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1. Introduction

Since their invention by Fomin and Zelevinsky in [12] cluster algebras have found

applications in various areas of mathematics like Lie theory, quiver representations,

Calabi-Yau algebras, Teichmller theory, tropical geometry, Poisson geometry, inte-

grable systems, combinatorics and mathematical physics see [9], [10], [14], [21].

A cluster algebra is a commutative ring with a distinguished set of generators,

called cluster variables. The set of all cluster variables is constructed recursively

from an initial set using a procedure called mutation. All generators are organized

into clusters and each cluster contains exactly n clusters variables. The study of

cluster structures for 2-Calabi-Yau categories in [4] led however to the introduc-

tion of cluster algebras with countable clusters. The infinite cluster category D
of Dynkin type A∞ was constructed by P. Jørgensen in [18]. The cluster tilting

subcategories of D were classified by using the triangulations of infinity-gon in [17].

The Caldero-Chapoton map has been introduced in [6] and [8] by Caldero, Chapo-

ton and Keller to formalize the connection between the Fomin-Zelevinsky cluster

algebras and the cluster category of Buan, Marsh, Reineke, Reiten and Todorov.

The analogue of this map was realized between infinite cluster algebras of type A∞
and the infinite cluster category D by Jørgensen and Palu, see [19].

This paper is devoted to the study of cluster algebras of type A∞, cluster algebras

arising from the triangulations and the categorification of the infinity-gon. In this

paper we first give a handy construction of each cluster algebra B of type A∞.

More specifically we prove that the cluster algebra B is a particular subalgebra

of the projective limit algebra A of a particular projective system (Ai, pi,j)i,j≥1,
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where An is a cluster algebra of type An, and pi,j : Aj −→ Ai is a surjective cluster

morphism in the sense of Assem-Dupont-Schiffler.

Theorem 1.1. The cluster algebra B is the proper Z-subalgebra of the algebra

A = lim
←−
An, consisting of the ultimately constant elements of A.

We next give the study of cluster algebras arising from the infinity-gon started by

Grabowski and Gratz in [16]. In this study, we associate to each triangulation T of

the infinity-gon, the cluster algebra A(T ) as done by Fomin, Shapiro and Thurston

in [11] for the case of the marked surfaces with a finite number of marked points. For

the case of marked surfaces with a finite number of marked points, Fomin, Shapiro

and Thurston have shown that the cluster algebra associated to a triangulated

surface does not depend upon the choice of triangulation. We shall show that

this result does not hold for cluster algebras arising from the triangulation of the

infinity-gon. However, we give a complete classification of the clusters algebras

arising from the infinity-gon using the notion of congruence between triangulations

inside the set of all triangulations. In [13] Fomin and Zelevinsky have considered

the notion of strong isomorphisms, by which they mean an isomorphism of the

cluster algebras which maps every seed to an isomorphic seed. Two triangulations

T and T ′ are said to be congruent if there exists a bijection θ : S −→ S which maps

T to T ′ and preserves the flips of arcs; that is θ(T ) = T ′ and θ(fγ) = fθ(γ), where

fγ is the flip of γ.

Theorem 1.2. Let T and T ′ be two triangulations of the infinity-gon, A(T ) and

A(T ′) the associated cluster algebras. Then T and T ′ are congruent if and only if

the clusters algebras A(T ) and A(T ′) are strongly isomorphic.

We also defined the category of diagonals of the infinity-gon as the one of the

(n+3)-gon constructed by Caldero, Chapoton and Schiffler in [7]. It is well-known,

that the category of diagonals of the (n+3)-gon is equivalent to the cluster category

of Buan-Marsh-Reineke-Reiten-Todorov for the quiver of type An. Here we show

that the category of diagonals of the infinity-gon C is equivalent to the infinite

cluster category D of type A∞ of Jørgensen [18].

Theorem 1.3. The categories C and D are triangle-equivalent.

As a consequence of this result, we give a description of the Auslander-Reiten

triangles in geometric terms inspired by [3]. Our paper is organized as follows.

