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Abstract. The formal study of completely prime modules was initiated by

N. J. Groenewald and the current author in the paper: Completely prime

submodules, Int. Electron. J. Algebra, 13(2013), 1–14. In this paper, the study

of completely prime modules is continued. Firstly, the advantage completely

prime modules have over prime modules is highlighted and different situations

that lead to completely prime modules given. Later, emphasis is put on fully

completely prime modules (i.e., modules whose all submodules are completely

prime). For a fully completely prime left R-module M , if a, b ∈ R and m ∈ M ,

then abm = bam, am = akm for all positive integers k, and either am = abm

or bm = abm. In the last section, two different torsion theories induced by the

completely prime radical are given.
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1. Introduction

Completely prime modules were first formally studied in [6] as a generalization

of prime modules. These modules had earlier appeared informally in most cases as

examples in the works of: Andrunakievich [1], de la Rosa and Veldsman [5, p. 466,

Section 5.6], Lomp and Peña [12, Proposition 3.1], and Tuganbaev [18, p. 1840]

which were published in the years 1962, 1994, 2000 and 2003, respectively. In [1]

and [5] these modules were called modules without zero-divisors, in [12] they were

not given any special name and [18] they were called completely prime modules. In

this paper just like in [6], we follow the nomenclature of Tuganbaev.

Definition 1.1. Let R be a ring. A left R-module M for which RM 6= {0} is

called

(1) completely prime if for all a ∈ R and every m ∈M , am = 0 implies m = 0

or aM = {0};
(2) completely semiprime if for all a ∈ R and every m ∈ M , a2m = 0 implies

aRm = {0};
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(3) prime if for all a ∈ R and every m ∈ M , aRm = {0} implies m = 0 or

aM = {0}.

A submodule P of M is a completely prime (resp. completely semiprime, prime)

submodule if the factor module M/P is a completely prime (resp. completely

semiprime, prime) module. A completely prime module is prime but not conversely

in general. Over a commutative ring, completely prime modules are indistinguish-

able from prime modules.

Example 1.2. We know that the ring R = Mn(F) of all n×n matrices over a field

F is prime but not completely prime, i.e., it is not a domain. Since for a unital

ring R, R is prime (resp. completely prime) if and only if the module RR is prime

(resp. completely prime), see [6, Proposition 2.4], we conclude that the R-module

R (where R = Mn(F)) is prime but not completely prime.

Example 1.3 below is motivated by Example 3.2 in [10].

Example 1.3. Let M =

{(
0̄ 0̄

0̄ 0̄

)
,

(
0̄ 0̄

1̄ 1̄

)
,

(
1̄ 1̄

0̄ 0̄

)
,

(
1̄ 1̄

1̄ 1̄

)}
where entries of

matrices in M are from the ring Z2 = {0̄, 1̄} of integers modulo 2 and R = M2(Z)

the ring of all 2× 2 matrices defined over integers. M is a prime R-module which

is not completely prime.

Proof. First, we show that M is simple and hence prime since all simple modules

are prime. Let r =

(
a b

c d

)
∈ R, then

rM =

{(
0̄ 0̄

0̄ 0̄

)
,

(
a a

c c

)
,

(
b b

d d

)
,

(
a+ b a+ b

c+ d c+ d

)}
⊆M

for any a, b, c, d ∈ Z. The would be non-trivial proper submodules, namely; N1 ={(
0̄ 0̄

0̄ 0̄

)
,

(
1̄ 1̄

0̄ 0̄

)}
, N2 =

{(
0̄ 0̄

0̄ 0̄

)
,

(
0̄ 0̄

1̄ 1̄

)}
, andN3 =

{(
0̄ 0̄

0̄ 0̄

)
,

(
1̄ 1̄

1̄ 1̄

)}
are not closed under multiplication by R since for a and c odd, rN1 6⊆ N1, for b

and d odd, rN2 6⊆ N2 and for a odd but b, c, d even, rN3 6⊆ N3. Now, take

a =

(
3 3

2 2

)
∈ R and m =

(
1̄ 1̄

1̄ 1̄

)
∈ M . It follows that am = 0 but aM 6= {0}

since a =

(
3 3

2 2

)(
1̄ 1̄

0̄ 0̄

)
=

(
1̄ 1̄

0̄ 0̄

)
6= 0. Thus, M is not completely prime. �
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1.1. Notation. All modules considered are left unital modules defined over rings.

