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Abstract − In this paper, the geometry of curves is discussed based on the Caputo fractional derivative 

in the Lorentz plane. Firstly, the tangent vector of a spacelike plane curve is defined in terms of the 

fractional derivative. Then, by considering a spacelike curve in the Lorentz plane, the arc length and 

fractional ordered frame of this curve are obtained. Later, the curvature and Frenet-Serret formulas are 

found for this fractional ordered frame. Finally, the relation between the fractional curvature and 

classical curvature of a spacelike plane curve is obtained. In the last part of the study, considering the 

timelike plane curve in the Lorentz plane, new results are obtained with the method in the previous 

section. 
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1. Introduction 

The fractional derivative was first established in the 17th century and with an adding number of studies, it has 

come the focus of attention for many researchers in numerous fields. Fractional analysis has lately become one 

of the important fields of study in differential geometry. While, in the classical sense, the differential and 

integral are determined by integer order, in fractional calculus the orders of the differential and integral are not 

necessarily integers but any real number. That is, fractional calculus is the generalization of ordinary 

differential and integral to arbitrary order. The difference between the fractional derivative from the integer 

derivative is that it is given by the integration of a function.  

Many studies have been conducted on this subject, and it can be found in detail [1-4]. We can also say 

that a non-local fractional derivative of a function is related to history or a space-range interaction. 

Furthermore, fractional calculus has many applications to viscoelastic [5-11], analytical mechanics [12-14], 

and dynamical systems [15-19]. Fractional analysis has also started to be studied from a differential geometry 

perspective in recent studies. There are many types of fractional operators, but it is recommended to study the 

geometry of curves and surfaces mostly based on the Caputo fractional derivative [20]. However, the Caputo 

fractional derivative is not yet directly used to formulate the differential geometry of curves. Using the Caputo 

fractional derivative is more appropriate than other fractional derivative operators for formulating a geometric 

theory since the fractional derivative of the constant function is zero [21-25]. Based on the advantages of the 

Caputo fractional derivative, it is discussed in [22,24] as a quantification of Lagrangian mechanics and in the 

theory of gravity [21,23,26].  

 
1meltemogrenmis@gmail.com (Corresponding Author);  

1Department of Mathematics, Faculty of Science, Fırat University, Elazığ, Turkey 

New Theory
Journal of

ISSN: 2149-1402

New Theory
Journal of

ISSN: 2149-1402

Editor-in-Chief
NaimÇağman

Number 38 Year 2022

www.dergipark.org.tr/en/pub/jnt

https://dergipark.org.tr/en/pub/jnt
https://doi.org/10.53570/jnt.1087800
https://doi.org/10.53570/jnt.1087800
https://orcid.org/0000-0002-2626-0543


89 

 

Journal of New Theory 38 (2022) 88-98 / Geometry of Curves with Fractional Derivatives in Lorentz Plane 

In [27], the fractional geometry of curves in Euclidean 3-space is studied using the Caputo fractional 

derivative. Using the Caputo fractional derivative, the fractional geometry of curves in higher-dimensional 

Euclidean space is studied [28]. 

In this study, firstly, by considering a spacelike curve in the Lorentz plane, fractional ordered frame and 

Frenet-Serret formulas of this curve are obtained. Later, the relation between the fractional curvature and 

classical curvature of a spacelike plane curve is obtained. In the last part of this paper, considering the timelike 

plane curve in the Lorentz plane, new results are obtained with the method in the previous section. 

2. Preliminaries 

In general, the concepts of the Leibnitz rule and derivative of the composite function are needed when studying 

fractional differential geometry. However, within the scope of fractional analysis, these concepts are obtained 

with infinite series and are used in impact situations at the initial moment and after a long period [3,4].   