In Section 2, we introduce a special projective system of clusters algebras of

type An and give the relation between the projective limit of this system and the

corresponding cluster algebras of type A∞; this gives rise to a handy construction

of clusters algebras of type A∞. This construction is handy because each algebra

B is expressed as a classical sub-algebra of the product of Z-algebras.
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In Section 3, we give a complete classification of the cluster algebras arising from

the infinity-gon.

Finally, in Section 4, we construct the category C of diagonals of the infinity-gon

and show that it is triangle-equivalent to the category D. Therefore, inspired by

[3], we give a description of Auslander-Reiten triangles of C using the diagonals of

the infinity-gon.

2. Cluster algebras of type A∞

2.1. Basic construction. We recall that a quiver is a quadrupleQ = (Q0, Q1, s, t)

consisting of two sets, Q0 (whose elements are called points) and Q1 (whose ele-

ments are called arrows) and two functions s, t : Q1 −→ Q0 associating to each

arrow α ∈ Q1 its so-called source s(α) and target t(α). If i = s(α) and j = t(α), we

denote this situation by i
α−→ j. Given a point i, we set i+ = {α ∈ Q1 | s(α) = i}

and i− = {α ∈ Q1 | t(α) = i}. We say that a quiver Q is locally finite if for each

i ∈ Q0, the sets i+ and i− are finite.

Let Q be a countably infinite, but locally finite quiver without cycles of length

at most two, and let X = {xn | n ≥ 1} be a countable set of undeterminates.

where we agree that the point i of the quiver Q corresponds to the variable xi. We

define the mutation µk in k ∈ Q0 exactly as in the case of a finite quiver, that is

µk(Q,X) = (X
′
, Q
′
), where Q

′
is the quiver obtained from Q by performing the

following operations:

- for any path of i −→ k −→ j of length two having k as midpoint, we insert a new

arrow i −→ j,

- all arrows incident to the point k are reversed,

- all newly occurring cycles of length two are deleted.

Clearly, Q
′

is still locally finite.

On the other hand, X
′

is a countable set of variables defined as follows:

X
′

= (X \ {xk}) ∪ {x
′

k} where x
′

k is obtained from X by the so-called exchange

relation

xkx
′

k =
∏
α∈i+

xt(α) +
∏
α∈i−

xs(α).

These operations are performed inside the field Q(X) of rational functions over the

undeterminates xn, called the ambient field. One verifies exactly as in the case of

a finite quiver that µ2
k(Q,X) = (X,Q).

From now on, let Q be a quiver having as underlying graph the infinite half-path

A∞
1 2 3 · · · n− 1 n · · ··

We call quiver of type A∞ each quiver whose underline graph is a half-path defined

above.
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Let X = {xn | n ∈ N} be a countable set of undeterminates. We denote by

F = Q(X) the ambient field, that is the elements of the form
P (xσ(1),...,xσ(n))

Q(x%(1),...,x%(m))
, where

P and Q are polynomials (Q is not the zero polynomial) and σ, % are equipotent

maps from N to N. Each pair (X
′
, Q
′
) obtained from (X,Q) by a finite sequence

of mutations is called a seed, and the set X
′

is called a cluster. The elements of

X
′

are called cluster variables. The pair (X,Q) is called the initial seed, and X

is called the initial cluster.

Definition 2.1. The cluster algebra B = A(Q,X) is the Z-subalgebra of F gener-

ated by the set X which is the union of all possible sets of variables obtained from

X by finite sequences of mutations.

Gekhtman, Shapiro and Vainshtein showed in [14] that for every seed (X̃, Q̃)

of a given cluster algebra, the quiver Q̃ is uniquely defined by the cluster X̃. Be-

cause the mutation is a local operation inside a quiver, this result remains true for

the countable seeds above. Our objective in this first section is to give a handy

construction of the cluster algebra B = A(X,Q).