The rings are unital and associative. Let M be an R-module. If S is a subset of

M and m ∈ M \ S, by (S : m) we denote the set {r ∈ R : rm ∈ S}. If N

is a submodule of a module M , we write N ≤ M . If N ≤ M , (N : M) is the

ideal {r ∈ R : rM ⊆ N} which is the annihilator of the R-module M/N . For an

R-module M , EndR(M) denotes the ring of all R-endomorphisms of M .

1.2. A road map for the paper. This paper contains five sections. In Section

1, we give an introduction, define some of the notation used and describe how

the paper is organized. In Section 2, we state the advantage completely prime

modules have over prime modules. They behave as though they are defined over

a commutative ring, a behavior prime modules do not have in general. The aim

of Section 3 is two fold; we provide situations under which a module becomes

completely prime and furnish concrete examples for completely prime modules. In

Section 4, we define completely co-prime modules by drawing motivation from how

prime, completely prime and co-prime modules are defined. A chart of implications

is established between completely co-prime modules, co-prime modules, completely

prime modules and prime modules, see Proposition 4.3. In Proposition 4.3 it is

established that the notion of completely co-prime modules is the same as that for

fully completely prime modules, i.e., modules whose all submodules are completely

prime. Many other equivalent formulations for completely co-prime modules are

given. It is shown that if M is a fully completely prime R-module, then for all

a, b ∈ R and every m ∈ M , abm = bam, am = akm for all positive integers k, and

either am = abm or bm = abm. In Section 5, which is the last section, we give two

torsion theories induced by the completely prime radical of a module. On the class

of IFP modules (i.e., modules with the insertion-of-factor property), the faithful

completely prime radical is hereditary and hence leads to a torsion theory, see

Theorem 5.2. Lastly, we show in Theorem 5.3 that the completely prime radical

is also hereditary on the class of semisimple R-modules and therefore it induces

another torsion theory.

2. Advantage of completely prime modules over prime modules

Where as prime modules form a much bigger class than that of completely prime

modules, completely prime modules possess nice properties which prime modules

lack in general. Completely prime modules over noncommutative rings behave like

modules over commutative rings. In particular, they lead to the following properties

on an R-module M :
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P1. for all a, b ∈ R and m ∈M , abm = 0 implies bam = 0;

P2. for all subsets S of M and m ∈M \ S, (S : m) is a two sided ideal of R;

P3. for all a ∈ R and m ∈M , am = 0 implies arm = 0 for all r ∈ R;

P4. the prime radical of M coincides with its completely prime radical, i.e., the

intersection of all prime submodules of M coincides with the intersection

of all its completely prime submodules.

A module which satisfies property P1, P3 and P4 is respectively called symmet-

ric, IFP (i.e., has insertion-of-factor property) and 2-primal. Properties P2 and P3

are equivalent. To prove the claims made in this section, one only needs to prove

the following implications for a module:

completely prime ⇒ completely semiprime ⇒ symmetric ⇒ IFP ⇒ 2-primal,

see [7, Theorems 2.2 and 2.3] and [10] for the proof. A submodule P of an R-

module M is said to be symmetric (resp. IFP) if the module M/P is symmetric

(resp. IFP). A comparison with what happens for rings indicates that these results

on modules are what one would expect. Every domain (completely prime ring) is

reduced (i.e., completely semiprime) so it is symmetric, IFP and 2-primal, see [13].

Note that the IFP condition is called SI in [13]. The notions of IFP and symmetry

first existed for rings before they were extended to modules.

3. Properties and some examples

An R-module M is completely prime if and only if for all nonzero m ∈ M ,

(0 : m) = (0 : M). This characterization is used in the proof of Proposition 3.1, in

Example 3.3, in Proposition 3.7 and in Section 4.

Proposition 3.1. Let M be an R-module. If every nonzero endomorphism f ∈
EndR(M) is a monomorphism, then M is a completely prime module.

