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1. Introduction and notation

All rings R considered are commutative, nonzero and unital; all morphisms of

rings are unital. Let R ⊆ S be a (ring) extension. The set of all R-subalgebras of S

is denoted by [R,S]. The extension R ⊆ S is said to have FIP (for the “finitely many

intermediate algebras property”) if [R,S] is finite. A chain of R-subalgebras of S is

a set of elements of [R,S] that are pairwise comparable with respect to inclusion.

We say that the extension R ⊆ S has FCP (for the “finite chain property”) if each

chain of R-subalgebras of S is finite. It is clear that each extension that satisfies FIP

must also satisfy FCP. If the extension R ⊆ S has FIP (FCP), we will sometimes

say that R ⊆ S is an FIP (FCP) extension. Our main tool are the minimal (ring)

extensions, a concept introduced by Ferrand-Olivier [10]. Recall that an extension

R ⊂ S is called minimal if [R,S] = {R,S}. The key connection between the

above ideas is that if R ⊆ S has FCP, then any maximal (necessarily finite) chain

R = R0 ⊂ R1 ⊂ · · · ⊂ Rn−1 ⊂ Rn = S, of R-subalgebras of S, with length n <∞,

results from juxtaposing n minimal extensions Ri ⊂ Ri+1, 0 ≤ i ≤ n − 1. The

length of [R,S], denoted by `[R,S], is the supremum of the lengths of chains of

R-subalgebras of S. In particular, if `[R,S] = r, for some integer r, there exists

a maximal chain R = R0 ⊂ R1 ⊂ · · · ⊂ Rr−1 ⊂ Rr = S of R-subalgebras of

S with length r. Against the general trend, we characterized arbitrary FCP and

FIP extensions in [8], a joint paper by D. E. Dobbs and ourselves whereas most of

papers on the subject are concerned with extensions of integral domains. Note that
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other papers by D. E. Dobbs [6], and D. E. Dobbs with P.-J. Cahen, T. G. Lucas

[5], J. Shapiro [9], B. Mullins and ourselves [7] also went against the same trend. It

is worth noticing here that FCP extensions of integral domains are (ignoring fields)

extensions of overrings as a quick look at [5, Theorems 4.1,4.4] shows because FCP

extensions are composites of finitely many minimal extensions.

The seminal work on FIP and FCP by R. Gilmer is settled for R-subalgebras of

K (also called overrings of R), where R is a domain and K its quotient field. In

particular, [12, Theorem 2.14] shows that R ⊆ S has FCP for each overring S of

R only if R/C is an Artinian ring, where C = (R : R) is the conductor of R in its

integral closure. This necessary Artinian condition is not surprisingly present in all

our results.

This paper is concerned with R-modules M over a ring R and ring extensions

R ⊆ R(+)M , where R(+)M is the idealization of M . The main results are as

follows. Proposition 2.2 shows that R ⊆ R(+)M has FCP if and only if the length

of the R-module M is finite, while Proposition 2.4 says that R ⊆ R(+)M has FIP

if and only if M has finitely many R-submodules. This leads us to characterize

R-modules having finitely many R-submodules in Corollary 2.7. An R-module M ,

with C := (0 : M), has finitely many submodules if and only if the three following

conditions are satisfied: M is finitely generated, R/C has finitely many ideals and

MP is cyclic for any prime ideal P of R containing C such that R/P is infinite.

Then Theorem 2.13 gives a structure theorem for these modules that are faithful.

Let R be a ring. As usual, Spec(R) (resp. Max(R)) denotes the set of all prime

ideals (resp. maximal ideals) of R. If I is an ideal of R, we set VR(I) := {P ∈
Spec(R) | I ⊆ P}. If R ⊆ S is a ring extension and P ∈ Spec(R), then SP is the

localization SR\P and (R : S) is the conductor of R ⊆ S. If E is an R-module,

LR(E) is its length. We will shorten finitely generated module to f.g. module.

Recall that a special principal ideal ring (SPIR) is a principal ideal ring R with

a unique nonzero prime ideal M = Rt, such that M is nilpotent of index p > 0.

Hence a SPIR is not a field. Each nonzero element of a SPIR is of the form utk for

some unit u and some unique integer k < p. Finally, as usual, ⊂ denotes proper

inclusion and |X| denotes the cardinality of a set X.