2.2. A projective system of cluster algebras. In this subsection we denote

by
−→
An the linearly oriented quiver of type An, 1 −→ 2 −→ 3 −→ · · · −→ n and by

Xn = {x1, x2, . . . , xn} an associated set of variables. Let Fn = Q(x1, x2, . . . , xn)

be the field of rational functions on the xi (with rational coefficients) and Xn be the

union of all possible sets of variables obtained from Xn by successive mutations.

This data defines a cluster algebra An = A(Xn,
−→
An) having (Xn,

−→
An) as initial

seed. We recall that the Laurent phenomenon asserts that each cluster variable in

An can be expressed as a Laurent polynomial in the xi, with 1 ≤ i ≤ n, that is,

such a variable is of the form

p(x1, x2, . . . , xn)
n∏
l=1

xdll

where p ∈ Z[x1, x2, . . . , xn] and dl ≥ 0 for all l, with 1 ≤ l ≤ n. And the positivity

[20, Theorem 1.1] asserts that all coefficients of the polynomial P are non-negative

integers. The positivity theorem holds for the cluster algebra An.

Now let i, j be positive integers with i ≤ j, we define the map pi,j : Aj −→ Ai

on the generators of Aj as follows

pi,j

p(x1, x2, . . . , xi, xi+1, . . . , xj)
j∏
l=1

xdll

 =
p(x1, x2, . . . , xi, 1, . . . , 1)

i∏
l=1

xdll

.

It follows from Theorem 6.11 of [2] that the image of this map is non-trivial and is

in the cluster algebra Ai. Since pi,j is an evaluation, it is a morphism of Z-algebras.
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Clearly, we have pi,i = idAi and if i < j, pi,j = pi,i+1pi+1,i+2 . . . pj−1,j . Thus, if

i ≤ j ≤ k, then pi,jpj,k = pi,k. Our first objective is to prove that, if i ≤ j, then

pi,j is actually a surjective morphism from Aj to Ai.

Proposition 2.2. With the above notation, Ai = Z[pi,j(X j)]. In particular, pi,j

is a surjective morphism of Z-algebras from Aj to Ai.

Proof. Because of the above equalities, it suffices to show that, for each n ≥ 2, we

have An−1 = Z[pn−1,n(Xn)]. This is done by induction on n.

Assume first n = 2. In this case A2 = Z[x1, x2,
1+x2

x1
, 1+x1+x2

x1x2
, 1+x1

x2
] while

A1 = Z[x1,
2
x1

]. The morphism p1,2 : A2 −→ A1 is defined on the generators as

follows:

p1,2(x1) = x1, p1,2(x2) = 1, p1,2( 1+x2

x1
) = 2

x1
, p1,2( 1+x1+x2

x1
) = 1+ 2

x1
, and p1,2( 1+x1

x2
) =

1 + x1. Thus, clearly, A1 = Z[p1,2(X 2)] so that p1,2 : A2 −→ A1 is a surjective

morphism of Z-algebras.

We now assume that, for every j < n, we have Aj−1 = Z[pj−1,j(X j)] and show

that An−1 = Z[pn−1,n(Xn)]. For this purpose, we use the categorification of the

cluster algebras An, and An−1, as in [5]. We recall that the Auslander-Reiten quiver

Γn of the cluster category attached to An is of the form
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where we agree to identify each point of Γn with the corresponding cluster variable

and y0,i = xi for each i such that 1 ≤ i ≤ n; and we denote by yi,j with 0 ≤ i ≤ n,

1 ≤ j ≤ n and i + j ≤ n + 1, the clusters variables of An. By the Calaby-Yau

duality of cluster category we have y0,i = yi+1,n−i+1, with 1 ≤ i ≤ n.

We denote by Γn−1 the Auslander-Reiten quiver of the cluster category attached

to An−1. It is of the form
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where again each point is identified with the corresponding cluster variable. There-

fore y
′

0,i = xi for all i such that 1 ≤ i ≤ n − 1; and we denote by yi,j with

0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 and i+ j ≤ n, the clusters variables of An−1. By the

Calaby-Yau duality of cluster category we have y′0,i = y′i+1,n−i, with 1 ≤ i ≤ n− 1.