Proof. Let r ∈ R such that r 6∈ (0 : M) and let 0 6= m ∈ M . Then there exists

n ∈ M such that rn 6= 0. The endomorphism g : M → M given by g(x) = rx is

nonzero since g(n) = rn 6= 0. By hypothesis, g is a monomorphism. Thus, g(m) =

rm 6= 0 since by assumption m 6= 0. So, r 6∈ (0 : m). Hence, (0 : m) ⊆ (0 : M)

which shows that (0 : m) = (0 : M) for all 0 6= m ∈ M since the reverse inclusion

always holds. �

According to Reyes [15, Definition 2.1], a left ideal P of a ring R is completely

prime if for any a, b ∈ R such that Pa ⊆ P , ab ∈ P implies that either a ∈ P or

b ∈ P .
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Example 3.2. If P is a left ideal of a ring R which is completely prime in the

sense of Reyes, then R/P is a completely prime module and S = EndR(R/P ) is

a domain. This is because, according to [15, Proposition 2.5], P is a completely

prime left ideal of R if and only if every nonzero f ∈ S := EndR(R/P ) is injective

if and only if S is a domain and the right S-module R/P is torsion-free. Now apply

Proposition 3.1.

Example 3.3. A torsion-free module is completely prime and faithful. If M is

torsion-free, (0 : m) = {0} for all 0 6= m ∈ M . So, (0 : M) ⊆ (0 : m) = {0} and

hence (0 : M) = (0 : m) = {0} for all 0 6= m ∈M .

Let N be a submodule of an R-module M , the zero divisor set of the R-module

M/N is the set

ZdR(M/N) := {r ∈ R : there exists m ∈M \N with rm ∈ N}.

In Proposition 3.4, we characterize completely prime submodules in terms of zero

divisor sets of their factor modules.

Proposition 3.4. A submodule N of an R-module M is a completely prime sub-

module if and only if (N : M) = ZdR(M/N). In particular, ZdR(M/N) is a

completely prime ideal of R whenever N is a completely prime submodule of M .

Proof. Suppose (N : M) = ZdR(M/N), i.e.,
⋂

m∈M\N
(N : m) =

⋃
m∈M\N

(N : m).

Then this equality is possible if and only if the set {(N : m) : m ∈ M \ N} is a

singleton. Thus, N is a completely prime submodule by [6, Proposition 2.5]. For

the converse, if N is a completely prime submodule, it follows by [6, Proposition

2.5] that the set {(N : m) : m ∈ M \ N} is a singleton. So,
⋂

m∈M\N
(N : m) =⋃

m∈M\N
(N : m) and (N : M) = ZdR(M/N). The last statement follows from the

fact that, if N is a completely prime submodule of an R-module M , then (N : M)

is a completely prime ideal of R. �

Corollary 3.5. An R-module M is completely prime if and only if (0 : M) =

ZdR(M). In particular, ZdR(M) is a completely prime ideal of R whenever M is a

completely prime module.

Corollary 3.6. If M is a faithful completely prime module, then the set ZdR(M)

is a domain.

Proposition 3.7. If M is a uniform module, then M is completely prime if and

only if every cyclic submodule of M is a completely prime module.
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Proof. The if part is clear. For the converse, we prove by contradiction. Suppose

there exists 0 6= m ∈ M such that (0 : M) 6= (0 : m), i.e., (0 : M) ( (0 : m).

Then, there exists a ∈ R and 0 6= x ∈ M such that am = 0 and ax 6= 0. Since M

is uniform, there exists a nonzero element z such that z ∈ Rm ∩ Rx. z,m ∈ Rm
and z, x ∈ Rx. Since by hypothesis, Rm and Rx are completely prime modules, it

follows that (0 : z) = (0 : m) = (0 : Rm) and (0 : z) = (0 : x) = (0 : Rx). Hence,

(0 : m) = (0 : x) which contradicts the fact that am = 0 and ax 6= 0. �

Completely prime modules are generalizations of torsion-free modules. Torsion-

free modules form the module analogue of domains. If M is a faithful completely

prime R-module, then R is a domain. We show in Propositions 3.9 and 3.11 (resp.