Leibnitz’s rule and derivative of the composite function can be given as follows for two functions f(x) and 

g(x) [29]: 

(𝐷𝑥
𝛼𝑓𝑔)(𝑥) = ∑ (

𝛼

𝑖
)

𝑑𝑖𝑓

𝑑𝑥𝑖
(𝐷𝑥

𝛼−𝑖𝑔)(𝑥)

∞

𝑖=0

−
𝑓(0)𝑔(0)

Γ(1 − 𝛼)
𝑥−𝛼 

and 

(𝐷𝑥
𝛼𝑓)(𝑔(𝑥)) = ∑ (

𝛼

𝑖
)

𝑥𝑖−𝛼

Γ(𝑖 − 𝛼 + 1)

𝑑𝑖𝑓(𝑔(𝑥))

𝑑𝑥𝑖

∞

𝑖=1

+
𝑓(𝑔(𝑥)) − 𝑓(𝑔(0))

Γ(1 − 𝛼)
𝑥−𝛼 (1) 

This different form of the integer derivative presents a challenge for deriving geometric concepts such as 

the curvature of a curve and the unit tangent vector. So, a certain simplification of the infinite series is used to 

construct the geometric theory of the derivative. With this simplification, most fundamental terms are removed 

from the infinite series, which retain the properties of the fractional derivative. Hence, with 𝑡 = 𝑔(𝑥), the 

following equality is achieved [30]: 

 (𝐷𝑥
𝛼𝑓)(𝑔(𝑥)) =

𝛼𝑥1−𝛼

Γ(2 − 𝛼)

𝑑𝑓

𝑑𝑡

𝑑𝑔

𝑑𝑥
(2) 

This simplification formula is obtained by taking only the 𝑖 = 1 term of the infinite series in equation (1). 

This formula gives a partial effect of the fractional derivative and is expressed by the ordinary derivative. After 

this simplification, the construction of the fractional geometric theory based on the direct Caputo derivative 

can be expected using the simplified Leibnitz rule and the derivative of the composite function. In other words, 

using the Caputo derivative researchers have an advantage when studying the differential geometry of curves 

and surfaces, especially since it is ineffective on a constant function. Throughout the study, the derivative 

formula given by (2) is discussed. 

Now, we will talk about some basic concepts in the Lorentz plane that we will use in the following 

sections. More detailed information on the following topics can be found in [31].  

The Lorentz plane 𝐿2 is the Euclidean plane 𝑅2 with metric given by 𝑔 =  −𝑑𝑥1
2  +  𝑑𝑥2

2 where (𝑥1, 𝑥2) 

is a rectangular coordinate system of 𝐿2. It is known that a vector 𝑣 ∈   𝐿2 \{0} can be spacelike if 𝑔(𝑣, 𝑣)  >

 0, timelike if 𝑔(𝑣, 𝑣)  <  0 and null (lightlike) if 𝑔(𝑣, 𝑣)  =  0. The null (lightlike) curves in 𝐿2 are lines, 

which curvature is identically zero.  

Therefore, in this study, we will only deal with spacelike and timelike plane curves. The norm of any 

vector 𝑣 in them is given by ‖𝑣‖ = √𝑔(𝑣, 𝑣)|. Two vectors 𝑣 and 𝑤 are said to be orthogonal if 𝑔(𝑣, 𝑤) = 0. 

An arbitrary curve 𝛾(𝑠) in 𝐿2 , can locally be spacelike or timelike if all of its velocity vectors 𝛾̇(𝑠) are 
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spacelike, respectively timelike. A spacelike or timelike curve 𝛾 is parameterized by the arc-length parameter 

𝑠 if 𝑔(𝛾̇(𝑠) , 𝛾̇(𝑠)) =  ±1.   

The curvature 𝜅 and the Frenet formulas of the spacelike curve 𝛾 can be given as follows: 

𝜅 = −𝑔 ( 𝑡̇ , 𝑛) 

and  

𝑡̇  =  𝜅𝑛 

𝑛̇  =  𝜅𝑡 

where 𝛾̇ = 𝑡,  𝑡 and 𝑛 are the tangent, and unit normal vector of a spacelike curve 𝛾, respectively. If 𝛾 is a 

spacelike curve in Lorentz plane, then 𝑔(𝑡, 𝑡) = 1 and 𝑔(𝑛, 𝑛) = −1. Moreover, the curvature 𝑘 and the Frenet 

formulas of the timelike curve β can be given as follows: 

𝑘 = 𝑔 (𝑣1̇ , 𝑣2) 

and  

𝑣1̇  =  𝜅𝑣2 

𝑣2̇  =  𝜅𝑣1 

where 𝛽̇ = 𝑣1,  𝑣1 and 𝑣2 are the tangent, and unit normal vector of a spacelike curve β, respectively. If 𝛽 is a 

timelike curve in Lorentz plane, then 𝑔(𝑣1, 𝑣1) = −1 and 𝑔(𝑣2, 𝑣2) = 1. 

