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1. Introduction and notation

All rings R considered are commutative, nonzero and unital; all morphisms of
rings are unital. Let R C S be a (ring) extension. The set of all R-subalgebras of S
is denoted by [R, S]. The extension R C S is said to have FIP (for the “finitely many
intermediate algebras property”) if [R, S| is finite. A chain of R-subalgebras of S is
a set of elements of [R, S] that are pairwise comparable with respect to inclusion.
We say that the extension R C S has FCP (for the “finite chain property”) if each
chain of R-subalgebras of S is finite. It is clear that each extension that satisfies FIP
must also satisfy FCP. If the extension R C S has FIP (FCP), we will sometimes
say that R C S is an FIP (FCP) extension. Our main tool are the minimal (ring)
extensions, a concept introduced by Ferrand-Olivier [10]. Recall that an extension
R C S is called minimal if [R,S] = {R,S}. The key connection between the
above ideas is that if R C S has FCP, then any maximal (necessarily finite) chain
R=RyCRyC---CR,_1 CR,=25, of R-subalgebras of S, with length n < oo,
results from juxtaposing n minimal extensions R; C R;11, 0 < i < n —1. The
length of [R,S], denoted by £[R,S], is the supremum of the lengths of chains of
R-subalgebras of S. In particular, if ¢[R,S] = r, for some integer r, there exists
a maximal chain R = Ry C Ry C -+ C R,_1 C R, = S of R-subalgebras of
S with length r. Against the general trend, we characterized arbitrary FCP and
FIP extensions in [8], a joint paper by D. E. Dobbs and ourselves whereas most of

papers on the subject are concerned with extensions of integral domains. Note that
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other papers by D. E. Dobbs [6], and D. E. Dobbs with P.-J. Cahen, T. G. Lucas
[5], J. Shapiro [9], B. Mullins and ourselves [7] also went against the same trend. It
is worth noticing here that FCP extensions of integral domains are (ignoring fields)
extensions of overrings as a quick look at [5, Theorems 4.1,4.4] shows because FCP
extensions are composites of finitely many minimal extensions.

The seminal work on FIP and FCP by R. Gilmer is settled for R-subalgebras of
K (also called overrings of R), where R is a domain and K its quotient field. In
particular, [12, Theorem 2.14] shows that R C S has FCP for each overring S of
R only if R/C is an Artinian ring, where C' = (R : R) is the conductor of R in its
integral closure. This necessary Artinian condition is not surprisingly present in all
our results.

This paper is concerned with R-modules M over a ring R and ring extensions
R C R(+)M, where R(+)M is the idealization of M. The main results are as
follows. Proposition 2.2 shows that R C R(+)M has FCP if and only if the length
of the R-module M is finite, while Proposition 2.4 says that R C R(+)M has FIP
if and only if M has finitely many R-submodules. This leads us to characterize
R-modules having finitely many R-submodules in Corollary 2.7. An R-module M,
with C' := (0 : M), has finitely many submodules if and only if the three following
conditions are satisfied: M is finitely generated, R/C has finitely many ideals and
Mp is cyclic for any prime ideal P of R containing C' such that R/P is infinite.
Then Theorem 2.13 gives a structure theorem for these modules that are faithful.

Let R be a ring. As usual, Spec(R) (resp. Max(R)) denotes the set of all prime
ideals (resp. maximal ideals) of R. If I is an ideal of R, we set Vr(I) := {P €
Spec(R) | I C P}. If R C S is a ring extension and P € Spec(R), then Sp is the
localization Sgr\p and (R : S) is the conductor of R C S. If E is an R-module,
Lr(E) is its length. We will shorten finitely generated module to f.g. module.
Recall that a special principal ideal ring (SPIR) is a principal ideal ring R with
a unique nonzero prime ideal M = Rt, such that M is nilpotent of index p > 0.
Hence a SPIR is not a field. Each nonzero element of a SPIR is of the form ut* for
some unit u and some unique integer k < p. Finally, as usual, C denotes proper
inclusion and |X| denotes the cardinality of a set X.

There are four types of minimal extension, but we only need ramified minimal

extensions.

Theorem 1.1. [10, Théoreéme 2.2], [16, Theorem 3.3] Let R C T be a ring extension
and M := (R : T). Then R C T is a ramified minimal extension if and only if
M € Max(R) and there exists M’ € Max(T) such that M’> C M c M’, [T/M :
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R/M] = 2 (resp. Lg(M'/M) = 1), and the natural map R/M — T/M’ is an

isomorphism.

