()

1.55298509697

for i in range(100):
L.append(i)

>»> if __name__==’__main__':

from timeit import Timer

t = Timer("test()","from __main__ import test")

print t.timeit()

9.31559195193

for i in range(1000):
L.append(i)

>>> if __name__==’__main__’:

from timeit import Timer

t = Timer("test()","from __main__ import test")

print t.timeit()

82.3807380957

Ordered pairs of input number - time values are (10, 1.55298509697), (100, 9.31559195193),
(1000, 82.3807380957) as can be seen in Table 3. Function from these ordered pairs is approximated
the function f(x) =~ —0.001x%*+0.086x+0.682 obtained by using Lagrange interpolation for three points.

109

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

Points < [
Function ——

1

5 18

Input numbers

Figure 4. Input number-time match graph for SLogicWithNLTK implementation

Graph of the function in Figure 4 shows that the function behaves nearly f(x) = 10x + 12. The
script has a very efficient run time under reasonable input number.

Remark 1 We could not find any comparable work to compare to or with our work in literature since
this research is in a very new research area and multidiscipline.

6. Future Work

We will implement a logic [8] which has richer language, grammar and expressive power than S logic
has.

References

1. Andrade EJ, Becerra E, 2007. Corcoran’s Aristotelian syllogistic as a subsystem of first-order
logic. Revista Colombiana de Matem’aticas, 41(1): 67-80.

2. Avristotle Categories, 1984. The complete works of Aristotle, Princeton University Press, vol. 1,
1256 p.

3. Bird S, 2006. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on
Interactive presentation sessions, Association for Computational Linguistics, pp. 69-72.

4. Hopcroft JE, Motwani R, Ullman JD, 2001. Introduction to Automata Theory, Languages and
Computation. ACM SIGACT News, 32 (1): 60-65.

5. Corcoran J, 1972. Completeness of an ancient logic. Journal of Symbolic Logic, 37: 696-702.

6. Lukasiewicz J, 1951. Aristotle’s syllogistic from the standpoint of modern formal logic.
Clarendon Press, Oxford.

110

10.

11.

12.
13.

14.

S. Topal / BEU Fen Bilimleri Dergisi 4(2), 103-111, 2015

Moss LS, 2008. Completeness theorems for syllogistic fragments, eds. Logics for linguistic
structures, Walter de Gruyter, 201: 143-175.

Moss LS, 2011. Syllogistic logic with complements, Games, Norms and Reasons. Springer
Netherlands, 179-197.

Pratt-Hartmann 1, 2004. Fragments of language, Journal of Logic, Language and Information,
13.2: 207-223.

Pratt-Hartmann |, Moss LS, 2009. Logics for the Relational Syllogistic, The Review of Symbolic
Logic, 2.04: 647-683.

Python Software Foundation, Python Language Reference, version 2.7. Available at
http://www.python.org.

Smith R, 1989. Categories, Aristotle’s Prior Analytics, Hackett Publishing Company, 320p.
Cormen TH, Leiserson CE, Rivest RL, 1989. Introduction to Algorithms. The MIT Press and
McGraw-Hill Book Company, 597p.

Sage Mathematics Software, 2015. The Sage Development Team, http://www.sagemath.org

Gelig Tarihi: 20/04/2015
Kabul Tarihi: 31/07/2015

111

