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Abstract. The commuting graph of a non-abelian group is a simple graph in

which the vertices are the non-central elements of the group, and two distinct

vertices are adjacent if and only if they commute. In this paper, we determine

(up to isomorphism) all finite non-abelian groups whose commuting graphs are

acyclic, planar or toroidal. We also derive explicit formulas for the genus of

the commuting graphs of some well-known class of finite non-abelian groups,

and show that, every collection of isomorphism classes of finite non-abelian

groups whose commuting graphs have the same genus is finite.

Mathematics Subject Classification (2010): 20D60, 05C25

Keywords: Commuting graph, finite group, AC-group, genus of the commut-

ing graphs

1. Introduction

Let G be a non-abelian group and Z(G) be its center. The commuting graph of G,

denoted by Γc(G), is a simple undirected graph in which the vertex set is G\Z(G),

and two distinct vertices x and y are adjacent if and only if xy = yx. This graph

is precisely the complement of the non-commuting graph of a group considered

in [1] and [16]. The origin of this notion lies in a seminal paper by R. Brauer

and K. A. Fowler [7] who were concerned primarily with the classification of the

finite simple groups. However, the ever-increasing popularity of the topic is often

attributed to a question, posed in 1975 by Paul Erdös and answered affirmatively

by B. H. Neumann [18], asking whether or not a non-commuting graph having no

infinite complete subgraph possesses a finite bound on the cardinality of its complete

subgraphs. In recent years, the commuting graphs of groups have become a topic

of research for many mathematicians (see, for example, [4], [13]). In [14], it was

conjectured that the commuting graph of a finite group is either disconnected or has

diameter bounded above by a constant independent of the group G. This conjecture

was well-supported in [19] and [24]. However, in [11], it is shown that, for all positive

integers d, there exists a finite special 2-group G such that the commuting graph of
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G has diameter greater than d. But in [17], it is proved that for finite groups with

trivial center the conjecture made in [14] holds good. The concept of commuting

graphs of groups (taking, as the vertices, the non-trivial elements of the group in

place of non-central elements) has also been recently used in [20] to show that

finite quotients of the multiplicative group of a finite dimensional division algebra

are solvable. There is also a ring theoretic version of commuting graphs (see, for

example, [2], [3]).

Most of the works cited above on commuting graphs of groups deal with con-

nectedness, diameter and some algebraic aspects of the graph. Also, some of the

results for the non-commuting graphs of groups have their obvious analogues for the

commuting counterparts, the commuting and non-commuting graphs being com-

plements of each other. In the present paper, however, we deal with a topological

aspect, namely, the genus of the commuting graphs of finite non-abelian groups,

and on this count the commuting and the non-commuting graphs are independent

of each other. Here we show that every collection of isomorphism classes of finite

non-abelian groups whose commuting graphs have the same genus is finite. One

of the sections in this paper is devoted entirely to the computation of the genus

of the commuting graphs of some well-known families of finite non-abelian groups.

The primary objective of this paper is, of course, to determine (up to isomorphism)

all finite non-abelian groups whose commuting graphs are planar or toroidal, that

is, can be drawn on the surface of a sphere or of a torus (without any crossing of

edges). We, however, begin by classifying all non-abelian groups whose commuting

graphs have no triangles, which, in fact, turns out to be equivalent to saying that

the corresponding non-commuting graphs are planar. It may be mentioned here

that the motivation for this paper comes from [9], [15], [25], [28] and [29], where

similar problems for certain graphs associated to finite rings have been addressed.

2. Some prerequisites

In this section, we recall certain graph theoretic terminologies (see, for example,

[26] and [27]) and some well-known results which have been used extensively in

the forthcoming sections. Note that all graphs considered in this and the following

sections are simple graphs, that is, graphs without loops or multiple edges.

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). Let x, y ∈ V (Γ). Then

x and y are said to be adjacent if x 6= y and there is an edge x− y in E(Γ) joining

x and y. A path between x and y is a sequence of adjacent vertices, often written

as x− x1 − x2 − · · · − xn − y, where the vertices x, x1, x2, . . . , xn, y are all distinct
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(except, possibly, x and y). Γ is said to be connected if there is a path between

every pair of distinct vertices in Γ. A path between x and y is called a cycle if

x = y. The number of edges in a path or a cycle, is called its length. A cycle of

length n is called an n-cycle, and a 3-cycle is also called a triangle. The girth of Γ

is the minimum of the lengths of all cycles in Γ, and is denoted by girth(Γ). If Γ is

acyclic, that is, if Γ has no cycles, then we write girth(Γ) =∞.

A graph G is said to be complete if there is an edge between every pair of distinct

vertices in G. We denote the complete graph with n vertices by Kn. A bipartite

graph is the one whose vertex set can be partitioned into two disjoint parts in

such a way that the two end vertices of every edge lie in different parts. Among

the bipartite graphs, the complete bipartite graph is the one in which two distinct

vertices are adjacent if and only if they lie in different parts. The complete bipartite

graph, with parts of size m and n, is denoted by Km,n.

A subset of the vertex set of a graph Γ is called a clique of Γ if it consists entirely

of pairwise adjacent vertices. The least upper bound of the sizes of all the cliques of

G is called the clique number of Γ, and is denoted by ω(Γ). The chromatic number

of a graph Γ, written χ(Γ), is the minimum number of colors needed to label the

vertices so that adjacent vertices receive different colors. Clearly, ω(Γ) ≤ χ(Γ).