There are four types of minimal extension, but we only need ramified minimal

extensions.

Theorem 1.1. [10, Théorème 2.2], [16, Theorem 3.3] Let R ⊂ T be a ring extension

and M := (R : T ). Then R ⊂ T is a ramified minimal extension if and only if

M ∈ Max(R) and there exists M ′ ∈ Max(T ) such that M ′
2 ⊆ M ⊂ M ′, [T/M :
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R/M ] = 2 (resp. LR(M ′/M) = 1), and the natural map R/M → T/M ′ is an

isomorphism.

Definition 1.2. An integral extension f : R ↪→ S is termed subintegral if all its

residual extensions are isomorphisms and af is bijective [18].

A minimal morphism is ramified if and only if it is subintegral.

According to J. A. Huckaba and I. J. Papick [14], an extension R ⊆ S is termed a

∆0-extension provided each R-submodule of S containing R is an element of [R,S].

We recall here for later use an unpublished result of the Gilbert’s dissertation.

Proposition 1.3. [11, Proposition 4.12] Let R ⊆ S be a ring extension with con-

ductor I and such that S = R +Rt for some t ∈ S. Then the R-modules R/I and

S/R are isomorphic. Moreover, each of the R-modules between R and S is a ring

(and so there is a bijection from [R,S] to the set of ideals of R/I).

We will use the following result. If R1, . . . , Rn are finitely many rings, the ring

R1×· · ·×Rn localized at the prime ideal P1×R2×· · ·×Rn is isomorphic to (R1)P1

for P1 ∈ Spec(R1). This rule works for any prime ideal of the product.

Rings which have finitely many ideals are characterized by D. D. Anderson and

S. Chun [1], a result that will be often used.

Proposition 1.4. [1, Corollary 2.4] A commutative ring R has only finitely many

ideals if and only if R is a finite direct product of finite local rings, SPIRs, and

fields, and these are the localizations of R at its maximal ideals.

Note that if (R,M) is a local Artinian ring, then R is finite if and only if R/M

is finite, since Mn = 0 for some integer n. If (R,M) is an Artinian local ring, we

denote by n(R) the nilpotency index of M .

From now on, a ring R with finitely many ideals is termed an FMIR.

2. Idealizations which are FCP or FIP extensions

Let M be an R-module. We consider the ring extension R ⊆ R(+)M , where

R(+)M is the idealization of M in R.

Recall that R(+)M := {(r,m) | (r,m) ∈ R ×M} is a commutative ring whose

operations are defined as follows:

(r,m) + (s, n) = (r + s,m+ n) and (r,m)(s, n) = (rs, rn+ sm)

Then (1, 0) is the unit of R(+)M , and R ⊆ R(+)M is a ring morphism defining

R(+)M as an R-module, so that we can identify any r ∈ R with (r, 0). The

following lemma will be useful for all this section.
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Lemma 2.1. Let M be an R-module, then R ⊆ R(+)M is a subintegral extension

with conductor (0 : M).

Proof. If (r,m) ∈ R(+)M , then (r,m)2 = 2r(r,m) − r2(1, 0) shows that R(+)M

is integral over R. Moreover, by [13, Theorem 25.1(3)], Spec(R(+)M) = {P (+)M |
P ∈ Spec(R)} implies that R ⊆ R(+)M is subintegral.

Set S := R(+)M and let x ∈ (R : S). Then, we have (x, 0)(0,m) = (0, xm) ∈
R for any m ∈ M , so that x ∈ (0 : M). Conversely, any x ∈ (0 : M) gives

x(r,m) = (xr, 0) ∈ R for any (r,m) ∈ R(+)M , which implies x ∈ (R : S). So, we

get (R : S) = (0 : M). �

Proposition 2.2. Let M be an R-module, then R ⊆ R(+)M has FCP if and only

if LR(M) <∞ and, if and only if R/(0 : M) is Artinian and M is f.g. over R.

Proof. Set S := R(+)M . Since R ⊆ S is integral, R ⊆ S has FCP if and only

if LR(S/R) < ∞ by [8, Theorem 4.2]. By the same reference, this condition is

equivalent to R/(0 : M) ∼= R/(R : S) is Artinian and R ⊆ S is module finite.