We say that a point yi,j of Γn is stable provided pn−1,n(yi,j) = y′i,j . Clearly, all

the points y0,i with 1 ≤ i ≤ n− 1 are stable. It then follows from the definition of

mutation that, for every pair (i, j), such that i+ j ≤ n− 1, the point yi,j is stable.

Now it remains to consider the points {yi,j |n ≤ i + j ≤ n + 1} of Γn. Because

pn−1,n is an evaluation, we may write pn−1,n(yi,j) = yi,j(1) for brevity.

The proof is completed in the following three steps (a), (b), (c).

(a) We first claim that, if i+ j = n and n ≥ 1, then yi,j(1) = y
′

i,j . This is done

by induction on i.

If i = 1, we have y1,n−1 =
1+y1,n−2y0,n

y0,n−1
. The evaluation of y1,n−1 at 1 is given

by:

y1,n−1(1) =
1 + y1,n−2y0,n

y0,n−1
(1)

=
1 + y1,n−2

y0,n−1

= y′1,n−1,

where we used the stability of y0,n−1 and y1,n−2.

Assume now the result valid for all i ≤ n−1. We have yi+1,n−i−1 =
1+yi+1,n−i−2yi,n−i

yi,n−i−1
.

The evaluation of yi+1,n−i−1 at 1 is given by:

yi+1,n−i−1(1) =
1 + yi+1,n−i−2yi,n−i

yi,n−i−1
(1)

=
1 + yi+1,n−i−2(1)yi,n−i(1)

yi,n−i−1(1)

=
1 + y′i+1,n−i−2y

′
i,n−i

y′i,n−i−1

= y′i+1,n−i−1,

where we used the induction hypothesis and the stability of yi+1,n−i−2 and yi+1,n−i−1.

This establishes our claim for the step (a).

(b) Next we consider the particular case of the variable y1,n. Because y1,n =
1+y1,n−1

y0,n
, we have

y1,n(1) =
1 + y1,n(1)

y0,n(1)

= 1 + y′1,n−1

using point (a).
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(c) Finally, we prove that, if i + j = n + 1 and i ≥ 2, then pn−1,n(yi,j) =

y′0,i + y′i,n−i. Assume first i = 2, then y2,n−1y1,n−1 = 1 + y1,ny2,n−2 yields

y2,n−1(1) =
1 + y1,n(1)y2,n−2(1)

y1,n−1(1)

=
1 + (1 + y′1,n−1)y′2,n−2

y′1,n−1

=
1 + y′2,n−2

y′1,n−1

+ y′2,n−2

= y′0,1 + y′2,n−2

where we use points (a) and (b). Finally, if i ≥ 3, then

yi+1,n−i(1) =
1 + yi+1,n−i−1(1)yi,n−i+1(1)

yi,n−i(1)

=
1 + y′i+1,n−i+1(y′0,i + y′i,n−i)

y′i,n−i

=
1 + y′i+1,n−i+1y

′
i,n−i

y′i,n−i
+ y′i+1,n−i+1

= y′0,i+1 + y′i+1,n−i+1

This completes the proof of our claim.

Finally, it follows easily from (a), (b) and (c) that An−1 = Z[pn−1,n(Xn)], as

asserted. �

We want to show that pi,j is a morphism of cluster algebras in the sense of

Assem-Dupont-Schiffler in [2]. In order to define cluster morphisms, we recall the

definitions of rooted cluster algebras and rooted cluster morphisms due to I. Assem,

G. Dupont and R. Schiffler.

Definition 2.3. A seed is a triple Σ = (X, ex,B) such that:

(1) X is a countable set of undeterminates over Z, called the cluster of Σ;

(2) ex ⊂ X is a subset of X whose elements are the exchangeable variables of

Σ;

(3) B = (bx,y)x,y∈X ∈ MX(Z) is a (locally finite) skew-symmetrisable matrix

called the exchange matrix of Σ.

The elements of X\ex are called the frozen variables. Note that in the above

definition, the matrix B can be replaced by a (locally finite) quiver without loops

and 2-cycles.