Given a graph Γ, let U be a nonempty subset of V (Γ). Then the induced subgraph

of Γ on U is defined to be the graph Γ[U ] in which the vertex set is U and the edge

set consists precisely of those edges in Γ whose endpoints lie in U . If {Γα}α∈Λ is

a family of subgraphs of a graph Γ, then the union ∪
α∈Λ

Γα denotes the subgraph

of Γ whose vertex set is ∪
α∈Λ

V (Γα) and the edge set is ∪
α∈Λ

E(Γα). Further, given a

graph Γ, its complement is defined to be the graph in which the vertex set is the

same as the one in Γ and two distinct vertices are adjacent if and only if they are

not adjacent vertices in Γ.

The genus of a graph Γ, denoted by γ(Γ), is the smallest non-negative integer

n such that the graph can be embedded on the surface obtained by attaching n

handles to a sphere. Clearly, if Γ̃ is a subgraph of Γ, then γ(Γ̃) ≤ γ(Γ). Graphs

having genus zero are called planar graphs, while those having genus one are called

toroidal graphs.

A block of a graph Γ is a connected subgraph B of Γ that is maximal with

respect to the property that removal of a single vertex (and the incident edges)

from B does not make it disconnected, that is, the graph B \ {v} is connected for

all v ∈ V (B). Given a graph Γ, there is a unique finite collection B of blocks of

Γ, such that Γ = ∪
B∈B

B. The collection B is called the block decomposition of Γ.
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In [5, Corollary 1], it has been proved that the genus of a graph is the sum of the

genera of its blocks. Thus, it follows that the following.

Lemma 2.1. If a graph Γ has two disjoint subgraphs Γ1 and Γ2 such that Γ1
∼= Km

and Γ2
∼= Kn for some positive integers m and n, then γ(Γ) ≥ γ(Kn) + γ(Km).

We conclude the section with the following two useful results.

Lemma 2.2. [27, Theorem 6-38] If n ≥ 3, then

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.

Lemma 2.3. [27, Theorem 6-37] If m,n ≥ 2, then

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
.

3. Some basic results

In this section we derive some results concerning the genus of the commuting

graphs of finite groups which are not only of interest in their own right but also

used extensively in the forthcoming sections. Our notations are quite standard; for

example, given a group G and an element x ∈ G, we write o(x), CG(x) and ClG(x)

to denote the order of x in G, the centralizer of x in G and the conjugacy class of

x in G, respectively.

In the study of the genus of a graph, the cycles in the graph play a crucial role.

Therefore, determining whether or not the graph is acyclic can be considered as

the first step in this direction. Even otherwise, whether or not a graph associated

to a group has a triangle is a topic of substantial interest (see, for example [10]).

Keeping this is mind, we begin the section with the following result which, in view

of [1, Proposition 2.3], also says that the commuting graph of a non-abelian group

is acyclic if and only if its complement (that is, the non-commuting graph of the

group) is planar.

Proposition 3.1. Let G be a non-abelian group. Then, Γc(G) has no 3-cycle if

and only if G is isomorphic to the symmetric group S3, the quaternion group Q8,

or the dihedral group D8.

Proof. If G is isomorphic to S3, Q8 or D8, then it is easy to see that Γc(G) has

no 3-cycle; in fact, Γc(G) is acyclic.

Conversely, suppose that Γc(G) has no 3-cycle. Then, |Z(G)| ≤ 2; otherwise,

for all x ∈ G \ Z(G), any three distinct elements of xZ(G) would form a 3-cycle in

Γc(G).



GENUS OF THE COMMUTING GRAPHS OF FINITE NON-ABELIAN GROUPS 95

Case 1. |Z(G)| = 1.

In this case, every element of G has order 2 or 3; otherwise {x, x2, x3} would

form a 3-cycle in Γc(G) for all x ∈ G with o(x) > 3. Therefore, G is a group of

exponent dividing 6. Let H be a finitely generated subgroup of G. Then, H is a

finite group (see [12, Sections 18.2, 18.4]), and so, we have |H| = 2m3n for some

non-negative integers m and n. First assume that m ≥ 2 and let H2 be a Sylow

2-subgroup of H. Clearly, H2 is elementary abelian of order at least 4. Hence, any

three distinct elements of H2 \ {1} form a 3-cycle in Γc(G). Therefore, we must

have m ≤ 1. Next assume that n ≥ 2 and let H3 be a Sylow 3-subgroup of H.

Clearly, |H3| ≥ 9. If H3 is abelian, then any three distinct elements of H3 \ {1}
form a 3-cycle in Γc(G). If H3 is non-abelian, then, choosing x ∈ H3 \ Z(H3) and

noting that |Z(H3)| ≥ 3, we see that any three distinct elements of xZ(H3) form

a 3-cycle in Γc(G). Therefore, we must have n ≤ 1. Thus, every finitely generated

subgroup of G is of order at most 6. It follows that G itself is of order not exceeding

6. Since G non-abelian, we have G ∼= S3.

Case 2. |Z(G)| = 2.

In this case, G/Z(G) is an elementary abelian 2-group; otherwise, for all x ∈
G\Z(G) with x2 /∈ Z(G), any three distinct elements of xZ(G)tx2Z(G) would form

a 3-cycle in Γc(G). It follows that every element of G is of order 2 or 4. Since G is

non-abelian, there is an element x ∈ G of order 4, and so, we have Z(G) = {1, x2}.
It is easy to see that CG(x) = 〈x〉; otherwise {x, x3, w} would form a 3-cycle in

Γc(G) for all w ∈ CG(x) \ 〈x〉. Thus, |CG(x)| = 4. Let z ∈ ClG(x) \ {x}. Then,

1 6= zx−1 ∈ G′ ⊆ Z(G). Therefore, we have zx−1 = x2, and so, z = x3. Thus,

ClG(x) = {x, x3}, and so, |G : CG(x)| = |ClG(x)| = 2. It follows that |G| = 8.