3. Geometry of Spacelike Curves with Fractional Derivative 

In this section, the geometry of spacelike curves is discussed based on the Caputo fractional derivative in the 

Lorentz plane.  

Let us consider a smooth spacelike curve 𝛾 in the 2-dimensional 𝐿2 space is given by  

𝛾: 𝐼 ⊂ ℝ → 𝐿2, 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) 

where 𝑡 is an arbitrary parameter. From the definition of the length 𝜎 of a spacelike curve 𝛾, we can write 

𝜎 = ∫ √|−𝑥̇2 + 𝑦̇2|
𝑡

0

𝑑𝑡, 𝑡 ∈ 𝐼 (3) 

where 𝑥̇ and 𝑦̇ denote the ordinary derivatives of 𝑥 and 𝑦 concerning t, respectively. The above formula is 

arclength of the spacelike curve for the tangent vector: 𝑡(𝜎) = (
𝑑𝑥

𝑑𝜎
,

𝑑𝑦

𝑑𝜎
). 

Let us now investigate the effect of the fractional derivative on the curvature of a spacelike curve. Since 

curvature is generally related to the change of the tangent vector of a spacelike curve, take a fractional tangent 

vector:  

𝑡(𝛼)(𝜎) = (
𝑑𝛼𝑥(𝜎)

𝑑𝜎𝛼
,
𝑑𝛼𝑦(𝜎)

𝑑𝜎𝛼 ) (4) 

Considering the infinite series given in (1), from the fractional derivative of the composite function, we 

can write ‖𝑡(𝛼)(𝜎)‖ ≠ 1. This means that the classical arclength given by (3) cannot be used in the geometry 

of curves with fractional derivatives. To define a fractional unit tangent vector, it is necessary to consider the 

fractional derivative of the composite function in a simpler form. Therefore, instead of the formula (1), only 

the first term of the summation is considered in the fractional derivative of the composite function. Thus, both 

the effect of fractional derivative and first-order derivative are obtained. In this case, we can write 
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𝑑𝛼𝛾(𝑡(𝑠))

𝑑𝑠𝛼
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝛾

𝑑𝑡

𝑑𝑡

𝑑𝑠
 (5) 

Throughout this study, the theory of curves in the Lorentz plane are examined by considering this simple 

version of the derivative of the composite function. Using equation (5), we can give the following 

transformation: 

𝑠 = [
𝛼2

Γ(2 − 𝛼)
𝜎]

1
𝛼

(6) 

where 𝛼 denotes the order of the fractional derivative and 0 < 𝛼 ≤ 1.  For the parameter 𝑠 given by (6), we 

write 

𝑑𝑠

𝑑𝑡
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)
√|−𝑥̇2 + 𝑦̇2| (7) 

Since 𝑠 > 0  and 0 < 𝛼 ≤ 1 in (7),  
𝑑𝑠

𝑑𝑡
 is positive. So that parameter 𝑡 becomes a function dependent on 𝑠: 𝑡 =

𝑡(𝑠). In this case, the spacelike curve 𝛾 can be written depending on the parameter 𝑠 and is denoted by 𝛾(𝑠) =

(𝑥(𝑠), 𝑦(𝑠)).  