Proposition 3.8) that under “suitable conditions” the R-module M is completely

prime whenever R (resp. EndR(M)) is a domain. We define a retractable mod-

ule and a torsionless module first. A module M is retractable if for any nonzero

submodule N of M , HomR(M,N) 6= {0}. An R-module M is torsionless if for

each 0 6= m ∈ M there exists f ∈ HomR(M,R) such that f(m) 6= 0. Free mod-

ules, generators and semisimple modules are retractable. Torsionless modules over

semiprime rings are also retractable, see [16, Sec. 2, p.685].

Proposition 3.8. Let M be a retractable R-module and S = EndR(M). If S is a

domain, then M is a completely prime module.

Proof. By [19, Proposition 1.7], S is a domain if and only if any nonzero endo-

morphism of M is a monomorphism. By Proposition 3.1, M is a completely prime

module. �

Proposition 3.9. Let M be a torsionless R-module, if R is a domain, then M is

a completely prime module.

Proof. Suppose am = 0 for some a ∈ R and m ∈M but m 6= 0 and aM 6= {0}. M
torsionless implies f(m) 6= 0 for some f ∈ HomR(M,R). Now, a 6= 0 and f(m) 6= 0

imply af(m) 6= 0 since R is a domain. Thus, f(am) 6= 0 and am 6= 0 which is a

contradiction. �

Example 3.10. By [2, p. 477], a submodule of a projective module is a torsionless

module. Thus, if R is a domain, a submodule of a projective module is a completely

prime module by Proposition 3.9.

Proposition 3.11. A free module M over a domain R is completely prime.
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Proof. Suppose am = 0 for some a ∈ R and m ∈M . If m = 0, M is a completely

prime module. Suppose m 6= 0. Then am = a
∑n
i=1 rimi =

∑n
i=1(ari)mi = 0 for

some ri ∈ R and mi ∈ M with i ∈ {1, 2, · · · , n}. M being free implies ari = 0.

m 6= 0 implies there exists j ∈ {1, 2, · · · , n} such that rj 6= 0. arj = 0 implies a = 0

since R is a domain and rj 6= 0. Hence, aM = {0} and M is completely prime. �

4. Completely co-prime modules

Recall that an R-module M for which RM 6= {0} is called

(1) prime if for all nonzero submodules N of M , (0 : N) = (0 : M);

(2) completely prime if for all nonzero elements m of M , (0 : m) = (0 : M);

(3) co-prime [19] if for all nonzero submodules N of M , (N : M) = (0 : M).

These definitions motivate us to define completely co-prime modules.

Definition 4.1. An R-module M for which RM 6= {0} is completely co-prime if

for all submodules N of M and all elements m ∈M \N , (N : m) = (0 : M).

Proposition 4.2. For any R-module M , we have the following implications:

completely co-prime ⇒ completely prime ⇒ prime.

⇓
co-prime

Proof. For {0} 6= N ≤M and m ∈M \N , we have (0 : M) ⊆ (N : M) ⊆ (N : m)

and (0 : M) ⊆ (0 : m) ⊆ (N : m). If M is completely co-prime, (0 : M) = (N : m)

so that we respectively obtain (N : M) = (0 : M) and (0 : M) = (0 : m) for

all 0 6= m ∈ M . Thus, M is respectively co-prime and completely prime. To

prove completely prime implies prime, let {0} 6= N ≤ M and 0 6= m ∈ N . Then

(0 : M) ⊆ (0 : N) ⊆ (0 : m). If M is completely prime, (0 : M) = (0 : m) so that

(0 : M) = (0 : N). This is true for all {0} 6= N ≤M . Thus, M is prime. �

Proposition 4.3. The following statements are equivalent for any R-module M

with RM 6= {0}:

(1) M is completely co-prime;

(2) the set {(N : m)} is a singleton for all N ≤M and m ∈M \N ;

(3) M is fully completely prime, i.e., every submodule of M is a completely

prime submodule;

(4) M is completely prime and (0 : m) = (N : m) for all N ≤ M and m ∈
M \N ;

(5) M is co-prime and (N : M) = (N : m) for all N ≤M and m ∈M \N ;
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(6) M is completely prime and for all a ∈ R, N ≤M and m ∈M \N , am ∈ N
implies am = 0;

(7) for all N ≤M and m ∈M \N , am ∈ N implies aM = {0};
(8) the set {ZdR(M/N) : N ≤M} is a singleton;

(9) (0 : M) = ZdR(M/N) for all N ≤M .