Since G is non-abelian, we have G ∼= Q8 or D8 . This completes the proof. �

It follows, in particular, from the above result that the girth of the commuting

graph of a non-abelian group is 3 or ∞. Our next result is used not only in this

section but also in the forthcoming sections.

Lemma 3.2. Let G be a finite non-abelian group whose commuting graph has genus

g, where g is a non-negative integer. Then the following assertions hold:

(a) If ∅ 6= S ⊆ G \ Z(G) such that xy = yx for all x, y ∈ S, then |S| ≤
b 7+
√

1+48g
2 c.

(b) |Z(G)| ≤ 1
t−1b

7+
√

1+48g
2 c, where t = max{o(xZ(G)) | xZ(G) ∈ G/Z(G)}.

(c) If A is an abelian subgroup of G, then |A| ≤ b 7+
√

1+48g
2 c+ |A ∩ Z(G)|.
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Proof. Consider the induced subgraph Γc(G)[S] ∼= K|S|. If g = 0, then γ(K|S|) =

γ(Γc(G)[S]) ≤ γ(Γc(G)) = 0, and so, it follows that |S| ≤ 4. On the other

hand, if g > 0, then, by Heawood’s formula [26, Theorem 6.3.25], we have |S| =

ω(Γc(G)[S]) ≤ ω(Γc(G)) ≤ χ(Γc(G)) ≤ b 7+
√

1+48g
2 c. This proves (a). The re-

maining two assertions follow from (a); in fact, for (b) we take S =
t−1⊔
i=1

yiZ(G),

where y ∈ G \ Z(G) such that o(yZ(G)) = t, and for (c) we simply note that

A = (A \ Z(G)) ∪ (A ∩ Z(G)). �

Our main result of this section says that every collection of isomorphism classes

of finite non-abelian groups whose commuting graphs have the same genus is finite.

Theorem 3.3. The order of a finite non-abelian group is bounded by a function

of the genus of its commuting graph. Consequently, given a non-negative integer g,

there are at the most finitely many (up to isomorphism) finite non-abelian groups

whose commuting graphs have genus g.

Proof. Let G be a finite non-abelian group whose commuting graph has genus g.

Let us put h = b 7+
√

1+48g
2 c. Then, by Lemma 3.2(a), we have |Z(G)| ≤ h. Let p

be a prime divisor of |G|, and P be a Sylow p-subgroup of G with |P | = pn, where

n is a positive integer. If P ⊂ Z(G), then |P | ≤ h. So, let P * Z(G). If P is

abelian, then, by Lemma 3.2(a), we have |P \ Z(G)| ≤ h, and hence, |P | ≤ 2h.

So, we assume that P is non-abelian. Then, |Z(P )| = pc for some positive integer

c < n, and, by [8, Section I, Para 4], P has an abelian subgroup A of order pv,

where v is a positive integer such that v ≥ − 1
2 +

√
2n+ c2 − c+ 1

4 ; in particular,

n < (2v + 1)2. By Lemma 3.2(c), we have pv = |A| ≤ 2h; in particular, v < 2h

and p < 2h. Hence, it follows that |P | = pn < (2h)(4h+1)2 . Since the number of

primes less than 2h is at most h, we have |G| < (2h)h(4h+1)2 . This completes the

proof. �

Recall that a group is said to be an AC-group if the centralizer of each of its

non-central elements is abelian. The AC-groups have been extensively studied by

many authors (see, for example, [1], [21], [23]). Our final result of this section deals

with finite non-abelian AC-groups.

Proposition 3.4. Let G be a finite non-abelian AC-group. Then

γ(Γc(G)) =
∑
X∈P

γ(K|X|),

where P = {CG(u) \ Z(G) | u ∈ G \ Z(G)}.
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Proof. Let X ∈ P. Then, X = CG(u)\Z(G) for some u ∈ G. Clearly, for x, y ∈ X,

we have xy = yx, since CG(u) is abelian. On the other hand, for x ∈ X and

y ∈ G\Z(G) with xy = yx, we have y ∈ X, since y, u ∈ CG(x) and CG(x) is abelian.

It follows that the induced subgraph Γc(G)[X] ∼= K|X| is a block of Γc(G), and, since

G \ Z(G) = ∪
X∈P

X, the collection {Γc(G)[X] | X ∈ P} is the block decomposition

of Γc(G). Therefore, by [5, Corollary 1], we have γ(Γc(G)) =
∑
X∈P

γ(K|X|). �

Remark 3.5. If G is a finite non-abelian AC-group and A is a finite abelian group,

then A × G is also a finite non-abelian AC-group with CA×G(a, u) \ Z(A × G) =

A× (CG(u) \Z(G)) for all (a, u) ∈ (A×G) \Z(A×G). Therefore, it follows from

Proposition 3.4 that

γ(Γc(A×G)) =
∑
X∈P

γ(K|A||X|),

where P = {CG(u) \ Z(G) | u ∈ G \ Z(G)}.

We close this section with a couple of immediate corollaries to Proposition 3.4.

Corollary 3.6. The genus of the commuting graph of a non-abelian group G of

order pq, where p and q are primes with p | q − 1, is given by

γ(Γc(G)) = γ(Kq−1) + qγ(Kp−1).

Proof. Note that G is an AC-group with |Z(G)| = 1, in which the centralizers of

the non-central elements are precisely the Sylow subgroups of G, and so, the result

follows from Proposition 3.4. �

Corollary 3.7. The genus of the commuting graph of a non-abelian group G of

order p3, where p is a prime, is given by

γ(Γc(G)) = (p+ 1)γ(Kp(p−1)).