Finally, note that S/R ∼= M ; and that S is f.g over R if (and only if) S/R is f.g.

over R. �

For a submodule N of an R-module M , we denote by JN,MK the set of all

submodules of M containing N and set JMK := J0,MK. Recall that M is called

uniserial if JMK is linearly ordered.

Proposition 2.3. (Dobbs) Let M be an R-module, then R ⊆ R(+)M is a ∆0-

extension because [R,R(+)M ] = {R(+)N | N ∈ JMK}.

Proof. The equality [R,R(+)M ] = {R(+)N | N ∈ JMK} was proved by D. E.

Dobbs in [6, Remark 2.9] using the bijection JMK→ [R,R(+)M ], N 7→ R(+)N . �

We say that an R-module M is an FMS module if M has finitely many R-

submodules. An FMS R-module M is Noetherian and Artinian and R/(0 : M) is

a Noetherian and Artinian ring. We denote by νR(M) (or ν(M)) the number of

submodules of an FMS R-module M . Hence, ν(R) is the number of ideals of an

FMIR R.

Proposition 2.4. Let M be an R-module, then R ⊆ R(+)M has FIP if and only

if M is an FMS module. In this case, |[R,R(+)M ]| = ν(M).

Proof. Set S := R(+)M . By Proposition 2.3, it follows that R ⊆ S has FIP if and

only if M is an FMS module. In this case, |[R,R(+)M ]| = ν(M). �

We now intend to characterize FMS modules by using the previous proposition.
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Theorem 2.5. An R-module M over a quasi-local ring (R,P ) is an FMS module

if and only if the next conditions (1) and (2) hold with C := (0 : M):

(1) M is finitely generated, and cyclic when |R/P | =∞.

(2) R/C is an FMIR.

If M is an FMS R-module, (R,P ) is quasi-local, |R/P | = ∞, and M = Re

for some e ∈ M , then M is uniserial, JMK = {P je | j = 0, . . . ,m}, with m :=

n(R/C) = ν(R/C)− 1 and |[R,R(+)M ]| = m+ 1.

Assume in addition that P = (0 : M) and |R/P | = ∞. Then R ⊆ R(+)M has

FIP if and only if M is simple, if and only if R ⊆ R(+)M is minimal ramified.

Proof. Note that R-submodules and R/C-submodules of M coincide.

Assume that M is an FMS module. We first prove (1). Then Proposition 2.4

shows that R ⊆ R(+)M has FIP, whence has FCP. We deduce from Proposition 2.2

that M is f.g. and (R/C,P/C) is local Artinian. Assume that |R/P | =∞. Denote

by Re1, . . . , Ren, with ei ∈ M , the finitely many cyclic submodules of M . Then

for any m ∈ M , there is some i such that Rm = Rei, so that M = ∪ni=1Rei. We

can then suppose that M = ∪pi=1Rfi, where fi ∈ {e1, . . . , en} and the Rfi are

incomparable. If p = 1, then M is cyclic. The case p = 2 cannot happen because a

group cannot be the union of two proper incomparable subgroups. We now show

that p > 2 leads to a contradiction. Let F be a(n infinite) set of representatives of

the non-zero elements of R/P . Then, each α ∈ F is a unit of R. For each α ∈ F ,

set mα := f1 + αf2. Obviously mα 6∈ Rf1 ∪ Rf2. It follows that mα ∈ Rfi, for

some i 6= 1, 2. Let α, β ∈ F , α 6= β. We claim that mα and mβ are not in the same

Rfi. Deny, then mα −mβ = (α− β)f2 ∈ Rfi and α− β is a unit implies f2 ∈ Rfi,
a contradiction. Therefore, M is cyclic and (1) is proved.

To prove (2), we consider two cases. If |R/P | < ∞, then |R/C| < ∞ (see the

remark after Proposition 1.4), so that R/C is an FMIR.