Proof. Elementary. �

From Proposition 4.3(1) and Proposition 4.3(3) we see that the notion of com-

pletely co-prime modules coincides with that of fully completely prime modules.

From now onwards we use the two interchangeably.

A module is fully prime if all its submodules are prime submodules.

Example 4.4. A fully prime module over a left-duo ring is fully completely prime.

For if am ∈ P for some a ∈ R, m ∈ M and P ≤ M , we get aR ⊆ (P : m) since

(P : m) is a two sided ideal as R is left-duo.1 So, aRm ⊆ P . By hypothesis, P

is a prime submodule of M , hence m ∈ P or aM ⊆ P which proves that P is a

completely prime submodule.

If R is a commutative ring, then fully prime R-modules are indistinguishable

from fully completely prime modules. Fully prime modules over commutative rings

were studied in [4].

Example 4.5. If M is a module such that every factor module of M is torsion-

free, then M is completely co-prime and faithful. Observe that a factor module

M/N is torsion-free if (N : m) = {0} for all m ∈ M \ N . Take for instance

M := Z4 = {0̄, 1̄, 2̄, 3̄} the group of integers modulo 4 and R := Z2 = {0̄, 1̄} the

ring of integers modulo 2. M is an R-module with only one nonzero submodule

N := 2Z4 = {0̄, 2̄}. For any m ∈ M \ N and a ∈ R, am ∈ N implies a = 0, i.e.,

(N : m) = {0} for all m ∈ M \ N . Now, for the zero submodule, if am = 0 with

a ∈ R and m ∈ M \ {0}, we still get a = 0. So that (0 : m) = {0}. Hence, M is

fully (completely) prime.

Example 4.6. Fully completely prime rings were studied by Hirano in [11]. If R

is a fully completely prime ring such that R has no one sided left ideals, then the

module RR is a fully completely prime module.

A module is fully IFP if all its submodules are IFP submodules.

1A ring is said to be left-duo if every left ideal of that ring is a two sided ideal.
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Proposition 4.7. A cyclic module over a fully completely prime ring is fully com-

pletely prime.

Proof. We use the fact that a fully completely prime ring is fully IFP. Let M =

Rm0, N ≤M and am ∈ N for some a ∈ R and m ∈M . Then arm0 ∈ N for some

r ∈ R where m = rm0. ar ∈ (N : m0). Since R is fully IFP, (N : m0) is a two

sided ideal. Thus, a ∈ (N : m0) or r ∈ (N : m0) by hypothesis so that aRm0 ⊆ N

or rm0 ∈ N . From which we obtain aM ⊆ N or m ∈ N . �

Proposition 4.8. Let R be a left-duo ring such that for every submodule P of an

R-module M , (P : M) is a maximal ideal of R, then M is a fully completely prime

module.

Proof. If P ≤ M and m ∈ M \ P , then (P : M) ⊆ (P : m). Since R is left-duo,

(P : m) is a two sided ideal. (P : M) maximal implies (P : M) = (P : m), i.e.,

P is a completely prime submodule of M . Since P was arbitrary, M is a fully

completely prime module. �

Proposition 4.9. Each of the following statements implies that the R-module M

is completely co-prime:

(1) (0 : m) is a maximal left ideal of R for all 0 6= m ∈M ,

(2) (N : m) is a minimal left ideal of R for all N ≤M and every m ∈M \N .

Proof. We know that (0 : m) ⊆ (N : m) for any N ≤ M and m ∈ M \ N . If

(0 : m) is maximal as a left ideal of R for all 0 6= m ∈ M , then (0 : m) = (N : m)

for all m ∈ M \ N . On the other hand, if (N : m) is minimal as a left ideal of R

for all N ≤ M and m ∈ M \N , then (0 : m) = (N : m) for all m ∈ M \N . Thus,

both cases imply that M is a completely co-prime module. �

A ring is said to be a chain ring if its ideals are linearly ordered by inclusion. A

chain ring is sometimes called a uniserial ring.