Proof. Note that G is an AC-group with |Z(G)| = p, in which the centralizers

of the non-central elements are of order p2. Since any two distinct centralizers of

the non-central elements of G intersect at Z(G), it follows that the number of such

centralizers is p+ 1. Hence, the result follows from Proposition 3.4. �

4. Genus of the commuting graphs of some well-known AC-groups

In this section, we determine the genus of the commuting graphs of some well-

known finite non-abelian AC-groups. Some of the results obtained here play crucial

role in the study of planarity and toroidality of the commuting graphs of finite non-

abelian groups.
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Proposition 4.1. The genus of the commuting graph of the dihedral group D2n =

〈x, y | yn = x2 = 1, xyx−1 = y−1〉, where n ≥ 3, is given by

γ(Γc(D2n)) =

γ(Kn−2) if n is even,

γ(Kn−1) if n is odd.

Proof. Note that D2n is a non-abelian AC-group. If n is even, then Z(D2n) =

{1, y n
2 }, CD2n

(yi) = 〈y〉 for 1 ≤ i ≤ n − 1 (i 6= n
2 ), and CD2n

(xyj) = {1, xyj , y n
2 ,

xyj+
n
2 } for 0 ≤ j ≤ n − 1. If n is odd, then Z(D2n) = {1}, CD2n

(yi) = 〈y〉
for 1 ≤ i ≤ n − 1, and CD2n

(xyj) = {1, xyj} for 0 ≤ j ≤ n − 1. Thus, if n

is even, the distinct centralizers of the non-central elements in D2n are 〈y〉 and

{1, xyj , y n
2 , xyj+

n
2 }, where 0 ≤ j ≤ n

2 − 1, and so, by Proposition 3.4, we have

γ(Γc(D2n)) = γ(Kn−2) + n
2 γ(K2) = γ(Kn−2). On the other hand, if n is odd, the

distinct centralizers in D2n are 〈y〉 and {1, xyj}, where 0 ≤ j ≤ n − 1, and so, by

Proposition 3.4, we have γ(Γc(D2n)) = γ(Kn−1) + nγ(K1) = γ(Kn−1). �

Proposition 4.2. The genus of the commuting graph of the dicyclic group or the

generalized quaternion group Q4n = 〈x, y | y2n = 1, x2 = yn, xyx−1 = y−1〉, where

n ≥ 2, is given by

γ(Γc(Q4n)) = γ(K2(n−1)).

Proof. It is well-known that Q4n is a non-abelian AC-group with Z(Q4n) =

{1, yn}, CQ4n
(yi) = 〈y〉 for 1 ≤ i ≤ 2n − 1 (i 6= n), and CQ4n

(xyj) = {1, xyj , yn,
xyj+n} for 0 ≤ j ≤ 2n − 1. Therefore, the distinct centralizers of the non-central

elements in Q4n are 〈y〉 and {1, xyj , yn, xyj+n}, where 0 ≤ j ≤ n − 1, and so, by

Proposition 3.4, we have γ(Γc(Q4n)) = γ(K2(n−1)) + nγ(K2) = γ(K2(n−1)). �

Proposition 4.3. The genus of the commuting graph of the semidihedral group

SD2n = 〈r, s | r2n−1

= s2 = 1, srs = r2n−2−1〉, where n ≥ 4, is given by

γ(Γc(SD2n)) = γ(K2n−1−2).

Proof. Note that SD2n is a non-abelian AC-group with Z(SD2n) = {1, r2n−2},
CSD2n

(ri) = 〈r〉, for 1 ≤ i ≤ 2n−1 − 1 (i 6= 2n−2), and CSD2n
(srj) = {1, srj , r2n−2

,

srj+2n−2} for 0 ≤ j ≤ 2n−1 − 1. Therefore, the distinct centralizers of the non-

central elements in SD2n are 〈r〉 and {1, srj , r2n−2

, srj+2n−2}, where 0 ≤ j ≤ 2n−2−
1, and so, by Proposition 3.4, we have γ(Γc(SD2n)) = γ(K2n−1−2) + 2n−2γ(K2) =

γ(K2n−1−2). �
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Proposition 4.4. The genus of the commuting graph of the projective special linear

group PSL(2, 2k), where k ≥ 2, is given by

γ(Γc(PSL(2, 2k))) = (2k+1)γ(K2k−1)+2k−1(2k+1)γ(K2k−2)+2k−1(2k−1)γ(K2k).

Proof. It is well-known that PSL(2, 2k) is a non-abelian group of order 2k(22k−1)

with Z(PSL(2, 2k)) = {1}. Moreover, in view of [1, Proposition 3.21], the following

assertions hold for PSL(2, 2k):

(a) PSL(2, 2k) has an elementary abelian 2-subgroup P of order 2k such that

the number of conjugates of P in PSL(2, 2k) is 2k + 1.

(b) PSL(2, 2k) has a cyclic subgroup A of order 2k − 1 such that the number

of conjugates of A in PSL(2, 2k) is 2k−1(2k + 1).

(c) PSL(2, 2k) has a cyclic subgroup B of order 2k + 1 such that the number

of conjugates of B in PSL(2, 2k) is 2k−1(2k − 1).

(d) The centralizers of the non-trivial elements of PSL(2, 2k) constitute pre-

cisely the family {xPx−1, xAx−1, xBx−1 | x ∈ G}; in particular, PSL(2, 2k)

is an AC-group.

Hence, the result follows from Proposition 3.4. �

Proposition 4.5. The genus of the commuting graph of the general linear group

GL(2, q), where q = pn > 2 (p is a prime), is given by

γ(Γc(GL(2, q))) =
q(q + 1)

2
γ(K(q−1)(q−2))+

q(q − 1)

2
γ(Kq(q−1))+(q+1)γ(K(q−1)2).