Definition 1.2. An integral extension f : R < S is termed subintegral if all its

residual extensions are isomorphisms and *f is bijective [18].

A minimal morphism is ramified if and only if it is subintegral.
According to J. A. Huckaba and I. J. Papick [14], an extension R C S is termed a
Ag-extension provided each R-submodule of S containing R is an element of [R, S].

We recall here for later use an unpublished result of the Gilbert’s dissertation.

Proposition 1.3. [11, Proposition 4.12] Let R C S be a ring extension with con-
ductor I and such that S = R+ Rt for some t € S. Then the R-modules R/I and
S/R are isomorphic. Moreover, each of the R-modules between R and S is a ring
(and so there is a bijection from [R,S] to the set of ideals of R/T).

We will use the following result. If Ry, ..., R, are finitely many rings, the ring
Ry x---x R, localized at the prime ideal P; X Ry X - - - X R,, is isomorphic to (Ry)p,
for P; € Spec(R;). This rule works for any prime ideal of the product.

Rings which have finitely many ideals are characterized by D. D. Anderson and
S. Chun [1], a result that will be often used.

Proposition 1.4. [1, Corollary 2.4] A commutative ring R has only finitely many
ideals if and only if R is a finite direct product of finite local rings, SPIRs, and

fields, and these are the localizations of R at its mazimal ideals.

Note that if (R, M) is a local Artinian ring, then R is finite if and only if R/M
is finite, since M™ = 0 for some integer n. If (R, M) is an Artinian local ring, we
denote by n(R) the nilpotency index of M.

From now on, a ring R with finitely many ideals is termed an FMIR.

2. Idealizations which are FCP or FIP extensions

Let M be an R-module. We consider the ring extension R C R(+)M, where
R(+)M is the idealization of M in R.

Recall that R(+)M = {(r,m) | (r,m) € R x M} is a commutative ring whose
operations are defined as follows:

(rym)+ (s,n)=(r+s,m+mn) and (r,m)(s,n) = (rs,rn + sm)
Then (1,0) is the unit of R(+)M, and R C R(4+)M is a ring morphism defining
R(+)M as an R-module, so that we can identify any r € R with (r,0). The

following lemma will be useful for all this section.
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Lemma 2.1. Let M be an R-module, then R C R(+)M is a subintegral extension
with conductor (0 : M).

Proof. If (r,m) € R(+)M, then (r,m)? = 2r(r,m) — r%(1,0) shows that R(+)M
is integral over R. Moreover, by [13, Theorem 25.1(3)], Spec(R(+)M) = {P(+)M |
P € Spec(R)} implies that R C R(+)M is subintegral.

Set S := R(+)M and let z € (R : S). Then, we have (z,0)(0,m) = (0,zm) €
R for any m € M, so that x € (0 : M). Conversely, any z € (0 : M) gives
z(r,m) = (zr,0) € R for any (r,m) € R(+)M, which implies z € (R : S). So, we
get (R:S5)=(0:M). O

Proposition 2.2. Let M be an R-module, then R C R(+)M has FCP if and only
if Lp(M) < oo and, if and only if R/(0: M) is Artinian and M is f.g. over R.

Proof. Set S := R(+)M. Since R C S is integral, R C S has FCP if and only
if Lr(S/R) < oo by [8, Theorem 4.2]. By the same reference, this condition is
equivalent to R/(0 : M) = R/(R : S) is Artinian and R C S is module finite.
Finally, note that S/R = M; and that S is f.g over R if (and only if) S/R is f.g.
over R. O

For a submodule N of an R-module M, we denote by [N, M] the set of all
submodules of M containing N and set [M] := [0, M]. Recall that M is called

uniserial if [M] is linearly ordered.

Proposition 2.3. (Dobbs) Let M be an R-module, then R C R(+)M is a Ag-
extension because [R, R(+)M] = {R(+)N | N € [M]}.

Proof. The equality [R, R(+)M] = {R(+)N | N € [M]} was proved by D. E.
Dobbs in [6, Remark 2.9] using the bijection [M] — [R, R(+)M], N — R(+)N. O

We say that an R-module M is an FMS module if M has finitely many R-
submodules. An FMS R-module M is Noetherian and Artinian and R/(0 : M) is
a Noetherian and Artinian ring. We denote by vr(M) (or v(M)) the number of
submodules of an FMS R-module M. Hence, v(R) is the number of ideals of an
FMIR R.

