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Abstract
The main goal of this paper is to define a new infinite Toeplitz matrix and to examine some algebraic and
topological properties of the sequence spaces |p I ,cand C,where 1< p < oo by means of this matrix.
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Fibonacci Sayilar1 Yardimiyla Tanimlanan Yeni Bir Regiiler Matris
ve Uygulamalar:

Ozet
Bu ¢alismanin temel amaci, Fibonacci sayilarini kullanarak bir sonsuz Toeplitz matrisi tanimlamak ve bu matris

yardimiyla 1 < p < o olmak ftizere l,,lo, ¢ Ve ¢y dizi uzaylarimin bazi cebirsel ve topolojik Ozelliklerini
incelemektir.

Anahtar Kelimeler: Regiiler matris, Fibonacci sayilari, Dizi uzayi

1. Introduction

By w, we shall denote the space of all real valued sequences. Each linear subspace of w is called a
sequence space. Let |_,c,c, and Ip(ls p <oo) be the linear spaces of bounded, convergent, null

sequences and p-absolutely convergent series, respectively.
Suppose A=(a, ) is an infinitt matrix of real numbersa,, where n,k eINand

x=(x)ew. We write Ax =(A,(x)) if A, (x)= Zk:ankxk

converges for eachne IN . If Ax=(A, (x))eY for eachx =(x,)e X, then A defines a matrix
mapping from X into Y and we denote itby A: X =Y . (X :Y) is the class of all matrices A
such that A: X —Y . The domain X , is defined by

X, ={xew: AxeX} (1.1)
which is a sequence space. If A is triangle, then it can be easily shown that the sequence spaces X ,
and X are linearly isomorphic, i.e., X, = X [1].
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A sequence space X with a linear topology is called a K-space provided each of the maps
p, : X — C defined by p,(x)=x, is continuous for all ne IN, where C denotes the complex

field and IN = {O,LZ,...}. A K-space X is called an FK-space provided X is a complete linear metric
space. An FK-space whose topology is normable is called a BK-space [2]. The spaces |_,c,c, are

BK-spaces with the sup-norm |x| =sup,|x,| and the space Ip(ls p <o) is BK-space with

OO 1/p
i, =Sl

k=0
The Fibonacci numbers are famous for possessing wonderful and amazing properties. Some of
these properties are well-known. For instance, the sums and differences of Fibonacci numbers are

1+\/§

Fibonacci numbers, and the ratios of Fibonacci numbers converge to the golden section, 7 = >

which is important in Architecture, Nature and Art, physics [3].
The Fibonacci numbers f_ are the terms of the sequence 0,1,1,2,3,5,...where in each term is

the sum of the preceding terms, beginning with the values f, =0 and f, =1. However, some
fundamental properties of Fibonacci numbers are given as follows [4]:

> fe="f..-Lnx1
k=1

z sz = fn fn+l (12)
k=1

{f.}* converges

In the present study, we define the matrix F =(f,, )"

ke Using Fibonacci numbers f~and

establish the sequence spaces |, (F) I, (F) C(F)and ¢, (F)where1 < p < oo. These spaces were also
studied by different matrix in [5].

2. Main Results

Now, we state the well known Toeplitz theorem which gives the necessary and sufficient conditions
for regularity of a matrix.

Theorem 2.1 [6, Lemma 2.1]. A matrix A= (ank):k=l is regular if and only if the following three

conditions hold:

i.  Thereexists M >0 such that for every n =1,2,3,... the inequality Z|ank| <M holds;
k=1

i. lima, =0 forevery k=12,...;

n—o

n—o

ii. ~ lim> a, =1.
k=1

(e}

In consideration of the above information, we define the Fibonacci matrix F = (fnk)n,kzl as

follows:
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4,1£k£n )

foe =1 fo — , that is,
0, otherwise

1 0 0 0 0O i

E § 0O 0 0O

4 4
F-| L 28 4 00

12 12 12

13 8 2

33 33 33 33

In connection with f =0 and f =0 fork >n, the above matrix F is triangle and also it can be
easily seen by the Toeplitz theorem that the method F is regular.

Hereby, we introduce the following Fibonacci sequence space where the sequence

y= (Yk ) =F (X) = L Z faX; (2.)

2k+1 -1 i=1

is the F-transform of a sequence x = (x, ) forall k e IN°:
X(F)={xew:Fx=y=(y,)e X}.
Here and in the sequel, X denotes any of the sequence spaces |_,c,c, andlp(lﬁ p < oo). We can

redefine the space X (F ) with the notation (1.1) as follows:
X(F)=X.. (2.2)

Theorem 2.2. The space X (F ) is a BK space with the norm
M) = 1Pl =[¥lx =suply,| for X edl...c.co} (2.3)

and also

- 1/p
e = 1Pl =l =(Shl” | tor x 1,02 p <), 2o
=1

Proof: Since the matrix F is triangle, (2.2) and Theorem 4.3.12 of Wilansky [7] gives the fact that the
space X (F) is BK-space with the above norms.