Proof. Note that GL(2, q) is a non-abelian AC-group (see [1, Lemma 3.5]) with

|GL(2, q)| = (q2−1)(q2−q) and |Z(GL(2, q))| = q−1. Also, in view of [1, Proposi-

tion 3.26], the centralizers of the non-central elements of GL(2, q) are precisely the

members of the family {xDx−1, xIx−1, xPZ(GL(2, q))x−1 | x ∈ G}, where

(a) D is the subgroup of GL(2, q) consisting of all diagonal matrices, |D| =

(q − 1)2, and the number of conjugates of D in GL(2, q) is q(q+1)
2 ,

(b) I is a cyclic subgroup of GL(2, q), |I| = q2−1, and the number of conjugates

of I in GL(2, q) is q(q−1)
2 ,

(c) P is the Sylow p-subgroup of GL(2, q) consisting of all upper triangular

matrices with 1 in the diagonal, |PZ(GL(2, q))| = q(q−1), and the number

of conjugates of PZ(GL(2, q)) in GL(2, q) is q + 1.

Hence, the result follows from Proposition 3.4. �

In view of Remark 3.5 and the results obtained in this section, one can easily

compute the genus of the commuting graph of the group A×G, where A is a finite
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abelian group and G is any one of the groups considered in the Propositions 4.1 to

4.5.

5. Finite non-abelian groups whose commuting graphs are planar

In this section, we characterize all finite non-abelian groups whose commuting

graphs are planar. However, we begin the section with a lemma containing a couple

of elementary properties of finite 2-groups.

Lemma 5.1. Let G be a finite 2-group. Then, the following assertions hold:

(a) If |G| ≥ 16, then G contains an abelian subgroup of order 8.

(b) If |G| ≥ 32 and |Z(G)| ≥ 4, then G contains an abelian subgroup of order

16.

Proof. If |G| = 32 and |Z(G)| = 4, then, using GAP [30] or otherwise (see, for

example [6, Theorem 35.4]), it is not difficult to see that G contains an abelian

subgroup of order 16. The rest of the lemma follows immediately from [8, Section

I, Para 4]. �

If G is a finite non-abelian group whose commuting graph is planar, then, by

Lemma 3.2(b), we have 1 ≤ |Z(G)| ≤ 4. Our next lemma of this section provides

some useful information regarding the size of G and its abelian subgroups.

Lemma 5.2. Let G be a finite non-abelian group whose commuting graph is planar.

Then the following assertions hold:

(a) If p is a prime divisor of |G|, then p ≤ 5.

(b) Neither 9 nor 25 divides |G|, and hence, |G| is even with |G| ≥ 6.

Proof. If p ≥ 7 is a prime divisor of |G|, then G/Z(G) has an element of order p,

and so, by Lemma 3.2(b), we have |Z(G)| ≤ 4
p−1 < 1, which is impossible. This

proves (a). For (b), note that if 9 or 25 divides |G|, then, a Sylow 3-subgroup or a

Sylow 5-subgroup of G contains a subgroup of order 9 or 25. Since such a subgroup

is abelian, we have, in view of Lemma 3.2(c), a contradiction in either situation.

That |G| is even with |G| ≥ 6, follows from the fact that G is non-abelian. �

Given a finite non-abelian group G, whose commuting graph is planar, it follows

from Lemma 5.2 that |G| = 2r3s5t, where r ≥ 1 and s, t ∈ {0, 1}. However,

depending on the values of |Z(G)|, the range of possible values of |G| gets reduced

further.

Lemma 5.3. Let G be a finite non-abelian group whose commuting graph is planar.

Then the possible values of |G| are given as follows:
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(a) If |Z(G)| = 1, then |G| = 2r3s5t, where 1 ≤ r ≤ 3 and s, t ∈ {0, 1}.
(b) If |Z(G)| = 2, then |G| ∈ {8, 12, 24}.
(c) If |Z(G)| = 4, then |G| = 16.

(d) |Z(G)| 6= 3.

Proof. We have |G| = 2r3s5t, where r ≥ 1 and s, t ∈ {0, 1}. Let H be a Sylow

2-subgroup of G. If |Z(G)| ≤ 3 and r ≥ 4, then, by Lemma 5.1(a), H has an

abelian subgroup of order 8. However, by Lemma 3.2(c), the size of an abelian

subgroup of G does not exceed 7 if |Z(G)| ≤ 3. Thus, r ≤ 3 if |Z(G)| ≤ 3. On

the other hand, if |Z(G)| = 4 and r ≥ 5, then, using Lemma 5.1(b) and noting

that Z(G) ⊆ Z(H), there is an abelian subgroup of H of order 16. But, by Lemma

3.2(c), this is impossible. Thus, r ≤ 4 if |Z(G)| = 4. If 5 divides |G|, then G/Z(G)

has an element of order 5, and so, by Lemma 3.2(b), we have |Z(G)| = 1. Also, if

|Z(G)| = 4, then 3 does not divide |G|; otherwise G/Z(G) would have an element

of order 3, which, by Lemma 3.2(b), is impossible. Now, it is a routine matter to

see that the assertions (a), (b) and (c) hold. Finally, note that if |Z(G)| = 3, then,

by the above argument, we have |G| = 12 or 24. Therefore, G has a subgroup A

of order 4, and hence, an abelian subgroup AZ(G) of order 12, which, by Lemma

3.2(c), is impossible. Thus, (d) holds as well. �

Note that some of the possibilities mentioned in Lemma 5.3 are not maintainable;

for example, in (a), it is obviously not possible to have s = t = 0. In fact, the

following small result helps us in avoiding few more finite groups as far as the

planarity of their commuting graphs is concerned.