Let Σ = (X, ex,Q) be a seed. We say that (x1, x2, . . . , xl) is Σ-admissible if

x1 is exchangeable in Σ and if, for every i ≥ 2, the variable xi is exchangeable in

µxi−1
◦ · · · ◦ µx1

(Σ). The mutations are made along finite admissible sequences of

variables.
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A rooted cluster algebra is defined similarly as the Fomin-Zelevinsky cluster

algebras, but the definition of rooted cluster algebras authorises seeds whose clusters

are empty. Such seeds are called empty seeds and by convention the rooted cluster

algebra corresponding to an empty seed is Z. The rooted cluster algebra is always

viewed with its initial seed. To know more about the different points of view

between Fomin-Zelevinsky cluster algebras and rooted cluster algebras, we refer to

[2, Remark 1.7].

Let Σ = (X, ex,Q) and Σ′ = (X ′, ex′, Q′) be two seeds and let f : A(Σ) −→
A(Σ′) be a map. A sequence (x1, x2, . . . , xl) ⊂ A(Σ) is (f,Σ,Σ′)-biadmissible if it

is Σ-admissible and (f(x1), . . . , f(xl)) is Σ′-admissible. The following definition is

due to Assem, Dupont and Schiffler.

Definition 2.4. A rooted cluster morphism from A(Σ) to A(Σ′) is a ring homo-

morphism from A(Σ) to A(Σ′) such that:

(CM1) f(X) ⊂ X ′ ∪ Z
(CM2) f(ex) ⊂ ex′ ∪ Z
(CM3) For every (f,Σ,Σ′)-biadmissible sequence (x1, x2, . . . , xl), we have µxl ◦· · ·◦

µx1,Σ(y) = µf(xl) ◦ · · · ◦ µf(x1),Σ′(f(y)).

The rooted cluster algebras and the rooted cluster morphisms form a category

denoted by Clus, see [2].

Let Σn = (Xn, exn, Qn), with exn = Xn, then Σn is a seed of the rooted cluster

algebra A(Σn); the cluster algebra A(Σn) coincides with the cluster algebra An.

We also have Σn−1 = Σn\{xn}, where the seed Σn\{xn} is defined in [2, Section

6.2].

Corollary 2.5. Each Z-morphism pi,j is a surjective rooted cluster morphism.

Proof. By Proposition 2.2, the map pn−1,n is a Z-morphism induced by the spe-

cialization of xn to 1. Because of [2, Proposition 6.10], the Z-morphism pn−1,n is a

surjective rooted cluster morphism. Since pi,j = pi,i+1 ◦ pi+1,i+2 ◦ · · · ◦ pj−1,j and

each pn−1,n is a surjective rooted cluster morphism, by [2, Proposition 2.5] pi,j is

also a surjective rooted cluster morphism. �

Corollary 2.6. The family (Ai, pi,j)i,j≥1 forms a projective system of cluster al-

gebras.

We denote by A = lim
←−
An the corresponding projective limit in the category of

Z-algebras, thus

A = {(an)n≥1 ∈ Π
n≥1
An | pi,j(aj) = ai}.

We also denote by pi : A −→ Ai the canonical morphisms induced by the projective

limit. Let al be a cluster variable of Ai, then the element (a1, a2, . . . , al, al, . . . )

with l ≥ i, is an element of A and pi(a1, a2, . . . , al, al, . . . ) = ai; therefore pi is an
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epimorphism of Z-algebras. The pi are called the canonical projections morphisms.

We thus have a commutative diagram

. . . // // Ai
p
i−1,i// // . . . // // A2

p1,2 // // A1

A

pi

OOOO
p2

66 66

p1

44 44

For more details about projective limits and their properties, we refer to [1, Chap.11].

It was shown that the category Clus admits countable coproducts [2, Lemma

5.1] and does not generally admit products [2, Proposition 5.4].

Definition 2.7. An element (an)n≥1 of A = lim
←−
An is ultimately constant if there

exists j ∈ N such that an = aj for all n ≥ j.