Assume that |R/P | = ∞. It follows from (1) that M = Re for some e ∈ M , so

that C = (0 : e). Set R′ := R/C, P ′ := P/C and IN := (N :R e) for N ∈ JMK.
Then, IN ∈ JC,RK and is such that N = INe. Conversely, I ∈ JC,RK is such that

I = IIe with Ie ∈ JMK, since C ⊆ I. We define a preserving order bijective map

ψ : JC,RK → JMK by I 7→ Ie. It follows that R′ is an FMIR (either a field or a

SPIR) and ν(M) = ν(R/C). Then, (2) is proved.

Now, assume that (1) and (2) hold. There is no harm to suppose that C = 0

and that R is an FMIR, so that (R,P ) is local Artinian. If |R/P | < ∞, we get

that |M | <∞ and then M is an FMS module. Assume that |R/P | =∞, and that

M = Re is cyclic. The assertion is clear if M = 0. Assume M 6= 0. If P = 0, then
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M is a one-dimensional vector space over the field R, so that ν(M) = 2 = ν(R). If

P 6= 0, consider S := R(+)M = R + Rf , where f = (0, e). From Proposition 1.3

we deduce that |JR,SK| <∞, since R is an FMIR and also that there are bijective

maps JRK → [R,S] and JR,SK → JMK. In fact JR,SK = {R(+)N | N ∈ JMK}. By

Proposition 2.3, M is an FMS module.

Assume that M is an FMS R-module, (R,P ) is quasi-local, |R/P | = ∞, and

M = Re for some e ∈M . If R′ is a SPIR, there is some x ∈ P , whose class x̄ ∈ R′

is such that P ′ = R′x̄, x̄m = 0 and x̄m−1 6= 0, for m := n(R′) > 1. It follows that

JC,RK = {P j +C | j ∈ {0, . . . ,m}} and JMK = {P je | j ∈ {0, . . . ,m}} (to see this,

use the above bijection ψ). If R′ is a field, then P = C gives m = 1. In both cases,

M is uniserial, m := n(R/C) = ν(R/C)− 1 and |[R,R(+)M ]| = m+ 1.

To end, assume that (R,P ) is quasi-local with |R/P | =∞. Let M be a simple R-

module, with P = (0 : M). Then [R,R(+)M ] = {R,R(+)M} by Proposition 2.3.

It follows that R ⊆ R(+)M has FIP and is a minimal ramified extension since

minimal subintegral. The converse is obvious. �

Example 2.6. We give this example due to the referee showing that the condition

|R/P | = ∞ in Theorem 2.5 is necessary in order to have M a simple module

when M is an FMS module. Let R be a finite field, and let M := R
⊕
R. Then,

R ⊆ R(+)M has FIP since M has only finitely many submodules and (0 : M) =

{0} = P , but M is not a simple R-module.

Corollary 2.7. Let M be an R-module and C := (0 : M). Then M is an FMS

module if and only if the two following conditions hold:

(1) M is f.g. and MP is cyclic over RP for all P ∈ V(C) such that |R/P | =∞.

(2) R/C is an FMIR.

In case (1), (2) both hold, set {P1, . . . , Pn} = V(C) and suppose that each |R/Pi| =
∞. Then, for each i, there exist some ei ∈M , such that MPi = RPi(ei/1) and, M

is generated by the e1, . . . , en.

Proof. If M is an FMS module, Proposition 2.4 shows that R ⊆ R(+)M has FIP,

and then has FCP. Hence, M is f.g. and R/C is Artinian by Proposition 2.2. Let

P ∈ V(C), then MP is an FMS RP -module, so that we can use Theorem 2.5. It

follows that RP /CP ∼= (R/C)P is an FMIR, and so is R/C, since |V(C)| < ∞,

which gives (2). Moreover, for P ∈ V(C) with |R/P | =∞, Theorem 2.5 gives that

MP is cyclic and (1) holds.

Conversely, if (1) and (2) hold, they also hold for each MP , where P ∈ V(C).

Theorem 2.5 gives that MP is an FMS module for any P ∈ V(C). To show that M
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is an FMS module, there is no harm to suppose that C = 0, so that R is Artinian,

with Max(R) = {P1, . . . , Pn}. Now if N is a submodule of M , it is well known that

N = ∩ni=1ϕ
−1
i (NPi

), where ϕi : M → MPi
is the natural map and thus M is an

FMS module.