Theorem 2.3. The Fibonacci sequence space X (F) is isometrically isomorphic to space X.

Proof: We should show the existence of an isometric isomorphism between the spaces X (F ) and X.
Let us take in consideration the transformation P defined from X(F) to X by
1

K
P:X(F)> X, x> Px=y,y=(y,)=F.(x)= f,x . In that case, for every
-1

P
2k+1 1=
x € X(F) we have Px = y = F(x) € X . In addition, it is clear that P is linear. Then, it can be easily

seen that PXx=0= X =0 and so P is injective.
Besides, let us define the sequence x = (x, ) as follows:
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X, = fora _1Yk _ fos _1Yk71;k e |N°,y=(yk)e X. (2.5)
f2k f2k

Then, for every k € IN° the following equality is obtained from (2.1) and (2.5):

Z f2|X| = Z[ 2ia —1)Yi 2| 1 _1)yi—l]: Y-

2k+1 ~ il f2k+l
It means that Fx = yand thus we get that FXxe X as y e X . By this way, we conclude that

F

X e X(F) and Px =y. As a consequence, P is surjective. Additionally, it follows from (2.3) and
(2.4) that P is norm preserving, that is,

[Pxl, =¥ =R =¥l

for any x € X(F). Hence P is isometry. Accordingly, the spaces X(F) and X are isometrically
isomorphic, that is, X (F)= X .

Lemma 2.4. Let {f, | be Fibonacci number sequence. If the sequence [

Sup i
i ( ? g f2|<+1 lj

Proof: It can be easily seen that the sequence (

J is inl,, then

2k+1

] isin I,. So, the result follows from Lemma
2k+1

4.11 of Mursaleen and Noman [8].

Theorem 2.5. For X =c,, ¢, the inclusion ¢,(F)c c(F)c 1 (F) strictly holds.
Proof: It is clear that the inclusion c,(F)c c(F)c 1, (F) holds. Consider the sequence x = (X, )
1 K

>t =1

ok — LT
Hence, it is obvious that FX e ¢ but it is not in ¢, . So the sequence X is in ¢(F) butx & c,(F).

defined by x, =1 for all i € IN°. Then we have for every k € IN°, F, (x)=

Consequently, the inclusion c,(F)cc(F) is strict. Now, let us consider the sequence

~1) (f,, + f,, -1
X, =( ) 2”; 21 ~Y) for  all ieIN°. By this way, we have
2i

k
F( = 12 f,.x, =(=1)" for everyk e IN°. This shows that Fx €l_ but not in c. Thus,
2k+1

itis clear that x el (F) but x & c(F). Hereby, the inclusion ¢(F)c I (F) is strict.

Theorem 2.6. The inclusion X < X (F) holds.
Proof: Since the matrix F is regular, the inclusion is obvious for X =c,,c. If we takex = (x,) €1,

then there is a constant M >0 such that |xi| <M for alli € IN°. Thus, we obtain the following

inequality which gives that Fx el :
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k

Zf2,|x|_ 1Zf2i:M'

2k+l _1 2k+l 4

[Fx) <

Hence, we conclude thatx=(x,)el, = x=(x,)el (F).  Now let us takex=(x)el,,

1< p <. By using the Holder’s inequality, we have for every k € IN? the following inequality:

p . f2i ' . f2i ' . f2i "
F )" <| 2=l | 22| [ 2 Zf2,|x| (2.6)
fn —1 1 1 fon —

i=1 i=1 f2k+1 i=1 f2k+l_

The inequality (2.6) gives the fact that

IR0 < Dt => el 2

k=1 2k+1 I1 k=i f2k-¢—l -1

- 1
For sup| f Z < o0, it follows from lemma 2.4 that
: f2k+1 -1

”X”E(p) <M ;|Xi|p =M ”X”E : (2.7)

Hence, we have x el (F) andso I, =1 (F) for 1< p <oo. For p =1, it can be similarly shown

that (2.7) holds. To prove that the converse of Theorem 2.6 holds, we’ll use the matrix A =(4,,)

. LY 1<k<n) o .
defined by A, = A where }tz(/Ik )k:0 is strictly increasing sequence of
0,(k >n)

positive reals tending to infinity in [9]. In the special case A, = f, ., —1, we have A4, — 4, , = f,,

andso F = A foreveryk e IN°. In these premises, we have that

fim 20t — fjm Tena =1 |im(1+£}=1+nm_ Pz g

n—oo A’I’] n—o f2n+1 _1 n—o onl — n—oo f2n+1 —

Consequently, we obtain from [9, corollary 4.7] that X(F)c X for X = {co,c,lp} where
1< p<oo.

Since the inclusions X(F)c X and X < X(F) hold, we can give the following result:

Corollary 2.7. X = X(F).
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