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Abstract  

The main goal of this paper is to define a new infinite Toeplitz matrix and to examine some algebraic and 

topological properties of the sequence spaces cll p ,,  and 
0c where  p1 by means of this matrix. 
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Fibonacci Sayıları Yardımıyla Tanımlanan Yeni Bir Regüler Matris  

ve Uygulamaları 

 

 
Özet  

Bu çalışmanın temel amacı, Fibonacci sayılarını kullanarak bir sonsuz Toeplitz matrisi tanımlamak ve bu matris 

yardımıyla 1 ≤ 𝑝 < ∞ olmak üzere 𝑙𝑝, 𝑙∞, 𝑐 ve 𝑐0 dizi uzaylarının bazı cebirsel ve topolojik özelliklerini 

incelemektir. 

 

Anahtar Kelimeler: Regüler matris, Fibonacci sayıları, Dizi uzayı 

 
 

 

1. Introduction 
 

By w , we shall denote the space of all real valued sequences. Each linear subspace of w  is called a 

sequence space. Let 
0,, ccl  and   pl p 1  be the linear spaces of bounded, convergent, null 

sequences and p-absolutely convergent series, respectively.  

Suppose  nkaA   is an infinite matrix of real numbers
nka , where INkn , and 

  wxx k  . We write   xAAx n  if   
k

knkn xaxA                                                                       

converges for each INn . If    YxAAx n   for each   Xxx k  , then A  defines a matrix 

mapping from X  into Y  and we denote it by YXA : .  YX :  is the class of all matrices A  

such that YXA : . The domain AX  is defined by 

                                                      XAxwxX A  :                               (1.1) 

which is a sequence space. If A  is triangle, then it can be easily shown that the sequence spaces AX  

and X  are linearly isomorphic, i.e., XX A   [1]. 
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A sequence space X with a linear topology is called a K-space provided each of the maps 

CXpn :  defined by   nn xxp   is continuous for all INn , where C denotes the complex 

field and  ,...2,1,0IN . A K-space X is called an FK-space provided X is a complete linear metric 

space. An FK-space whose topology is normable is called a BK-space [2]. The spaces 
0,, ccl  are 

BK-spaces with the sup-norm 
kk xx sup


 and the space   pl p 1  is BK-space with 

p

k

p

kp
xx

/1

0









 





. 

The Fibonacci numbers are famous for possessing wonderful and amazing properties. Some of 

these properties are well-known. For instance, the sums and differences of Fibonacci numbers are 

Fibonacci numbers, and the ratios of Fibonacci numbers converge to the golden section, 
2

51
 , 

which is important in Architecture, Nature and Art, physics [3].  

The Fibonacci numbers 
nf  are the terms of the sequence 0,1,1,2,3,5,…where in each term is 

the sum of the preceding terms, beginning with the values 00 f  and 11 f . However, some 

fundamental properties of Fibonacci numbers are given as follows [4]: 




 
n

k

nk nff
1

2 1;1  

                                                                



n

k

nnk fff
1

1

2
                                                      (1.2) 

  convergesf
kk



1
 

In the present study, we define the matrix  



1,knnkfF  using Fibonacci numbers 

nf  and 

establish the sequence spaces      FcFlFl p ,,  and  Fc0
where  p1 . These spaces were also 

studied by different matrix in [5].  

 

 

2. Main Results 

 

Now, we state the well known Toeplitz theorem which gives the necessary and sufficient conditions 

for regularity of a matrix. 

 

Theorem 2.1 [6, Lemma 2.1]. A matrix   



1,knnkaA  is regular if and only if the following three 

conditions hold: 

i. There exists 0M  such that for every ,...3,2,1n  the inequality Ma
k

nk 


1

 holds; 

ii. 0lim 


nk
n

a  for every ,...2,1k ; 

iii. 






1

1lim
k

nk
n

a .  

In consideration of the above information, we define the Fibonacci matrix  



1,knnkfF  as 

follows: 
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, that is, 







































00
33

21

33

8

33

3

33

1

000
12

8
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3
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1

0000
4

3

4

1
000001

F . 

In connection with 0nnf  and 0nkf  for nk  , the above matrix F is triangle and also it can be 

easily seen by the Toeplitz theorem that the method F is regular.  

 

Hereby, we introduce the following Fibonacci sequence space where the sequence  

                                                       
 


k

i

ii

k

kk xf
f

xFyy
1

2

12 1

1
                                          (2.1) 

is the F-transform of a sequence  kxx   for all 
0INk : 

    XyyFxwxFX k  : . 