Lemma 5.4. Let G be a finite non-abelian group. If |G| = 30, or if G is a solvable

group with |G| = 60 or 120, then G has an subgroup of order 15 (which is obviously

abelian). Also, if |G| = 40, then G has an abelian subgroup of order 10.

Proof. If |G| = 30, or if G is a solvable group with |G| = 60 or 120, then, by a

theorem of Hall (see [22, Theorem 5.28]), G has a subgroup of order 15. On the

other hand, if |G| = 40, then G has a unique Sylow 5-subgroup, and so, considering

the centralizer and the number of conjugates of an element of order 5, one can show

that G has an element (hence, an abelian subgroup) of order 10. �

In view of Lemma 3.2(c) and Lemma 5.3, it follows from Lemma 5.4 that if G is

a finite non-abelian group whose commuting graph is planar, then |G| /∈ {30, 40};
in addition, if G is solvable, then |G| /∈ {60, 120}.

We also have the following useful result concerning the groups of order 16.
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Lemma 5.5. Let G be a finite non-abelian group with |Z(G)| = 4. Then, the

commuting graph of G is planar if and only if |G| = 16.

Proof. Let G be a finite group with |G| = 16 and |Z(G)| = 4. Note that, for each

x ∈ G \Z(G), we have |CG(x)| = 8 and CG(x) = 〈x〉Z(G), which is abelian. Thus,

G is an AC-group with |CG(x) \Z(G)| = 4. Hence, it follows from Proposition 3.4

that γ(Γc(G)) = 0, that is, the commuting graph of G is planar. This, in view of

Lemma 5.3(c), completes the proof. �

Remark 5.6. Up to isomorphism, there are exactly six non-abelian groups of order

16 with centers of order 4, namely, the two direct products Z2 ×D8 and Z2 ×Q8,

the Small Group SG(16, 3) = 〈a, b | a4 = b4 = 1, ab = b−1a−1, ab−1 = ba−1〉, the

semi-direct product Z4 oZ4 = 〈a, b | a4 = b4 = 1, bab−1 = a−1〉, the central product

D8 ∗ Z4 = 〈a, b, c | a4 = b2 = c2 = 1, ab = ba, ac = ca, bc = a2cb〉 and the modular

group M16 = 〈a, b | a8 = b2 = 1, bab = a5〉.

We now state and prove the main result of this section, where two new groups

make their appearance, namely, the Suzuki group Sz(2) = 〈a, b | a5 = b4 =

1, bab−1 = a2〉, and the special linear group SL(2, 3) = 〈a, b, c | a3 = b3 = c2 = abc〉.

Theorem 5.7. Let G be a finite non-abelian group. Then, the commuting graph

of G is planar if and only if G is isomorphic to either S3, D10, A4, Sz(2), S4, A5,

D8, Q8, D12, Q12, SL(2, 3), Z2 × D8, Z2 × Q8, SG(16, 3), Z4 o Z4, D8 ∗ Z4 or

M16.

Proof. In view of Lemma 5.3, Lemma 5.5, Remark 5.6 and the paragraph following

Lemma 5.4, it is enough to study the planarity of the commuting graph of a finite

group G that belongs to one of the following categories:

I. |Z(G)| = 1 and |G| ∈ {6, 10, 12, 20, 24}.
II. |Z(G)| = 1, |G| ∈ {60, 120} and G is not solvable.

III. |Z(G)| = 2 and |G| ∈ {8, 12, 24}.

We use GAP [30] to examine the groups that belong to the above categories and

look into some of their properties which eventually help in concluding whether their

commuting graphs are planar or not.

There are exactly five groups that belong to category I, namely, S3, D10, A4,

Sz(2) and S4. Among these groups, S3, D10, A4 and Sz(2) are AC-groups such

that, in each case, the size of the centralizer of every non-central element is at

most 5, and so, by Proposition 3.4, the commuting graph of each of these groups is

planar; on the other hand, the commuting graph Γc(S4) has a block decomposition
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given by

Γc(S4)[H] ∪ ∪
σ∈F

Γc(S4)[Hσ],

with F = {(1 2), (1 3), (1 4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 3), (1 2 4), (1 3 4), (2 3 4)},
H = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} and Hσ = Cσ(S4) \ {(1)} for all σ ∈ F , and

so, by [5, Corollary 1], it follows that γ(Γc(S4)) = 7γ(K3) + 4γ(K2) = 0.

There are exactly two groups that belong to category II, namely, A5 and S5. Of

the two groups, A5 is an AC-group in which the centralizer of every non-central

element is at most 5, and so, by Proposition 3.4, its commuting graph is planar;

on the other hand, S5 has an abelian subgroup of order 6, namely, CS5
(1 2) =

〈(1 2), (3 4 5)〉, and so, by Lemma 3.2(c), its commuting graph is not planar.

Finally, there are exactly nine groups that belong to category III. However,

except D8, Q8, D12, Q12 and SL(2, 3), each of the remaining four groups has an

abelian centralizer of order at least 8, and so, by Lemma 3.2(c), has commuting

graph of positive genus. The groups D8, Q8, D12, Q12 and SL(2, 3), on the other

hand, are all AC-groups such that, in each case, the size of the centralizer of every

non-central element is at most 6, and so, by Proposition 3.4, the commuting graph

of each of these groups is planar. This completes the proof. �

6. Finite non-abelian groups whose commuting graphs are toroidal

In this section, we characterize all finite non-abelian groups whose commuting

graphs are toroidal.

The following result is analogous to Lemma 5.2.

Lemma 6.1. Let G be a finite non-abelain group whose commuting graph is toroidal.

Then, the following assertions hold:

(a) |Z(G)| ≤ 3.

(b) If p is a prime divisor of |G|, then p ≤ 7.

(c) None of 25, 27 and 49 is a divisor of |G|.