Theorem 4.10. [11, Theorem 1] The following statements are equivalent:

(1) R is a fully completely prime ring;

(2) R is a chain ring satisfying (a) = (a2) for all elements a ∈ R.

For modules, we get Theorem 4.11 and Corollary 4.12. A module is fully sym-

metric if all its submodules are symmetric submodules.

Theorem 4.11. If M is a fully completely prime R-module such that a, b ∈ R and

m ∈M , then
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(1) abm = bam,

(2) am = akm for all positive integers k,

(3) either am = abm or bm = abm.

Proof. Note first that a fully completely prime module is both fully symmetric

and fully completely semiprime.

(1) Since abm ∈ Rabm, M fully symmetric implies bam ∈ Rabm such that

Rbam ⊆ Rabm. Similarly, Rabm ⊆ Rbam. Thus, Rabm = Rbam. So, abm−bam ∈
R(abm− bam) = Rabm−Rbam = {0} such that abm = bam.

(2) am ∈ Ram. So, akm ∈ Ram and Rakm ⊆ Ram for any positive integer

k. For the reverse inclusion, we know that akm ∈ Rakm. M is fully completely

semiprime, therefore am ∈ Rakm such that Ram ⊆ Rakm. Then, Ram = Rakm

for all positive integers k. It follows that am− akm ∈ Ram−Rakm = {0}. Hence,

am = akm as required.

(3) From abm ∈ Rbm, we get Rabm ⊆ Rbm. Similarly, we obtain Rbam ⊆ Ram.

Since by 1, Rabm = Rbam we have Rabm ⊆ Ram. We now seek to get reverse

inclusions. abm ∈ Rabm, if m ∈ Rabm, Ram ⊆ Rabm and Rbm ⊆ Rabm and we

are through. Suppose m 6∈ Rabm. Since M is fully completely prime abm ∈ Rabm
implies aM ⊆ Rabm or bm ∈ Rabm such that Ram ⊆ Rabm or Rbm ⊆ Rabm

which are the required inclusions. Hence, either Ram = Rabm or Rbm = Rabm so

that either am = abm or bm = abm. �

Corollary 4.12. Suppose an R-module M is torsion-free and fully completely

prime, then

(1) R is potent and hence it is commutative and fully completely prime,

(2) for all a, b ∈ R, a = ab or b = ab.

Proof. Elementary. �

Remark 4.13. Corollary 4.12 generalizes Example 4.5.

5. Torsion theories induced

A torsion theory in the category R-mod of R-modules is a pair (T ,F) of classes

of modules in R-mod such that:

(1) Hom(T, F ) = {0} for all T ∈ T , F ∈ F ;

(2) if Hom(C,F ) = {0} for all F ∈ F , then C ∈ T ;

(3) if Hom(T,C) = {0} for all T ∈ T , then C ∈ F .
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A functor γ : R-mod→ R-mod is called a preradical if γ(M) is a submodule of M

and f(γ(M)) ⊆ γ(N) for each homomorphism f : M → N in R-mod. A radical

γ is a preradical for which γ(M/γ(M)) = {0} for all M ∈ R-mod. A radical

γ is hereditary if N ∩ γ(M) = γ(N) for all submodules N of M . In general,

γ(N) ⊆ N ∩ γ(M). So, to check for hereditariness of γ, it is enough to show that

the reverse inclusion, N ∩ γ(M) ⊆ γ(N) holds. Proposition 5.1 provides a criterion

for γ to be a radical and for γ to be a hereditary radical.

Lemma 5.1. [14, Proposition 1] Let M be any non-empty class of modules closed

under isomorphisms, i.e., if A ∈ M and A ∼= B, then B ∈ M. For any M ∈ M
define

γ(M) = ∩{K : K ≤M,M/K ∈M}.