Let Q be a linear oriented quiver of type A∞ with the unique source in 1. Here

(X,Q) is a seed of the cluster algebra B. We want to understand the relation

between the cluster algebra B and the Z-algebras A. Because the algebra A is a

projective limit of cluster algebras of finite type, it allows to express the cluster

algebra B in term of A. Our first result is the following.

Theorem 2.8. The cluster algebra B is the proper Z-subalgebra of the algebra A,

consisting of the ultimately constant elements of A = lim
←−
An.

Proof. Assume thatQ is the quiver having as underlying graph the infinite tree A∞
with linear orientation and for unique source the vertex 1. Recall that B = A(X,Q)

is the cluster algebra associated to a seed (X,Q), where X = {xn, n ≥ 1}. Let

Y = {yn, n ≥ 1} be a new set of undeterminates whose elements are defined

by y1 = (x1, x1, x1, . . . ), y2 = (1, x2, x2, x2, . . . ), y3 = (1, 1, x3, x3, x3, . . . ), . . . ,

yi = (1, 1, 1, . . . , 1, xi, xi, xi, . . . ), . . . By definition, all yi are elements of A and the

family (yn)n≥1 is algebraically independent. Let F̃ = Q(Y ) be the field of rational

functions over yi (with rational coefficients), we call F̃ the ambient field.

The cluster algebra Ã = A(Y,Q) is the Z-subalgebra of F̃ generated by the set

Y which is the union of all possible sets of variables obtained from Y by successive

mutations. We define the map ϕ : B −→ Ã by setting ϕ(xi) = yi and we extend it to

all cluster variables of B by respecting mutations, that is if zi = µxik . . . µxi2µxi1 (xi)

then ϕ(zi) = µϕ(xik ) . . . µϕ(xi2 )µϕ(xi1 )(ϕ(xi)). We extend again ϕ to an injective

morphism of Z-algebras. Thus ϕ is a monomorphism of Z-algebras.

Let x = p(x1, x2, . . . , xk) be an element of X then y = p(y1, y2, . . . , yk) is an

element of Y. By definition we have ϕ(x) = y. This shows that the morphism ϕ is

an isomorphism between B and ϕ(B) = Ã.

Each ultimately constant element of A belongs to Ã. But the element a =

(x1, x1x2, x1x2x3, . . . , x1x2x3 . . . xk, . . . ) is an element of A which does not belong

to Ã. Therefore Ã is a proper Z-subalgebra of the algebra A.
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Now let x = {qn | n ≥ 1} be a cluster of B, by the definition of ϕ we have

ϕ(µqk(x)) = µϕ(qk)(ϕ(x)) and ϕ(x) is a cluster of Ã. It follows that ϕ is a cluster

isomorphism. For more details about cluster isomorphisms, we refer to [2]. This

completes the proof. �

Remark 2.9. Let Q be a quiver of type A∞ and Qn the full sub-quiver of Q

whose set of vertices is Qn0 = {1, 2, . . . , n}. We denote by B′ the cluster algebra of

seed (X,Q) and A′n the cluster algebra of seed (Xn, Qn). We reproduce the above

construction with B′ playing the role of B and A′n playing the role of An. Then

the Theorem 2.8 remains true for any cluster algebra of type A∞.

Corollary 2.10. The Laurent phenomenon and the positivity theorem hold for the

cluster algebra B.

Proof. Let a be a cluster variable of the cluster algebra B. By Theorem 2.8, there

exists a non-negative integer k such that ϕ(a) = (a1, a2, . . . , ak, ak, . . . ) is a cluster

variable of Ã with 1 ≤ i ≤ k and pi,j(aj) = ai. Since the element ak is a cluster vari-

able of Ak, then ak = p(x1, x2, . . . , xk) is the Laurent polynomial with nonnegative

coefficients by the positivity [20, Theorem 1.1]. By the isomorphism introduced in

the proof of Theorem 2.1, we have P (y1, y2, . . . , yk, yk) = ϕ(P (x1, x2, . . . , xk, xk));

Hence a = P (x1, x2, . . . , xk, xk). Then the Laurent phenomenon and the positivity

theorem hold for the cluster algebra B. �

The above corollary was proved by using other technics in [19, Theorem 6.8] and

[15, Proposition 3.2].