Now, assume that (1) and (2) hold and that |R/P | = ∞ for any P ∈ V(C) =

{P1, . . . , Pn}. For each j = 1, . . . , n, there is some ej ∈ M such that MPj =

RPj (ej/1). Set M ′ := Re1 + · · · + Ren. It is easy to show that M ′Pj
= MPj for

j = 1, . . . , n. Observe that V(C) = Supp(M), because M is f.g. ([2, Proposition

17, ch. II, p.133]). Now let P ∈ Max(R) \ V(C). We get that M ′P ⊆ MP = 0 and

then M ′ = M . �

Let N be a submodule of an R-module M . By Proposition 2.3, R(+)N is

an R-subalgebra of R(+)M and then R(+)M is an (R(+)N)-algebra. Even if

R ⊆ R(+)M does not have FCP (resp. FIP), it may be that R(+)N ⊆ R(+)M has

FCP (resp. FIP).

Any (R(+)N)-subalgebra of R(+)M is an R-subalgebra of R(+)M , and then is

of the form R(+)N ′, for some N ′ ∈ JN,MK since R(+)N ⊆ R(+)N ′. Conversely,

for any R-subalgebra N ′ of M containing N , R(+)N ′ is an (R(+)N)-subalgebra

of R(+)M . In particular, R(+)N ⊆ R(+)M is a minimal extension if and only if

M/N is a simple module.

Proposition 2.8. Let N be a submodule of an R-module M . Then:

(1) R(+)N ⊆ R(+)M is a ∆0-extension.

(2) R(+)N ⊆ R(+)M has FCP if and only if LR(M/N) < ∞. In this case,

`[R(+)N,R(+)M ] = LR(M/N).

(3) R(+)N ⊆ R(+)M has FIP if and only if M/N is an FMS module. In this

case, |[R(+)N,R(+)M ]| = ν(M/N).

Proof. (1) By Proposition 2.3, R ⊆ R(+)M is a ∆0-extension. Since an (R(+)N)-

submodule S of R(+)M containing R is also an R-submodule of R(+)M , we get

that S is a ring, so that R(+)N ⊆ R(+)M is a ∆0-extension.

(2) By Lemma 2.1, R ⊆ R(+)M is integral and so is R(+)N ⊆ R(+)M . There-

fore, the following conditions are equivalent:

- R(+)N ⊆ R(+)M has FCP

- there exists a finite chain of minimal finite extensions going from R(+)N to

R(+)M ([8, Theorem 4.2(2)])

- there is a finite maximal chain of R-submodules of M going from N to M

- LR(M/N) <∞.
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In this case, `[R(+)N,R(+)M ] = LR(M/N), the supremum of the lengths of

chains of submodules of M containing N .

(3) The following conditions are equivalent:

- R(+)N ⊆ R(+)M has FIP

- there are finitely many (R(+)N)-subalgebras of R(+)M

- there are finitely many R-subalgebras of R(+)M containing R(+)N

- there are finitely many R-submodules of M containing N

- M/N is an FMS module.

In this case, |[R(+)N,R(+)M ]| is also the number of R-submodules of M con-

taining N , which is also ν(M/N). �

We consider now the special case where M is an ideal I of R.

Proposition 2.9. Let I be an ideal of a ring R, S := R(+)R and T := R(+)I.

Then:

(1) R ⊆ S has FCP if and only if LR(R) <∞ if and only if R is Artinian. In

this case, `[R,R(+)R] = LR(R).

(2) R ⊆ T has FCP if and only if LR(I) < ∞ if and only if I is finitely

generated and R/(0 : I) is Artinian. In this case, `[R,R(+)I] = LR(I).

(3) R ⊆ S has FIP if and only if R is an FMIR. In this case, |[R,R(+)R]| =
ν(R).

(4) R ⊆ T has FIP if and only if JIK is finite. In this case, |[R,R(+)I]| = ν(I).

Proof. Propositions 2.2 and 2.8 with M equal to R or I give most of the results

because taking N = 0 gives R(+)0 ∼= R. �

Proposition 2.10. Any f.g. module over a ring R is an FMS module if and only

if R is a finite ring.