Proposition 2.4. Let M be an R-module, then R C R(+)M has FIP if and only
if M is an FMS module. In this case, ||[R, R(+)M]| = v(M).

Proof. Set S := R(+)M. By Proposition 2.3, it follows that R C S has FIP if and
only if M is an FMS module. In this case, |[R, R(+)M]| = v(M). O

We now intend to characterize FMS modules by using the previous proposition.
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Theorem 2.5. An R-module M over a quasi-local ring (R, P) is an FMS module
if and only if the next conditions (1) and (2) hold with C := (0: M):

(1) M is finitely generated, and cyclic when |R/P| = co.
(2) R/C is an FMIR.

If M is an FMS R-module, (R, P) is quasi-local, |R/P| = oo, and M = Re
for some e € M, then M is uniserial, [M] = {Ple | j = 0,...,m}, with m :=
n(R/C)=v(R/C) -1 and |[R, R(+)M]| =m + 1.

Assume in addition that P = (0 : M) and |R/P| = co. Then R C R(+)M has
FIP if and only if M is simple, if and only if R C R(+)M is minimal ramified.

Proof. Note that R-submodules and R/C-submodules of M coincide.

Assume that M is an FMS module. We first prove (1). Then Proposition 2.4
shows that R C R(+)M has FIP, whence has FCP. We deduce from Proposition 2.2
that M is f.g. and (R/C, P/C) is local Artinian. Assume that |R/P| = co. Denote
by Res,...,Re,, with e; € M, the finitely many cyclic submodules of M. Then
for any m € M, there is some 4 such that Rm = Re;, so that M = U ; Re;. We
can then suppose that M = UY_  Rf;, where f; € {e1,...,e,} and the Rf; are
incomparable. If p = 1, then M is cyclic. The case p = 2 cannot happen because a
group cannot be the union of two proper incomparable subgroups. We now show
that p > 2 leads to a contradiction. Let F be a(n infinite) set of representatives of
the non-zero elements of R/P. Then, each o € F is a unit of R. For each a € F,
set mg, = f1 + afz. Obviously m, &€ Rfi U Rfy. It follows that m, € Rf;, for
some ¢ # 1,2. Let o, B € F, a # 5. We claim that m, and mg are not in the same
Rf;. Deny, then my —mg = (a — ) f2 € Rf; and oo — 8 is a unit implies fo € Rf;,
a contradiction. Therefore, M is cyclic and (1) is proved.

To prove (2), we consider two cases. If |R/P| < oo, then |R/C| < oo (see the
remark after Proposition 1.4), so that R/C is an FMIR.

Assume that |R/P| = oo. It follows from (1) that M = Re for some e € M, so
that C = (0 : e). Set R’ := R/C, P’ := P/C and Iy := (N :g e) for N € [M].
Then, Iy € [C, R] and is such that N = Iye. Conversely, I € [C, R] is such that
I = I, with Ie € [M]), since C C I. We define a preserving order bijective map
¥ : [C,R] — [M] by I — Ie. It follows that R’ is an FMIR (either a field or a
SPIR) and v(M) = v(R/C). Then, (2) is proved.

Now, assume that (1) and (2) hold. There is no harm to suppose that C' = 0
and that R is an FMIR, so that (R, P) is local Artinian. If |R/P| < oo, we get
that |M| < co and then M is an FMS module. Assume that |R/P| = oo, and that
M = Re is cyclic. The assertion is clear if M = 0. Assume M # 0. If P =0, then
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M is a one-dimensional vector space over the field R, so that v(M) =2 = v(R). If
P # 0, consider S := R(+)M = R+ Rf, where f = (0,¢e). From Proposition 1.3
we deduce that [[R, S]| < oo, since R is an FMIR and also that there are bijective
maps [R] — [R,S] and [R,S] — [M]. In fact [R,S] = {R(+)N | N € [M]}. By
Proposition 2.3, M is an FMS module.

Assume that M is an FMS R-module, (R, P) is quasi-local, |R/P| = oo, and
M = Re for some e € M. If R’ is a SPIR, there is some x € P, whose class T € R’
is such that P’ = R'Z, 2™ = 0 and 2! # 0, for m := n(R’) > 1. It follows that
[C,R] ={P7+C|je€{0,...,m}} and [M] = {Ple|j€{0,...,m}} (to see this,
use the above bijection ¢). If R’ is a field, then P = C gives m = 1. In both cases,
M is uniserial, m := n(R/C) = v(R/C) — 1 and |[R, R(+)M]| =m + 1.