3. Cluster algebras arising from infinity-gon

Fomin, Shapiro and Thurston initiated a study of the cluster algebras arising

from triangulations of a surface with boundary and finitely many marked points

in [11]. In this approach, it was shown that the cluster algebra associated to a

triangulation of a marked surface (S,M) depends only on the surface (S,M) and

not on the choice of triangulation. This result is not true as we shall see for the case

of the infinity-gon. Our objective in this section is to classify the cluster algebras

arising from the infinity-gon.

3.1. Triangulations of the infinity-gon. In this subsection, we classify the tri-

angulations of the infinity-gon S by using the notions of connected component and

frozen arc which will be defined later.

We adopt the same philosophy as that of [17], that is, we view the integers as

the vertices of the infinity-gon and the pairs of integers as the arcs.

Let (m,n) be an arc of the infinity-gon, with m < n. If n − m = 1, we say

that the arc (m,n) is a boundary arc, and if n − m ≥ 2, we say that (m,n) is

a diagonal of the infinity-gon. The diagonals of S will be simply called the arcs.
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Two arcs (m,n) and (p, q) are said to cross if we have either m < p < n < q or

p < m < q < n. A triangulation of S is a maximal set of non-crossing arcs.

Definition 3.1. A triangulation T of S is called a zigzag triangulation if it is of

the form T = {(−n + n0, n + n0), (−n + n0 − 1, n + n0)/n ≥ 1} or T = {(−n +

n0, n+ n0), (−n+ n0, n+ n0 + 1)/n ≥ 1}, where n0 is a given integer.

Example 3.2. Let T and T ′ be the sets of arcs defined by T = {(−n, n), (−n, n+

1)/n ≥ 1} and T ′ = {(−n,−1), (−1, 1), (1, n)/n ≥ 3}. One can show that T and T ′

are two triangulations of S whose illustrations are respectively the following:

a b

The triangulation T is called a zigzag triangulation.

The following definition is due to Holm and Jørgensen in [17].

Definition 3.3. Let T be a triangulation of S.

(a) If for each integer n there are only finitely many arcs in T which are incident

to n, then T is called locally finite.

(b) If n is an integer such that T contains infinitely many arcs of the form

(m,n), then n is called a left-fountain of T .

(c) If n is an integer such that T contains infinitely many arcs of the form

(n, p), then n is called a right-fountain of T .

(d) If n is both a left-fountain and a right-fountain of T , then it is called a

fountain.

It is shown in [17] that if a triangulation of S has a right-fountain, then it also has

a left-fountain and vice versa. The following result in [17, Lemma 3.3] characterizes

the triangulations of infinity-gon.

Lemma 3.4. Let T be a triangulation of S. Then T has at most one right-fountain

and at most one left-fountain.

Now we introduce the notion of connected components of the triangulations of

S before giving a classification of the triangulations of S. Let T be a triangulation

of S and γ an arc of T . We say that the arc γ′ is the flip of the arc γ if the set

(T\{γ}) ∪ {γ′} is a triangulation of S.



156 NDOUNÉ NDOUNÉ

Following [19], we say that the arc ω = (s, t) spans the arc δ = (u, v) if s ≤ u <
v < t or s < u < v ≤ t. We denote by B(ω) the set of all arcs which are spanned

by the given arc ω.

Definition 3.5. Let T be a triangulation of S, and τ an arc of T . We say that an

arc γ is reachable by τ if for all sequence of arcs γ1, γ2, . . . , γk, such that γj+1 ∈
fγj . . . fγ1fτ (T ), with 0 ≤ j ≤ k − 1 and γ ∈ fγk . . . fγ1fτ (T ), then there exists an

arc ω of T which spans the set {τ, γ1, . . . , γk}.