Now let us define the tangent vector of a given spacelike curve using the parameter 𝑠 and the Caputo 

fractional derivative:   

𝑡(𝛼)(𝑠) ≡
𝑑𝛼𝛾(𝑠)

𝑑𝑠𝛼
= (

𝑑𝛼𝑥(𝑠)

𝑑𝑠𝛼
,
𝑑𝛼𝑦(𝑠)

𝑑𝑠𝛼 ) (8) 

Considering Equation (5), the norm of the tangent vector of the spacelike curve is 

‖𝑡(𝛼)(𝑠)‖ = √|− (
𝑑𝛼𝑥

𝑑𝑠𝛼
)

2

+ (
𝑑𝛼𝑦

𝑑𝑠𝛼
)

2

| =
𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝑡

𝑑𝑠
√|−𝑥̇2 + 𝑦̇2| = 1 (9) 

Then, using (5), a unit vector of the spacelike curve 𝛾 orthogonal to t can be defined as follows: 

𝑛(𝛼)(𝑠) ≡ (
𝑑𝛼𝑦

𝑑𝑠𝛼
,
𝑑𝛼𝑥

𝑑𝑠𝛼 ) (10) 

So, we can give the following theorem. 

Theorem 3.1. Let 𝛾 be a spacelike curve in the Lorentz plane that satisfies the condition (5) and has the 

parameter s given by (6). Then 𝑡(𝛼)(𝑠) and 𝑛(𝛼)(𝑠) given by (8) and (10) are the unit tangent vector and unit 

normal vector of the spacelike curve 𝛾, respectively, and 𝑠 is the arclength. 

In the following, we is constructed the geometry of a spacelike curve with the fractional 

(𝑡(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) Frenet-Serret frame using the Caputo derivative. 

Let us take a smooth spacelike curve 𝛾(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) given by the arclength parameter (6) in the 

Lorentz plane.  Based on the fractional frenet frame, let us define the frenet-serret formulas and the curvature 

of the spacelike curve 𝛾. From Theorem 3.1, the tangent vector 𝑡(𝛼)(𝑠) of the spacelike curve provides 

𝑔(𝑡(𝛼)(𝑠), 𝑡(𝛼)(𝑠)) = 1. If we take the derivative of both sides of this equation concerning 𝑠, we get  

𝑔 (𝑡(𝛼)(𝑠),
𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
) = 0 (11) 

which means that  
𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
  can be expressed with the normal vector 𝑛(𝛼)(𝑠): 
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𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
= 𝜅(𝛼)(𝑠)𝑛(𝛼)(𝑠) (12) 

where 𝜅(𝛼)(𝑠) is the fractional curvature of the spacelike curve 𝛾. Then the norm of the normal vector 𝑛(𝛼)(𝑠) 

is also equal to one, ‖𝑛(𝛼)(𝑠) ‖ = 1. Then we write 𝑔(𝑛(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) = −1. If we take the derivative of 

both sides of this last equation concerning 𝑠, we have 

𝑔 (𝑛(𝛼)(𝑠),
𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
) = 0 (13) 

From (13), 
𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
 can be given using a certain arclength function  𝜆(𝛼): 

𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
=  𝜆(𝛼)(𝑠)𝑡(𝛼)(𝑠) (14) 

Considering the orthogonality relation 𝑔(𝑡(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) = 0, taking the derivative of both sides of this 

relation concerning 𝑠, we get the following expression: 

𝑡(𝛼)(𝑠)
𝑑𝑛(𝛼)

𝑑𝑠
+

𝑑𝑡(𝛼)

𝑑𝑠
𝑛(𝛼)(𝑠) = 0 (15) 

If the equations (12) and (14) are substituted in the expression (15), we get  𝜆(𝛼) = 𝜅(𝛼). Thus, the following 

theorem is obtained. 

Theorem 3.2. Let 𝛾 be a spacelike curve in the Lorentz plane that satisfies the condition (5) and has the 

parameter s given by (6). Let us consider (𝑡(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) as the fractional frame of this spacelike curve 𝛾. 