Here and in the sequel, X denotes any of the sequence spaces 
0,, ccl  and   pl p 1 . We can 

redefine the space  FX  with the notation (1.1) as follows: 

                                                                  FXFX  .                                                                      (2.2) 

 

Theorem 2.2. The space  FX  is a BK space with the norm  

                           
  k

k
XXFX

yyFxx sup  for  0,, cclX                                           (2.3) 

and also  

                    
 

p

k

p

kXXFX
yyFxx

/1

1









 





 for   plX p 1 .                              (2.4) 

Proof: Since the matrix F is triangle, (2.2) and Theorem 4.3.12 of Wilansky [7] gives the fact that the 

space  FX  is BK-space with the above norms. 

 

Theorem 2.3. The Fibonacci sequence space  FX  is isometrically isomorphic to space X. 

Proof: We should show the existence of an isometric isomorphism between the spaces  FX  and X. 

Let us take in consideration the transformation P defined from  FX  to X by 

      
 


k

i

ii

k

kk xf
f

xFyyyPxxXFXP
1

2

12 1

1
,,: . In that case, for every 

 FXx  we have   XxFyPx  . In addition, it is clear that P is linear. Then, it can be easily 

seen that 00  xPx  and so P is injective. 

Besides, let us define the sequence  kxx   as follows: 
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                            .,;
11 0
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                                   (2.5) 

Then, for every 
0INk  the following equality is obtained from (2.1) and (2.5): 

       .11
1
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It means that yFx  and thus we get that XFx  as Xy . By this way, we conclude that 

 FXx  and yPx  . As a consequence, P is surjective. Additionally, it follows from (2.3) and 

(2.4) that  P is norm preserving, that is,  

 
 FXXXX

xxFyPx   

for any  FXx . Hence P is isometry. Accordingly, the spaces  FX  and X are isometrically 

isomorphic, that is,   XFX  . 

 

Lemma 2.4. Let  
1kkf  be Fibonacci number sequence. If the sequence 











 1

1

12kf
 is in 1l , then 
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Proof: It can be easily seen that the sequence 










 1

1

12kf
 is in 1l . So, the result follows from Lemma 

4.11 of Mursaleen and Noman [8]. 

 

Theorem 2.5. For 
 lccX ,,0

 the inclusion      FlFcFc 0
 strictly holds. 

Proof: It is clear that the inclusion      FlFcFc 0
 holds. Consider the sequence  ixx   

defined by 1ix  for all 
0INi . Then we have for every 

0INk ,   1
1

1
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12
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k

i
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k f
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Hence, it is obvious that cFx  but it is not in 
0c . So the sequence x  is in  Fc  but  Fcx 0 . 

Consequently, the inclusion    FcFc 0
 is strict. Now, let us consider the sequence 

   

i

ii

i

i
f

ff
x

2

1212 11 
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 for all 
0INi . By this way, we have 

   k
k

i
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k

k xf
f

xF 1
1

1

1

2

12




 
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 for every
0INk . This shows that  lFx  but not in c . Thus, 

it is clear that  Flx   but  Fcx . Hereby, the inclusion    FlFc   is strict.  

 

Theorem 2.6. The inclusion  FXX   holds. 

Proof: Since the matrix F is regular, the inclusion is obvious for ccX ,0 . If we take    lxx i
, 

then there is a constant 0M  such that Mxi   for all
0INi . Thus, we obtain the following 

inequality which gives that  lFx : 
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Hence, we conclude that    lxx i    Flxx i  .   Now let us take   pi lxx  , 

 p1 . By using the Hölder’s inequality, we have for every 
0INk  the following inequality: 
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The inequality (2.6) gives the fact that 
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2 , it follows from lemma 2.4 that 
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Hence, we have  Flx p  and so  Fll pp   for  p1 . For 1p , it can be similarly shown 

that (2.7) holds. To prove that the converse of Theorem 2.6 holds, we’ll use the matrix  nk  

defined by 
 
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0kk  is strictly increasing sequence of 

positive reals tending to infinity in [9]. In the special case 112  nn f , we have 
kkk f21    

and so F  for every
0INk . In these premises, we have that  
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Consequently, we obtain from [9, corollary 4.7] that   XFX  for  
plccX ,,0       where 

 p1 . 

Since the inclusions   XFX   and  FXX   hold, we can give the following result: 

Corollary 2.7.  FXX  . 
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