To end, assume that (R, P) is quasi-local with |R/P| = co. Let M be a simple R-
module, with P = (0 : M). Then [R, R(+)M] = {R, R(+)M} by Proposition 2.3.
It follows that R C R(+)M has FIP and is a minimal ramified extension since

minimal subintegral. The converse is obvious. O

Example 2.6. We give this example due to the referee showing that the condition
|R/P| = oo in Theorem 2.5 is necessary in order to have M a simple module
when M is an FMS module. Let R be a finite field, and let M := R@ R. Then,
R C R(+)M has FIP since M has only finitely many submodules and (0 : M) =
{0} = P, but M is not a simple R-module.

Corollary 2.7. Let M be an R-module and C := (0 : M). Then M is an FMS
module if and only if the two following conditions hold:
(1) M is f.g. and Mp is cyclic over Rp for all P € V(C) such that |R/P| = co.
(2) R/C is an FMIR.
In case (1), (2) both hold, set {P1,...,P,} = V(C) and suppose that each |R/P;| =
oo. Then, for each i, there exist some e; € M, such that Mp, = Rp,(e;/1) and, M

is generated by the e1, ..., ep.

Proof. If M is an FMS module, Proposition 2.4 shows that R C R(+)M has FIP,
and then has FCP. Hence, M is f.g. and R/C is Artinian by Proposition 2.2. Let
P e V(C), then Mp is an FMS Rp-module, so that we can use Theorem 2.5. It
follows that Rp/Cp = (R/C)p is an FMIR, and so is R/C, since [V(C)| < oo,
which gives (2). Moreover, for P € V(C') with |R/P| = oo, Theorem 2.5 gives that
Mp is cyclic and (1) holds.

Conversely, if (1) and (2) hold, they also hold for each Mp, where P € V(C).
Theorem 2.5 gives that Mp is an FMS module for any P € V(C). To show that M
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is an FMS module, there is no harm to suppose that C = 0, so that R is Artinian,
with Max(R) = {P1,..., P,}. Now if N is a submodule of M, it is well known that
N =N ,¢; "(Np,), where p; : M — Mp, is the natural map and thus M is an
FMS module.

Now, assume that (1) and (2) hold and that |R/P| = oo for any P € V(C) =
{P1,...,P,}. For each j = 1,...,n, there is some e; € M such that Mp, =
Rp,(e;j/1). Set M' := Rei 4 --- 4 Rey. It is easy to show that MI’JJ, = Mp, for
j=1,...,n. Observe that V(C) = Supp(M), because M is f.g. (|2, Proposition
17, ch. II, p.133]). Now let P € Max(R) \ V(C). We get that Mp C Mp =0 and
then M’ = M. O

Let N be a submodule of an R-module M. By Proposition 2.3, R(+)N is
an R-subalgebra of R(+)M and then R(+)M is an (R(+)N)-algebra. Even if
R C R(+)M does not have FCP (resp. FIP), it may be that R(+)N C R(+)M has
FCP (resp. FIP).

Any (R(+)N)-subalgebra of R(+)M is an R-subalgebra of R(+)M, and then is
of the form R(+)N’, for some N’ € [N, M] since R(+)N C R(+)N’. Conversely,
for any R-subalgebra N’ of M containing N, R(+)N’ is an (R(+4)N)-subalgebra
of R(+)M. In particular, R(+)N C R(+)M is a minimal extension if and only if
M/N is a simple module.

Proposition 2.8. Let N be a submodule of an R-module M. Then:

(1) R(+)N C R(+)M is a Ag-extension.

(2) R(+)N C R(+)M has FCP if and only if Lg(M/N) < co. In this case,
([R(+)N, R(+)M] = Lr(M/N).

(3) R(+)N C R(+)M has FIP if and only if M/N is an FMS module. In this
case, |[R(+)N, R(+)M]| = v(M/N).

Proof. (1) By Proposition 2.3, R C R(+)M is a Ag-extension. Since an (R(+)N)-
submodule S of R(+)M containing R is also an R-submodule of R(+)M, we get
that S is a ring, so that R(+)N C R(+)M is a Ag-extension.