It is assumed that γ(M) = M if M/K 6∈ M for all K ≤M . Then

(1) γ(M/γ(M)) = {0} for all modules M ;

(2) if M is closed under taking non-zero submodules, γ is a radical;

(3) if M is closed under taking essential extensions, then γ(M) ∩ N ⊆ γ(N)

for all N ≤M , i.e., γ is hereditary.

It was shown in [6, Examples 3.5 and 3.6] that the completely prime radical βco

on the category R-mod is in general not hereditary. We define a faithful completely

prime radical βfco as

βfco(M) := ∩{N ≤M : M/N is a faithful completely prime module}

and show that on the class of IFP modules, this faithful completely prime radical is

hereditary. Later, in Theorem 5.3, we show that on a class of semisimple modules

βco is also hereditary. We write βco(M) = M (resp. βfco(M) = M) if M has

no completely prime submodules (resp. if there are no faithful completely prime

modules M/N for all submodules N of M).

Theorem 5.2. The following statements hold for a class of IFP modules:

(1) faithful completely prime modules are closed under taking essential exten-

sion,

(2) the faithful completely prime radical βfco is hereditary, i.e.,

βfco(N) = N ∩ βfco(M)

for any submodule N of M ;

(3) τβf
co

= {Tβf
co
,Fβf

co
} where

Tβf
co

= {M : M is an IFP module and βfco(M) = M}
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and

Fβf
co

= {M : M is an IFP module and βfco(M) = {0}}

is a torsion theory;

(4) the faithful completely prime radical is idempotent, i.e., (βfco)
2

= βfco.

Proof. (1) Suppose N is an essential submodule of an R-module M such that

N is a faithful completely prime module. We show that M is also faithful and

completely prime. Let a ∈ R and m ∈ M such that am = 0. If m = 0, M is

completely prime. Suppose m 6= 0. Since N is an essential submodule of M , there

exists r ∈ R such that 0 6= rm ∈ N . am = 0 implies arm = 0 since by hypothesis

we have a class of IFP modules. N completely prime together with the fact that

0 6= rm ∈ N lead to a ∈ (0 : rm) = (0 : N). In general, (0 : M) ⊆ (0 : N). N

faithful implies (0 : M) = (0 : N) = {0} so that a ∈ (0 : M) = {0}. Then a = 0

such that aM = {0} and M is faithful.

(2) Since faithful completely prime modules are closed under taking essential

extension, βfco(N) = N ∩ βfco(M) by Lemma 5.1(3) since in general βfco(N) ⊆
N ∩ βfco(M).

(3) Follows from [17, Proposition 3.1] and paragraph between Propositions 2.2

and 2.3 of [17].

(4) Follows from [17, Proposition 2.3]. �

Theorem 5.3. For a class of semisimple R-modules, the following statements hold:

(1) the completely prime radical is hereditary, i.e., βco(N) = N ∩ βco(M) for

any submodule N of M ;

(2) τβco = {Tβco ,Fβco} where

Tβco
= {M : M is semisimple and βco(M) = M}

and

Fβco = {M : M is semisimple and βco(M) = {0}}

is a torsion theory;

(3) the completely prime radical is idempotent, i.e., β2
co = βco.

Proof. (1) If M is a semisimple R-module, then every submodule N of M is a

direct summand. From [6, Corollary 3.8], βco(N) = N ∩ βco(M) for every direct

summand N of M .

(2) Follows from [17, Proposition 3.1] and paragraph between Propositions 2.2

and 2.3 of [17].
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(3) Follows from [17, Proposition 2.3]. �

Corollary 5.4. If R is a semisimple Artinian ring, then each of the statements in

Theorem 5.3 holds.

Proof. A module over a semisimple Artinian ring is semisimple. The rest follows

from Theorem 5.3. �

Remark 5.5. Theorem 5.3 and Corollary 5.4 still hold when “completely prime

radical” is replaced with any one of the following radicals: prime radical, s-prime

radical, l-prime radical, weakly prime radical and classical completely prime radical.

The module radicals: s-prime radical (also called Köthe upper nil radical), l-prime

radical (also called Levitzki radical), weakly prime radical (also called classical prime

radical) and classical completely prime radical were respectively defined and studied

in [3], [8], [9] and [10].
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