Proof. Suppose that |Z(G)| = 4. If p is an odd prime divisor of |G|, then G/Z(G)

has an element of order at least 3, and so, by Lemma 3.2(b), we have a contradiction.

Therefore, in view of Lemma 5.5, |G| = 2r for some r ≥ 5. But, by Lemma 5.1(b)

and Lemma 3.2(c), we again have a contradiction. So, let |Z(G)| ≥ 5. Choose

x, y ∈ G\Z(G) such that xy 6= yx. Then, xZ(G) and yZ(G) are two disjoint subsets

of G\Z(G), and the induced subgraph Γc(G)[xZ(G)] ∼= Km
∼= Γc(G)[yZ(G)], where

m = |Z(G)|. Hence, by Lemma 2.1 and Lemma 2.2, it follows that γ(Γc(G)) ≥ 2,

which is impossible. Thus, (a) holds.
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If p ≥ 11 is a prime divisor of |G|, then, by (a), there is an element of order

p in G/Z(G). Therefore, by Lemma 3.2(b), we have |Z(G)| ≤ 7
p−1 < 1, which is

impossible. This proves (b).

For (c), note that if 25 or 49 divides |G|, then G has an abelian subgroup of

order 25 or 49. Since such a subgroup is obviously abelian, we have a contradiction

according to (a) and Lemma 3.2(c). On the other hand, if 27 divides |G|, then G

has a subgroup of order 27. Therefore, since the commuting graph of a subgroup

of G is a subgraph of the commuting graph of G, we have, by Corollary 3.7, a

contradiction. This completes the proof. �

Analogous to Lemma 5.5, we have the following result concerning the groups of

order 16.

Lemma 6.2. Let G be a finite non-abelian 2-group with |Z(G)| = 2. Then, the

commuting graph of G is toroidal if and only if |G| = 16, that is, if and only if G

is isomorphic to either D16, Q16 or SD16.

Proof. Let |G| ≥ 32. Then, by the class equation [22, page 74], there exists x ∈
G \Z(G) such that |G : CG(x)| = 2, and so, |CG(x)| ≥ 16. Clearly |Z(CG(x))| ≥ 4.

First, let us assume that |Z(CG(x))| = 4. Let v ∈ CG(x) \ Z(CG(x)). Then, there

exists w ∈ CG(x) \ Z(CG(x)) such that vw 6= wv. Let z denote the non-trivial

element of Z(G). Consider the two disjoint subsets H1 = {x, v, vz, xv, xvz} and

H2 = {xz,w,wz, xw, xwz} of G\Z(G). Clearly, the induced subgraph Γc(G)[H1] ∼=
K5
∼= Γc(G)[H2]. Hence, by Lemma 2.1 and Lemma 2.2, it follows that γ(Γc(G)) ≥

2. Next, let us assume that |Z(CG(x))| ≥ 8. Consider a subset V of Z(CG(x))\Z(G)

such that |V | = 3 and put W = CG(x)\ (V ∪Z(G)). Clearly, the induced subgraph

Γc(G)[V ∪ W ] has a subgraph isomorphic to the complete bipartite graph K3,n,

where n = |CG(x)| − 5 ≥ 11. This, by Lemma 2.3, implies that the genus of the

commuting graph of G is at least 3. Thus, in view of Theorem 5.7, it follows that

if the commuting graph of G is toroidal, then |G| = 16. On the other hand, it is

well-known (using GAP [30], for example) that if |G| = 16 and |Z(G)| = 2, then G

is isomorphic to either D16, Q16 or SD16, and, by Proposition 4.1, Proposition 4.2

and Proposition 4.3, the commuting graph of each of these groups is toroidal. This

completes the proof. �

We also have the following result concerning the finite groups that are not 2-

groups.

Lemma 6.3. Let G be a finite non-abelian group with |G| = 2rm, where r ≥ 0,

m > 1 and m is odd. If the commuting graph of G is toroidal, then r ≤ 3.
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Proof. Suppose that the commuting graph of G is toroidal and that r ≥ 4. Let H

be a Sylow 2-subgroup of G. In view of Lemma 3.2(c), H is non-abelian. Moreover,

the commuting graph of H, being a subgraph of the commuting graph of G, is

either planar or toroidal.

Case 1. Γc(H) is planar.

In this case, by Lemma 5.3, we have |Z(H)| = 4. Therefore, by Lemma 6.1(a),

we have |Z(H) \ Z(G)| ≥ 2. Let v1, v2 ∈ Z(H) \ Z(G) such that v1 6= v2. Also,

let x, y ∈ H \ Z(H) such that xy 6= yx. Then, it is easy to see that {v1} ∪ xZ(H)

and {v2} ∪ yZ(H) are two disjoint subsets of G \ Z(G), and the induced subgraph

Γc(G)[{v1}∪xZ(H)] ∼= K5
∼= Γc(G)[{v2}∪yZ(H)]. This implies that γ(Γc(G)) ≥ 2,

which is a contradiction.

Case 2. Γc(H) is toroidal.

In this case, by Lemma 6.1(a), we have |Z(H)| = 2. Therefore, by Lemma 6.2, we

have |H| = 16 and there exists an element x ∈ H with o(x) = 8. Note that, for each

y ∈ G with o(y) = 8, we have 〈x〉 = 〈y〉; otherwise, choosing M = {x, x3, x5, x7, x2}
and N = {y, y3, y5, y7, w} with w ∈ {y2, y6} \ {x2}, we would have the induced

subgraph Γc(G)[M ] ∼= K5
∼= Γc(G)[N ], which, by Lemma 2.1 and Lemma 2.2,

implies that γ(Γc(G)) ≥ 2, a contradiction. Also, in view of Lemma 3.2, we have

|CG(x)| = 8; otherwise either Z(H) would have an element of order 8 or G would

have an abelian subgroup of order at least 24. Hence, it follows that the number

of conjugates of x in G is 2m ≥ 6, that is, there are at least six elements of order

8 in G. This contradiction completes the proof. �

If G is a finite non-abelian group whose commuting graph is toroidal, then it

follows from Lemma 6.1 that |G| = 2r3s5t7u, where r ≥ 0, 0 ≤ s ≤ 2 and t, u ∈
{0, 1}. However, as in Lemma 5.3, the range of possible values of |G| gets reduced

further depending on the values of |Z(G)|.