(2) By Lemma 2.1, R C R(+)M is integral and so is R(+)N C R(+)M. There-
fore, the following conditions are equivalent:

- R(+)N C R(+)M has FCP

- there exists a finite chain of minimal finite extensions going from R(+)N to
R(+)M ([8, Theorem 4.2(2)])

- there is a finite maximal chain of R-submodules of M going from N to M

-Lr(M/N) < 0.
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In this case, {[R(+)N, R(+)M] = Lgr(M/N), the supremum of the lengths of
chains of submodules of M containing V.

(3) The following conditions are equivalent:

- R(+)N C R(+)M has FIP

- there are finitely many (R(+)N)-subalgebras of R(+)M

- there are finitely many R-subalgebras of R(+)M containing R(+)N

- there are finitely many R-submodules of M containing N

- M/N is an FMS module.

In this case, |[R(+)N, R(+)M]]| is also the number of R-submodules of M con-
taining N, which is also v(M/N). |

We consider now the special case where M is an ideal I of R.

Proposition 2.9. Let I be an ideal of a ring R, S := R(+)R and T := R(+)I.
Then:
(1) RC S has FCP if and only if Lr(R) < oo if and only if R is Artinian. In
this case, {[R, R(+)R] = Lr(R).
(2) R C T has FCP if and only if Lr(I) < oo if and only if I is finitely
generated and R/(0: I) is Artinian. In this case, ¢[R, R(+)I] = Lg(I).
(3) R C S has FIP if and only if R is an FMIR. In this case, |[R, R(+)R]| =
v(R).
(4) R C T has FIP if and only if [I] is finite. In this case, |[R, R(+)I]| = v(I).

Proof. Propositions 2.2 and 2.8 with M equal to R or I give most of the results
because taking N = 0 gives R(+)0 & R. O

Proposition 2.10. Any f.g. module over a ring R is an FMS module if and only
if R is a finite ring.

Proof. If R is finite, then [M] is finite for any f.g. R-module M. Conversely,
let R be a ring such that any f.g. R-module is an FMS module. Set S :=
R[X,Y]/(X? XY,Y?) = R[r,y|, where z and y are respectively the classes of
X and Y in S. Then S is an R-module with basis {1,z,y}. For each o € R, set
So = R(x+ay), which is an R-submodule of S. If o, 8 € R, o # 3, then S, # Sg.

Therefore, |R| = oo gives a contradiction and R is a finite ring. O

Remark 2.11. If N is a submodule of an R-module M, Proposition 2.2 shows
that R C R(+)M has FCP if and only if R C R(+)N and R C R(+)(M/N) have
FCP. This property does not hold for FIP. It is enough to consider a 2-dimensional
vector space M over an infinite field, and a 1-dimensional subspace N because N
and M/N are FMS modules, while M is not.
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Example 2.12. In the following examples, we mix properties of this section and
[17, Section 3].

(1) Let k£ be a field, n > 1 an integer, £ an n-dimensional k-vector space with
basis {e1,...,e,} and set R := k™. We can equip E with the structure of an R-
module by the following law: for (ay,...,a,) € R and x = Y 1 | ze;, z; € k, we
set (a1,...,an)x =Y ., a;z;e;. Then E is generated over R by {ei,...,e,} and
is faithful, while R is an FMIR. Finally, the prime (maximal) ideals of R are the
ideals P; := {(a1,...,an) € R | a; =0} fori = 1,...,n, so that Rp, = k. The
canonical base {e1,...,e,} of R over k is such that each ¢; ¢ P;. We have ¢;e; =0
for each 4,5 € {1,...,n} such that i # j, so that e;/1 = 0 in Rp, for j # i. It
follows that Ep, = 2?21 Rp,(e;/1) = Rp,(e;/1) is cyclic over Rp, = k. Then,
whatever |k| may be, Corollary 2.7 gives that E is an FMS R-module. But, as soon
as |k| = oo and n > 2, F is infinite. Since Ep, = k(e;/1) is one-dimensional over k,
Ep, has only two Rp,-submodules. Set F :=[];"_, Ep, and consider the canonical
injective morphism of R-modules ¢ : E — F and the projections ¢; : F' — Ep,.
Any R-submodule N of F is of the form N’ := [[!"_, N;, where N; = ¢;(N), because
N C N CY", eN. Now ¢ is a k-isomorphism because Dimy(E) = Dimy(F),
whence an R-isomorphism. It follows that vr(E) = 2™.