Proof. If R is finite, then JMK is finite for any f.g. R-module M . Conversely,

let R be a ring such that any f.g. R-module is an FMS module. Set S :=

R[X,Y ]/(X2, XY, Y 2) = R[x, y], where x and y are respectively the classes of

X and Y in S. Then S is an R-module with basis {1, x, y}. For each α ∈ R, set

Sα := R(x+αy), which is an R-submodule of S. If α, β ∈ R, α 6= β, then Sα 6= Sβ .

Therefore, |R| =∞ gives a contradiction and R is a finite ring. �

Remark 2.11. If N is a submodule of an R-module M , Proposition 2.2 shows

that R ⊆ R(+)M has FCP if and only if R ⊆ R(+)N and R ⊆ R(+)(M/N) have

FCP. This property does not hold for FIP. It is enough to consider a 2-dimensional

vector space M over an infinite field, and a 1-dimensional subspace N because N

and M/N are FMS modules, while M is not.
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Example 2.12. In the following examples, we mix properties of this section and

[17, Section 3].

(1) Let k be a field, n > 1 an integer, E an n-dimensional k-vector space with

basis {e1, . . . , en} and set R := kn. We can equip E with the structure of an R-

module by the following law: for (a1, . . . , an) ∈ R and x =
∑n
i=1 xiei, xi ∈ k, we

set (a1, . . . , an)x :=
∑n
i=1 aixiei. Then E is generated over R by {e1, . . . , en} and

is faithful, while R is an FMIR. Finally, the prime (maximal) ideals of R are the

ideals Pi := {(a1, . . . , an) ∈ R | ai = 0} for i = 1, . . . , n, so that RPi
∼= k. The

canonical base {ε1, . . . , εn} of R over k is such that each εi /∈ Pi. We have εiej = 0

for each i, j ∈ {1, . . . , n} such that i 6= j, so that ej/1 = 0 in RPi
for j 6= i. It

follows that EPi
=

∑n
j=1RPi

(ej/1) = RPi
(ei/1) is cyclic over RPi

∼= k. Then,

whatever |k| may be, Corollary 2.7 gives that E is an FMS R-module. But, as soon

as |k| =∞ and n ≥ 2, E is infinite. Since EPi
∼= k(ei/1) is one-dimensional over k,

EPi
has only two RPi

-submodules. Set F :=
∏n
i=1EPi

and consider the canonical

injective morphism of R-modules ϕ : E → F and the projections ϕi : F → EPi
.

Any R-submodule N of F is of the form N ′ :=
∏n
i=1Ni, where Ni = ϕi(N), because

N ⊆ N ′ ⊆
∑n
i=1 εiN . Now ϕ is a k-isomorphism because Dimk(E) = Dimk(F ),

whence an R-isomorphism. It follows that νR(E) = 2n.

By Proposition 2.4, kn ⊆ kn(+)E has FIP, and k ⊆ kn has FIP by [4, Proposition

3, p. 29] (another proof follows from [7, Theorem III.5]). But, always in view of

Proposition 2.4, if |k| = ∞ and n ≥ 2, then k ⊆ k(+)E has not FIP, so that

k ⊆ kn(+)E has not FIP.

(1’) We keep the context of (1). Set R :=
∏n
i=1(k/(0 : ei)). Since (0 : ei) = 0

for each i, we get R = kn. Then k ⊂ R has FIP while k ⊆ k(+)E has not FIP.

(2) Let k be an infinite field, n > 1 an integer and E an n-dimensional vector

space over k. Let u ∈ End(E) with minimal polynomial Xn. Then, un = 0 and

un−1(e1) 6= 0 for some e1 ∈ E. If ei := ui−1(e1) for any i ∈ {1, . . . , n}, an easy

induction shows that {e1, . . . , en} is a basis of E over k. Set R := k[u], then E

is a faithful R-module with scalar multiplication defined by P (u) · x := P (u)(x),

for P (X) ∈ k[X] and x ∈ E. Since R ∼= k[X]/(Xn) is a SPIR and E = R · e1
because ei = ui−1 · e1 for each i, then by Theorem 2.5, E is an FMS R-module and

R ⊆ R(+)E has FIP by Proposition 2.4.