Then the Frenet-Serret formulas for 𝛾 can be given as  

𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
= 𝜅(𝛼)(𝑠)𝑛(𝛼)(𝑠) (16) 

𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
= 𝜅(𝛼)(𝑠)𝑡(𝛼)(𝑠) (17) 

Let us now investigate the relationship between the fractional curvature and classical curvature of a given 

spacelike curve 𝛾. Considering (8) and (16), we can write  

𝑑

𝑑𝑠
(

𝑑 𝛼𝛾(𝑠)

𝑑𝑠 𝛼
) = 𝜅(𝛼)(𝑠)𝑛(𝛼)(𝑠)  (18) 

If the normal vector 𝑛(𝛼) is applied to both sides of (18), we can write the fractional curvature as  

𝜅(𝛼)(𝑠) = −𝑔 (𝑛(𝛼)(𝑠),
𝑑

𝑑𝑠
(

𝑑 𝛼𝛾(𝑠)

𝑑𝑠 𝛼
)) (19) 

Considering the normal vector 𝑛(𝛼)(𝑠) in (19),  𝜅(𝛼)(𝑠) according to the fractional derivative is written 

as  

𝜅(𝛼)(𝑠) =
𝑑 𝛼𝑦

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝑥

𝑑𝑠 𝛼
) −

𝑑 𝛼𝑥

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝑦

𝑑𝑠 𝛼
) (20) 

If a curve is given by an arbitrary parameter 𝑡 and not by the arc length 𝑠, then we must calculate the 

fractional curvature according to an arbitrary parameter 𝑡. Then let us calculate the fractional curvature 

according to an arbitrary parameter 𝑡. From the expression (5) for the composite function 𝑡 = 𝑡(𝑠), we can 

write  
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𝑑

𝑑𝑠
(

𝑑 𝛼𝑥

𝑑𝑠 𝛼
) =

𝛼𝑠−𝛼𝑥̇

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠1−𝛼𝑥̈

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(21) 

𝑑

𝑑𝑠
(

𝑑 𝛼𝑦

𝑑𝑠 𝛼
) =

𝛼𝑠−𝛼𝑦̇

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠1−𝛼𝑦̈

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(22) 

where 𝑥̈ =
𝑑2𝑥

𝑑𝑡2  and  𝑦̈ =
𝑑2𝑦

𝑑𝑡2 . If the expressions (21) and (22) are written instead in (20), the fractional-order 

curvature is  

𝜅(𝛼)(𝑡) = {
𝛼𝑠1−𝛼

Γ(2 − 𝛼)
}

2

(−𝑥̇𝑦̈ + 𝑥̈𝑦̇) (
𝑑𝑡

𝑑𝑠
)

3

 (23) 

Moreover, from (7), (23) it can be rewritten by 

𝜅(𝛼)(𝑡) =
Γ(2 − 𝛼)

𝛼𝑠1−𝛼
𝜅(𝑡) (24) 

𝜅(𝑡) in this last equation is the classical curvature and  

𝜅(𝑡) =
−𝑥̇𝑦̈ + 𝑥̈𝑦̇

(𝑥̇2 + 𝑦̇2)
3
2

(25) 

Thus, using the arclength definition given by (6), we can give the following theorem. 

Theorem 3.3. The fractional curvature of a spacelike plane curve given as  𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is  

𝜅(𝛼)(𝑡) = {
𝛽(2 − 𝛼)

𝛼
}

1
𝛼

[𝛼 ∫ √|−𝑥̇2 + 𝑦̇2|𝑑𝑡
𝑡

0

]

1−
1
𝛼

𝜅(𝑡) (26) 

where 𝑡 is an arbitrary parameter.  

The part of 
1

𝑠1−𝛼 in (24) characterizes the effects of the fractional derivative given by the fractional tangent 

vector (8). The effect of the fractional derivative is strong at the start but becomes less effective over a longer 

period. This property of the effect influences the change of fractional curvature. 

4. Geometry of Timelike Curves with Fractional Derivative 

In this section, the geometry of timelike curves is discussed based on the Caputo fractional derivative in the 

Lorentz plane.  