By Proposition 2.4, k™ C k™(+)FE has FIP, and k C k™ has FIP by [4, Proposition
3, p. 29] (another proof follows from [7, Theorem II1.5]). But, always in view of
Proposition 2.4, if |k| = oo and n > 2, then k& C k(+)E has not FIP, so that
k C k™(+)E has not FIP.

(1) We keep the context of (1). Set R := [[;~;(k/(0 : ¢;)). Since (0:¢;) =0
for each i, we get R = k™. Then k£ C R has FIP while k£ C k(+)E has not FIP.

(2) Let k be an infinite field, n > 1 an integer and F an n-dimensional vector
space over k. Let u € End(F) with minimal polynomial X”. Then, u™ = 0 and
u"Y(e1) # 0 for some e; € E. If e; := u'~1(ey) for any i € {1,...,n}, an easy
induction shows that {ej,...,e,} is a basis of E over k. Set R := k[u], then FE
is a faithful R-module with scalar multiplication defined by P(u) - z := P(u)(z),
for P(X) € k[X] and € E. Since R = k[X]/(X™) is a SPIR and E = R - ¢;
because e; = u*~! - e; for each i, then by Theorem 2.5, F is an FMS R-module and
R C R(+)E has FIP by Proposition 2.4.

(2’) Let R be a ring, n > 1 an integer and I,..., I, ideals of R distinct from
R, but not necessarily distinct, such that N7_;I; = 0. Such a family {Iy,..., .}
of ideals of R is called a separating family, a reference to Algebraic Geometry

where a finite family of morphisms {f; : M — M, | j = 1,...,n} of R-modules is
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called separating if N}_; ker f; = 0. In [17, Section 3], we study the ring extension
R C I, (R/1;) = R associated to a separating family.

We keep the context of (2). Since u™ = 0, u""!(e1) # 0 and e; = u/~!(e;) for
any j € {1,...,n}, a short calculation gives I; := (0 :g e;) = Ru""7*!. Then,
Nj_11; = 0 because I; = Ru™ = 0 and {I3,...,I,} is a separating family such
that I; C Iy for each j € {1,...,n — 1}. Moreover, R/I; = R/Ru"It! =~
k[X]/(X™7741). Set M := Ru, R := [[[_;(R/(0 : ¢;)) and J; := Np_y i1k
Then, J; = I, = (X" 1)/(X™) and J; = 0 for each j > 1. Apply [17, Corollary
3.10]. We have Z?Zl J; = I, giving that R/ Z?Zl Ji =R/ 2 k[X]/(X" V) isa
SPIR and |R/M| = oo, because R/M = k. Since I + J; = I = (X" 1)/(X™) and
I; +J; = I; &2 (X"t /(X") for each j > 1, it is enough to take n > 3 to get
that R C 'R has not FIP.

(3) Let M = "7 | Re; be a faithful Artinian R-module and set R := []\"_, (R/(0 :
e;)). Since M is faithful, we have (0 : M) = 0. Then, R is an Artinian ring in view
of [15, Theorem 2, page 180] because M is a finitely generated Artinian module,
and R C R(+)M has FCP by Proposition 2.2. Since (0: M) =N ,(0: ¢;) = 0,
the family {(0 : e;)}i=1....» is separating and R C R has FCP by [17, Proposition
3.1].

Examples (1°) and (2’) show that for a finitely generated R-module M = """ | Re;
such that {(0 : e1),...,(0 : e,)} is a separating family, we may have only one of
the two extensions R C R(+)M and R C [[\_;(R/(0 : e;)) which has FIP, and not
the other one.

(4) Let k be an infinite field, n > 1 an integer and E an n-dimensional vector
space over k. Let v € End(E) with minimal polynomial 7, (X) = [[}_, P (X),
with each P;(X) € k[X] of degree 1, P;(X) # P;(X) for ¢ # j, and such that
n = Y._,a;. For each i, set E; := ker(P{(u)). The “Lemme des noyaux” [4,
Proposition 3, ch. VIL, p. 30] gives that E = @;_, E; (x), with o = dimy(E;).
If R := k[u], then E is a faithful R-module for the scalar multiplication defined
by P(u) -z := P(u)(z), for P(X) € k[X] and « € E. Since R = k[X]/(m, (X))
is an Artinian FMIR, to conclude that E is an FMS module over R by applying
Corollary 2.7, we need only to show that Fj; is cyclic for each M € Max(R) =
{Mj,..., My} where M; := P;(u)R. We next prove that En;, = (E;)um; as R,-
modules. Let = € Ej for some j # 4, then P/ (u)(x) = 0 and P;” (u) is a unit in
Ry, since Pj(X) & (P;(X)). It follows that 2/1 = 0 in Eyy,, so that Eyy, = (E;)
by (x). Now, we are reduced to (2) with P/ (u) = 0 in (E;)um;,, so that each (E;)um
is cyclic over Ry, and Corollary 2.7 holds.