(2’) Let R be a ring, n > 1 an integer and I1, . . . , In ideals of R distinct from

R, but not necessarily distinct, such that ∩nj=1Ij = 0. Such a family {I1, . . . , In}
of ideals of R is called a separating family, a reference to Algebraic Geometry

where a finite family of morphisms {fj : M → Mj | j = 1, . . . , n} of R-modules is
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called separating if ∩nj=1 ker fj = 0. In [17, Section 3], we study the ring extension

R ⊆
∏n
j=1(R/Ij) =: R associated to a separating family.

We keep the context of (2). Since un = 0, un−1(e1) 6= 0 and ej = uj−1(e1) for

any j ∈ {1, . . . , n}, a short calculation gives Ij := (0 :R ej) = Run−j+1. Then,

∩nj=1Ij = 0 because I1 = Run = 0 and {I1, . . . , In} is a separating family such

that Ij ⊂ Ij+1 for each j ∈ {1, . . . , n − 1}. Moreover, R/Ij = R/Run−j+1 ∼=
k[X]/(Xn−j+1). Set M := Ru, R :=

∏n
i=1(R/(0 : ei)) and Jj := ∩nk=1,k 6=jIk.

Then, J1 = I2 ∼= (Xn−1)/(Xn) and Jj = 0 for each j > 1. Apply [17, Corollary

3.10]. We have
∑n
j=1 Jj = I2, giving that R/

∑n
j=1 Jj = R/I2 ∼= k[X]/(Xn−1) is a

SPIR and |R/M | =∞, because R/M ∼= k. Since I1 + J1 = I2 ∼= (Xn−1)/(Xn) and

Ij + Jj = Ij ∼= (Xn−j+1)/(Xn) for each j > 1, it is enough to take n > 3 to get

that R ⊂ R has not FIP.

(3) LetM =
∑n
i=1Rei be a faithful ArtinianR-module and setR :=

∏n
i=1(R/(0 :

ei)). Since M is faithful, we have (0 : M) = 0. Then, R is an Artinian ring in view

of [15, Theorem 2, page 180] because M is a finitely generated Artinian module,

and R ⊆ R(+)M has FCP by Proposition 2.2. Since (0 : M) = ∩ni=1(0 : ei) = 0,

the family {(0 : ei)}i=1,...,n is separating and R ⊆ R has FCP by [17, Proposition

3.1].

Examples (1’) and (2’) show that for a finitely generatedR-moduleM =
∑n
i=1Rei

such that {(0 : e1), . . . , (0 : en)} is a separating family, we may have only one of

the two extensions R ⊆ R(+)M and R ⊆
∏n
i=1(R/(0 : ei)) which has FIP, and not

the other one.

(4) Let k be an infinite field, n > 1 an integer and E an n-dimensional vector

space over k. Let u ∈ End(E) with minimal polynomial πu(X) :=
∏s
i=1 P

αi
i (X),

with each Pi(X) ∈ k[X] of degree 1, Pi(X) 6= Pj(X) for i 6= j, and such that

n =
∑s
i=1 αi. For each i, set Ei := ker(Pαi

i (u)). The “Lemme des noyaux” [4,

Proposition 3, ch. VII, p. 30] gives that E =
⊕s

i=1Ei (∗), with αi = dimk(Ei).

If R := k[u], then E is a faithful R-module for the scalar multiplication defined

by P (u) · x := P (u)(x), for P (X) ∈ k[X] and x ∈ E. Since R ∼= k[X]/(πu(X))

is an Artinian FMIR, to conclude that E is an FMS module over R by applying

Corollary 2.7, we need only to show that EM is cyclic for each M ∈ Max(R) =

{M1, . . . ,Ms} where Mi := Pi(u)R. We next prove that EMi
∼= (Ei)Mi as RMi-

modules. Let x ∈ Ej for some j 6= i, then P
αj

j (u)(x) = 0 and P
αj

j (u) is a unit in

RMi since Pj(X) 6∈ (Pi(X)). It follows that x/1 = 0 in EMi , so that EMi
∼= (Ei)Mi

by (∗). Now, we are reduced to (2) with Pαi
i (u) = 0 in (Ei)Mi

, so that each (Ei)Mi

is cyclic over RMi
and Corollary 2.7 holds.
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Theorem 2.13. A faithful R-module M is an FMS module if and only if the two

following conditions are satisfied:

(1) R is an FMIR which is a direct product of two rings R′×R′′, where |R′| <∞
and |R′′/P | =∞ for any P ∈ Spec(R′′).