Let us consider a smooth timelike curve 𝛽 in the 2-dimensional 𝐿2 space is given by  

𝛽: 𝐼 ⊂ ℝ → 𝐿2, 𝛽(𝑡) = (𝛽1(𝑡), 𝛽2(𝑡)) 

where 𝑡 is an arbitrary parameter. From the definition of the length 𝜎 of a timelike curve 𝛽, we can write 

𝜎 = ∫ √|−(𝛽1)̇ 2 + (𝛽2)̇ 2|
𝑡

0

𝑑𝑡, 𝑡 ∈ 𝐼 (27) 

where 𝛽1̇ and 𝛽2̇ denote the ordinary derivatives of 𝛽1 and 𝛽2 concerning t, respectively. The above formula is 

arclength of the timelike curve for the tangent vector: 𝑣1(𝜎) = (
𝑑𝑥

𝑑𝜎
,

𝑑𝑦

𝑑𝜎
). 

Let us now investigate the effect of the fractional derivative on the curvature of a timelike curve. Since 

curvature is generally related to the change of the tangent vector of a timelike curve, let's define a fractional 

tangent vector:  
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𝑣1
(𝛼)(𝜎) = (

𝑑𝛼𝛽1(𝜎)

𝑑𝜎𝛼
,
𝑑𝛼𝛽2(𝜎)

𝑑𝜎𝛼 ) (28) 

Considering the infinite series given in (1), from the fractional derivative of the composite function, we can 

write ‖𝑣1
(𝛼)(𝜎)‖ ≠ 1. This means that the classical arclength given by (27) cannot be used in the geometry of 

curves with fractional derivatives. To define a fractional unit tangent vector, it is necessary to consider the 

fractional derivative of the composite function in a simpler form. Therefore, instead of the formula (1), only 

the first term of the summation is considered in the fractional derivative of the composite function. Thus, both 

the effect of fractional derivative and first-order derivative are obtained. In this case, we can write 

𝑑𝛼𝛽(𝑡(𝑠))

𝑑𝑠𝛼
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝛽

𝑑𝑡

𝑑𝑡

𝑑𝑠
 (29) 

Throughout this study, the theory of timelike curves in the Lorentz plane are examined by considering 

this simple version of the derivative of the composite function. Using equation (29), we can give the following 

transformation: 

𝑠 = [
𝛼2

Γ(2 − 𝛼)
𝜎]

1
𝛼

(30) 

where 𝛼 denotes the order of the fractional derivative and 0 < 𝛼 ≤ 1.  For the parameter 𝑠 given by (30), we 

write 

𝑑𝑠

𝑑𝑡
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)
√|−(𝛽1)̇ 2 + (𝛽2)̇ 2| (31) 

Since 𝑠 > 0  and 0 < 𝛼 ≤ 1 in (31),  
𝑑𝑠

𝑑𝑡
 is positive. So that parameter 𝑡 becomes a function dependent 

on 𝑠: 𝑡 = 𝑡(𝑠). In this case, the timelike curve 𝛽 can be written depending on the parameter 𝑠 and is denoted 

by 𝛽(𝑠) = (𝛽1(𝑠), 𝛽2(𝑠)). 

Now let us define the tangent vector of a given timelike curve using the parameter s and the Caputo 

fractional derivative:  

𝑣1
(𝛼)(𝑠) ≡

𝑑𝛼𝛽(𝑠)

𝑑𝑠𝛼
= (

𝑑𝛼𝛽1(𝑠)

𝑑𝜎𝛼
,
𝑑𝛼𝛽2(𝑠)

𝑑𝜎𝛼 ) (32) 

Considering Equation (29), the norm of the tangent vector of the timelike curve is 

‖𝑣1
(𝛼)(𝑠)‖ = √|− (

𝑑𝛼𝛽1

𝑑𝑠𝛼
)

2

+ (
𝑑𝛼𝛽2

𝑑𝑠𝛼
)

2

| =
𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝑡

𝑑𝑠
√|−(𝛽1)̇ 2 + (𝛽2)̇ 2| = 1 (33) 

Then using (29), a unit vector of the timelike curve 𝛽 orthogonal to 𝒗𝟏 can be defined as follows: 

𝑣2
(𝛼)(𝑠) ≡ (

𝑑𝛼𝛽2

𝑑𝑠𝛼
,
𝑑𝛼𝛽1

𝑑𝑠𝛼 ) (34) 

So, we can give the following theorem. 