Lemma 6.4. Let G be a finite non-abelian group whose commuting graph is toroidal.

Then the possible values of |G| are given as follows:

(a) If |Z(G)| = 1, then |G| = 2r3s5t7u where 0 ≤ r ≤ 3 and s, t, u ∈ {0, 1}.
(b) If |Z(G)| = 2, then |G| ∈ {16, 24}.
(c) If |Z(G)| = 3, then |G| = 18.

Proof. If 5 or 7 divides |G|, then G/Z(G) has an element of order 5 or 7, and

so, by Lemma 3.2(b), we have |Z(G)| = 1. If |Z(G)| ≤ 2, then 9 does not divide

|G|; otherwise G would have an abelian subgroup T of order 9, which, by Lemma

3.2(c), is impossible noting that |T ∩ Z(G)| = 1. If |Z(G)| = 3, then 4 does not
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divide |G|; otherwise G would have a subgroup A of order 4, and hence, an abelian

subgroup AZ(G) of order 12, which, by Lemma 3.2(c), is impossible. In view of

Theorem 5.7, Lemma 6.2 and Lemma 6.3, it is now not difficult to see that all the

three assertions hold. �

Needless to mention that some of the possibilities mentioned in Lemma 6.4 are

clearly not maintainable; for example, in (a), it is impossible to have s = t = u = 0,

r = u = 0 or r = s = 0. Moreover, in view of Lemma 3.2(c) and Lemma 6.4, it

follows from Lemma 5.4 that if G is a finite non-abelian group whose commuting

graph is toroidal, then |G| /∈ {30, 40}; in addition, if G is solvable, then |G| /∈
{60, 120}.

The following result, along with Lemma 5.4, helps us in rejecting some more

possibilities.

Lemma 6.5. Let G be a finite non-abelian group whose commuting graph is toroidal.

If |G| = 7m, where m ≥ 2 and 7 - m, then m = 2 or 3.

Proof. By Lemma 6.4, we have |Z(G)| = 1. Let H be a Sylow 7-subgroups of

G. If S is a Sylow 7-subgroups of G such that S 6= H, then it is easy to see

that the induced subgraph Γc(G)[S \ Z(G)] ∼= K6
∼= Γc(G)[H \ Z(G)], and so,

we have a contradiction to the toroidality of Γc(G). Therefore, H is the unique

(hence, normal) Sylow 7-subgroup of G. Note that CG(H) = H; otherwise CG(H)

(hence, G) would have an element (hence, an abelian subgroup) of order at least 14,

which, by Lemma 3.2(c), is impossible. Therefore, by [22, Theorem 7.1(i)], G/H is

isomorphic to a subgroup of the cyclic group Z6
∼= Aut(H). Since |G/H| = m, it

follows that m|6 and G has an element x of order m. If m = 6, then the induced

subgraph Γc(G)[〈x〉\Z(G)] ∼= K5, and so, we have a contradiction to the toroidality

of Γc(G) since Γc(G)[H \ Z(G)] ∼= K6. Hence, we have m = 2 or 3. �

We now state and prove the main result of this section.

Theorem 6.6. Let G be a finite non-abelian group. Then, the commuting graph

of G is toroidal if and only if G is isomorphic to either D14, Z7 o Z3, Z2 × A4,

Z3 × S3, D16, Q16 or SD16.

Proof. In view of Lemma 6.2, Lemma 6.4 (and the paragraph following it), Lemma

6.5 and the proof of Theorem 5.7, it is enough to study the toroidality of the

commuting graph of a finite group G that belongs to one of the following categories:

I. |Z(G)| = 1 and |G| ∈ {14, 21}.
II. |Z(G)| = 1, |G| = 120 and G is not solvable.
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III. |Z(G)| = 2, |G| = 24 and G 6∼= SL(2, 3).

IV. |Z(G)| = 3 and |G| = 18.

As in the proof of Theorem 5.7, we use GAP [30] to determine the groups be-

longing to the above categories whose commuting graphs are toroidal.

D14 and Z7oZ3 are the only groups that belong to category I and, by Proposition

4.1 and Corollary 3.6, the commuting graphs of these groups are toroidal.

S5 is the only group that belongs to the category II. However, S5 has two abelian

subgroups S = 〈(1 2)(3 4 5)〉 and T = 〈(4 5)(1 2 3)〉 such that |S| = |T | = 6 and

S ∩ T is trivial. It follows that the commuting graph of S5 is not toroidal.

There are exactly four groups that belong to category III and all of them are

AC-groups. However, except Z2 ×A4, each of the remaining three groups have an

abelian centralizer of order 12, whereas Z2 × A4 has only one abelian centralizer

of order 8 and the rest of order 6. Therefore, by Proposition 3.4, it follows that

Z2 ×A4 is the only group in category III whose commuting graph is toroidal.

Z3×S3 is the only group that belongs to the category IV and it is an AC-group

with only one abelian centralizer of order 9 and the rest of order 6. Therefore, by

Proposition 3.4, it follows that the commuting graph of Z3 × S3 is toroidal. This

completes the proof. �
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