(2) M is the direct product of a finite R′-module and a rank one projective

R′′-module.

Proof. IfM is an FMS module, R is an FMIR andM is f.g. over R by Corollary 2.7.

Then by Proposition 1.4, R =
∏n
i=1Ri, a product of local rings that are either finite,

or a SPIR, or a field. Let R′ be the ring product of the Ri that are finite and R′′

the product of the others. Then |R′| <∞ and a SPIR factor (Ri, Pi) of R′′ is such

that |Ri/Pi| = ∞ because Ri is local Artinian. When Ri is an infinite field, take

Pi = 0. So, (1) holds with R = R′ ×R′′.
Set M ′ := R′M = {(r′, 0)m | r′ ∈ R′, m ∈ M} and M ′′ := R′′M = {(0, r′′)m |

r′′ ∈ R′′, m ∈M}. By [3, Remarque 3, ch.II, p.32], we get M = M ′
⊕
M ′′ ∼= M ′×

M ′′, R′M ′′ = R′′M ′ = 0 and (0 :R′′ M ′′) = 0. Clearly, |M ′| < ∞ since M ′ is f.g.

over the finite ring R′. In the same way, M ′′ is f.g. over R′′. Now an R′′-submodule

N of M ′′ gives an R-submodule of M by the one-to-one function N 7→ M ′ × N .

It follows that M ′′ is an FMS R′′-module. Therefore, we can assume that R is an

FMIR with |R/P | =∞ for each P ∈ Spec(R) = {P1, . . . , Pn}. By Corollary 2.7, M

is generated over R by some e1, . . . , en ∈M such that MPi
= RPi

(ei/1) for each i.

Actually, ei/1 is free over RPi
: suppose that (a/t)(ei/1) = 0 for a ∈ R and t ∈ R\Pi.

There is some si ∈ R \ Pi such that siaei = 0. Moreover, ej/1 ∈ MPi
= RPi

(ei/1)

for j 6= i gives that ej/1 = (bj/tj)(ei/1), for some bj ∈ R, tj ∈ R \ Pi for each

j 6= i. This allows us to pick up some sj ∈ R \ Pi such that sjaej = 0. Setting

s := s1 · · · sn, we get saek = 0 for each k ∈ {1, . . . , n}. Since M is faithful, sa = 0,

so that a/t = 0. By [2, Théorème 2, ch.II, p.141], M is a rank one projective

R-module and (2) follows.

Conversely, assume that (1) and (2) hold and keep the above notation with

R = R′ × R′′, |R′| < ∞, |R′′/P | = ∞ for any P ∈ Spec(R′′) and M = M ′ ×M ′′,
where M ′ is a finite R′-module and M ′′ is a rank one projective R′′-module. Then,

from [2, Théorème 2, ch. II, p. 141], we deduce that M ′′ is f.g. over R′′, with

M ′′P cyclic for each maximal ideal P of R′′. Since M ′ is also f.g. over R′ because

finite, M is f.g. over R. For each N ∈ Max(R) such that |R/N | = ∞, there exists

P ∈ Max(R′′) such that N = R′ × P and in this case MN
∼= M ′′P as RN -modules.

Indeed, consider the RN -linear isomorphism u : MN
∼= (M ′ ×M ′′)R′×P → M ′′P

defined by u((m′,m′′)/(s, t)) = m′′/t, using the ring isomorphism RN ∼= R′′P . It
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follows that MN is cyclic over RN . By Corollary 2.7, we can conclude that M is

an FMS module. �

Remark 2.14. (1) For the proof of Theorem 2.13, it was convenient to suppose

that M is a faithful R-module. However, one should note that Theorem 2.13 can be

used to characterize when an arbitrary (not necessarily faithful) module is FMS. In

fact, an R-module M is FMS (as an R-module) if and only if M is an FMS module

over the ring R/(0 : M).

(2) The rings R′ and R′′ in the statement of Theorem 2.13 are necessarily each

FMIRs. In fact, if A and B are rings, then A× B is an FMIR if and only if both

A and B are FMIRs.
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