Theorem 4.1. Let 𝛽 be a timelike curve in the Lorentz plane that satisfies the condition (29) and has the 

parameter s given by (30). Then 𝑣1
(𝛼)(𝑠) and 𝑣2

(𝛼)(𝑠) given by (32) and (34) are the unit tangent vector and 

unit normal vector of the timelike curve 𝛽, respectively, and 𝑠 is the arclength. 

In the following, we is constructed the geometry of a timelike curve with the fractional 

(𝑣1
(𝛼)(𝑠), 𝑣2

(𝛼)(𝑠)) Frenet-Serret frame using the Caputo derivative. 
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Let us take a smooth timelike curve 𝛽(𝑠) = (𝛽1(𝑠), 𝛽2(𝑠)) given by the arclength parameter (30) in the 

Lorentz plane.  Based on the fractional frenet frame, let us define the frenet-serret formulas and the curvature 

of the timelike curve 𝛽. From Theorem 4.1, the tangent vector 𝑣1
(𝛼)(𝑠)  of the timelike curve provides 

𝑔(𝑣1
(𝛼)(𝑠), 𝑣1

(𝛼)(𝑠)) = −1. If we take the derivative of both sides of this equation concerning 𝑠, we get  

𝑣1
(𝛼)(𝑠)

𝑑𝑣1
(𝛼)(𝑠)

𝑑𝑠
= 0 (35) 

which means that  
𝑑𝑣1

(𝛼)(𝑠)

𝑑𝑠
  can be expressed with the normal vector 𝑣2

(𝛼)(𝑠): 

𝑑𝑣1
(𝛼)(𝑠)

𝑑𝑠
= 𝑘(𝛼)(𝑠)𝑣2

(𝛼)(𝑠) (36) 

where 𝑘(𝛼)(𝑠) is the fractional curvature of the timelike curve 𝛽. Then the norm of the normal vector 𝑣2
(𝛼)(𝑠) 

is also equal to one, ‖𝑣2
(𝛼)(𝑠) ‖ = 1. Then we write 𝑔(𝑣2

(𝛼)
(𝑠), 𝑣2

(𝛼)(𝑠)) = 1. If we take the derivative of 

both sides of this last equation concerning 𝑠, we have 

𝑔 (𝑣2
(𝛼)(𝑠),

𝑑𝑣2
(𝛼)(𝑠)

𝑑𝑠
) = 0 (37) 

From (37),  
𝑑𝑣2

(𝛼)(𝑠)

𝑑𝑠
 can be given using a certain arclength function  𝜇(𝛼): 

𝑑𝑣2
(𝛼)(𝑠)

𝑑𝑠
=  𝜇(𝛼)(𝑠)𝑣1

(𝛼)(𝑠) (38) 

Considering the orthogonality relation 𝑔(𝑣1
(𝛼)(𝑠), 𝑣2

(𝛼)(𝑠)) = 0, taking the derivative of both sides of this 

relation concerning 𝑠, we get the following expression: 

𝑣1
(𝛼)(𝑠)

𝑑𝑣2
(𝛼)

𝑑𝑠
+

𝑑𝑣1
(𝛼)

𝑑𝑠
𝑣2

(𝛼)(𝑠) = 0 (39) 

If the equations (36) and (38) are substituted in the expression (39), we get  𝜇(𝛼) = 𝑘(𝛼). Thus, the following 

theorem is obtained. 

Theorem 4.2. Let 𝛽 be a timelike curve in the Lorentz plane that satisfies the condition (5) and has the 

parameter s given by (30). Let us consider (𝑣1
(𝛼)(𝑠), 𝑣2

(𝛼)(𝑠)) as the fractional frame of this timelike curve 

𝛽. Then the Frenet-Serret formulas for 𝛽 can be given as  

𝑑𝑣1
(𝛼)(𝑠)

𝑑𝑠
= 𝑘(𝛼)(𝑠)𝑣2

(𝛼)(𝑠) (40) 

𝑑𝑣2
(𝛼)(𝑠)

𝑑𝑠
= 𝑘(𝛼)(𝑠)𝑣1

(𝛼)(𝑠) (41) 