i
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Theorem 2.13. A faithful R-module M is an FMS module if and only if the two

following conditions are satisfied:

(1) R is an FMIR which is a direct product of two rings R' x R", where |R'| < oo
and |R"/P| = oo for any P € Spec(R").
(2) M is the direct product of a finite R'-module and a rank one projective

R"-module.

Proof. If M is an FMS module, R is an FMIR and M is f.g. over R by Corollary 2.7.
Then by Proposition 1.4, R = [, R;, a product of local rings that are either finite,
or a SPIR, or a field. Let R’ be the ring product of the R; that are finite and R”
the product of the others. Then |R’| < oo and a SPIR factor (R;, P;) of R” is such
that |R;/P;| = oo because R; is local Artinian. When R; is an infinite field, take
P; = 0. So, (1) holds with R = R’ x R".

Set M' := R'M ={(",00m | € R, m € M} and M" := R"M = {(0,7")m |
r € R", m € M}. By [3, Remarque 3, ch.Il, p.32], we get M = M' P M" = M’ x
M", RRM" = R'"M' =0 and (0 :g» M") = 0. Clearly, |M’| < oo since M’ is f.g.
over the finite ring R’. In the same way, M" is f.g. over R”. Now an R”-submodule
N of M" gives an R-submodule of M by the one-to-one function N — M’ x N.
It follows that M" is an FMS R’-module. Therefore, we can assume that R is an
FMIR with |R/P| = oo for each P € Spec(R) = {Pi, ..., P,}. By Corollary 2.7, M
is generated over R by some eq,...,e, € M such that Mp, = Rp,(e;/1) for each i.
Actually, e;/1 is free over Rp,: suppose that (a/t)(e;/1) =0fora € Randt € R\ F,.
There is some s; € R\ P; such that s;ae; = 0. Moreover, e;/1 € Mp, = Rp,(e;/1)
for j # i gives that e;/1 = (b;/t;)(e;/1), for some b; € R, t; € R\ P; for each
j # t. This allows us to pick up some s; € R\ P; such that sjae; = 0. Setting
§:= 81" Sy, we get sae,, = 0 for each k € {1,...,n}. Since M is faithful, sa = 0,
so that a/t = 0. By [2, Théoréme 2, ch.II, p.141], M is a rank one projective
R-module and (2) follows.

Conversely, assume that (1) and (2) hold and keep the above notation with
R=R xR' |R| < oo, |R"/P| = oo for any P € Spec(R") and M = M’ x M",
where M’ is a finite R’-module and M" is a rank one projective R”-module. Then,
from [2, Théoréme 2, ch. II, p. 141], we deduce that M" is f.g. over R”, with
MP cyclic for each maximal ideal P of R”. Since M’ is also f.g. over R’ because
finite, M is f.g. over R. For each N € Max(R) such that |R/N| = oo, there exists
P € Max(R") such that N = R’ x P and in this case My = My as Ry-modules.
Indeed, consider the Ry-linear isomorphism u : My = (M’ x M")pxp — M}

defined by u((m',m")/(s,t)) = m' /t, using the ring isomorphism Ry = RY. It
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follows that My is cyclic over Ry. By Corollary 2.7, we can conclude that M is
an FMS module. O

Remark 2.14. (1) For the proof of Theorem 2.13, it was convenient to suppose
that M 1is a faithful R-module. However, one should note that Theorem 2.13 can be
used to characterize when an arbitrary (not necessarily faithful) module is FMS. In
fact, an R-module M is FMS (as an R-module) if and only if M is an FMS module
over the ring R/(0: M).

(2) The rings R' and R" in the statement of Theorem 2.18 are necessarily each
FMIRs. In fact, if A and B are rings, then A X B is an FMIR if and only if both
A and B are FMIRs.
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