Let us now investigate the relationship between the fractional curvature and classical curvature of a given 

timelike curve 𝛽. Considering (32) and (40), we can write  

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽(𝑠)

𝑑𝑠 𝛼
) = 𝑘(𝛼)(𝑠)𝑣2

(𝛼)(𝑠) (42) 

If the normal vector 𝑣2
(𝛼) is applied to both sides of (42), we can write the fractional curvature as  

𝑘(𝛼)(𝑠) = 𝑔 (𝑣2
(𝛼)(𝑠),

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽(𝑠)

𝑑𝑠 𝛼
)) (43) 
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Considering the normal vector 𝑣2
(𝛼)(𝑠) in (43),  𝑘(𝛼)(𝑠) according to the fractional derivative is written 

as  

𝑘(𝛼)(𝑠) = −
𝑑 𝛼𝛽2

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝛽1

𝑑𝑠 𝛼
) +

𝑑 𝛼𝛽1

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝛽2

𝑑𝑠 𝛼
) (44) 

If a curve is given by an arbitrary parameter 𝑡 and not by the arc length 𝑠, then we must calculate the 

fractional curvature according to an arbitrary parameter 𝑡. Then let us calculate the fractional curvature 

according to an arbitrary parameter 𝑡. From the expression (29) for the composite function 𝑡 = 𝑡(𝑠), we can 

write  

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽1

𝑑𝑠 𝛼
) =

𝛼𝑠
−𝛼𝛽1̇

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠
1−𝛼𝛽1̈

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(45) 

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽2

𝑑𝑠 𝛼
) =

𝛼𝑠
−𝛼𝛽2̇

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠
1−𝛼𝛽2̈

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(46) 

where 𝛽1̈ =
𝑑2𝛽1

𝑑𝑡2   and  𝛽2̈ =
𝑑2𝛽2

𝑑𝑡2 . If the expressions (45) and (46) are written instead in (44), the fractional-

order curvature is  

𝑘(𝛼)(𝑡) = {
𝛼𝑠1−𝛼

Γ(2 − 𝛼)
}

2

(𝛽1̇𝛽2̈ − 𝛽1̈𝛽2̇) (
𝑑𝑡

𝑑𝑠
)

3

(47) 

Moreover, from (31), (47) it can be rewritten by 

𝑘(𝛼)(𝑡) =
Γ(2 − 𝛼)

𝛼𝑠1−𝛼
𝑘(𝑡) (48) 

𝑘(𝑡) in this last equation is the classical curvature and  

𝑘(𝑡) =
−𝛽1̇𝛽2̈ + 𝛽1̈𝛽2̇

(|−(𝛽1)̇ 2 + (𝛽2)̇ 2|)
3
2

(49) 

Thus, using the arclength definition given by (30), we can give the following theorem. 

Theorem 4.3. The fractional curvature of a timelike plane curve given as 𝛽(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is  

𝑘(𝛼)(𝑡) = {
Γ(2 − 𝛼)

𝛼
}

1
𝛼

[𝛼 ∫ √|−(𝛽1)̇ 2 + (𝛽2)̇ 2|𝑑𝑡
𝑡

0

]

1−
1
𝛼

𝑘(𝑡) (50) 

where 𝑡 is an arbitrary parameter.  

The part of 
1

𝑠1−𝛼 in (48) characterizes the effects of the fractional derivative given by the fractional tangent 

vector (32). The effect of the fractional derivative is strong at the start but becomes less effective over a longer 

period. This property of the effect influences the change of fractional curvature. 

5. Conclusion 

In this paper, firstly, the tangent vector of a spacelike (timelike) curve in the Lorentz plane are defined in terms 

of the fractional derivative. Then, by considering a spacelike (timelike) curve in the Lorentz plane, the arc 

length and fractional ordered frame of this curve are obtained. Later, the Caputo fractional derivative is 

considered and the relations between the standard curvature and fractional curvature of the spacelike (timelike) 
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curves in the Lorentz plane are obtained. It has been observed that these relations geometrically overlap with 

the results obtained using the derivative in the classical sense. 
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