If so we say that the sequence of flips fγk , . . . , fγ1 transforms τ to γ and we

denote γ = fγk . . . fγ1(τ).

The connected component of an arc τ of T denoted Cτ is the set of all arcs which

are reachable by τ . The connected components of a given arc of T is called simply

the connected component of T . So two distinct connected components of T are

disjoint.

An arc of T which can not be flipped to any other arc is called a frozen arc.

Lemma 3.6. Any triangulation of S has at most one frozen arc.

Proof. Let T be a triangulation of S. Assume that T is locally finite. Let γ be

an arc of S, then there exists an arc ζ such that γ is an arc of the polygon Pζ
bounded by ζ. The restriction Tζ of the triangulation T to Pζ is a triangulation.

Because γ is an arc of Pζ , it is joined by a finite sequence of flips of arcs of Tζ .

Since Tζ ⊂ T , then γ is joined by a finite sequence of flips of arcs of T . Thus, each

arc of S is reachable; hence T has no frozen arc. If T has a left-fountain m0 and

a right-fountain n0 such that n0 −m0 = 1, then T has two connected components

and no frozen arc. If T has a left-fountain m0 and a right-fountain n0 such that

n0 − m0 ≥ 2, then T has three connected components and the arc (m0, n0) is a

frozen arc. Assume that T possesses another frozen arc (m1, n1), then (m1, n1)

crosses an infinity of arcs of T incident to m0 or an infinity of arcs of T incident to

n0.

Assume now that T is a triangulation with two frozen arcs ω1 and ω2. The arc ω1

does not spans ω2 and vice versa, because if not, then one of the two frozen arcs can

be flipped to another arc. Each frozen arc bounds a finite connected component,

and then it is finite. Therefore, the triangulation T has more than one left-fountain

or more than one right-fountain. This is a contradiction to Lemma 3.4. �

Let T be a triangulation of S with a frozen arc τ , we say that T is of Type (III)k

with k = |B(τ)|, where is the number of arcs spanned by the frozen arc ω = (s, t),

more precisely k = |t− s− 1|.

Definition 3.7. A triangulation T of S is called

a) of Type (I) if it has only one connected component.

b) of Type (II) if it has two connected components and no frozen arc.
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c) of Type (III)k if it has two connected components and one frozen arc or if it

has three connected components and one frozen arc, where k is nonnegative

integer.

The following result gives a classification of the triangulations of S which uses

the notions of connected components and the frozen arc.

Proposition 3.8. Any triangulation of S is one of the three types (I), (II), (III)k.

Proof. Let T be a triangulation of S. If T is locally finite, then every arc of S can

be reached by a sequence of flips of arcs of T . Then T is of type (I). If T has a

fountain or a left-fountain m0 and a right-fountain n0 with n0 −m0 = 1, then T

has two connected components, and any arc of each component is reachable. In

this case T has no frozen arc, hence T is of type(II).

If T has a left-fountain m0 and a right-fountain n0 with n0 −m0 ≥ 2, then T

has three connected components. The arc (m0, n0) is an arc of T . Assume that

(m0, n0) is not in T ; then one of the arcs (m0 + 1, n0), (m0, n0 − 1) belongs to T

and one of the arcs (m0 − 1, n0), (m0, n0 + 1) belongs to T . If the arc (m0 + 1, n0)

belongs to T, then (m0 − 1, n0) ∈ T and (m0 − 1, n0) crosses an infinite number

of arcs of T incident to a left fountain m0. This is a contradiction because T is a

triangulation. Similarly, if (m0, n0−1) belongs to T , we get a contradiction. Hence

the arc (m0, n0) is a frozen arc, and it is unique by Lemma 3.6. Thus T is of type

(III)k.

Assume now that T has l connected components, where l ≥ 4. Then only one of

the l components is finite, because if not, T would have more than one frozen arc,

and this is a contradiction to Lemma 3.6. Therefore, the triangulation T has at least

three infinite connected components. Each of the infinite connected components

of T contains either a right-fountain or a left-fountain, thus T has more than two

fountains, this contradicts Lemma 3.3 of [17]. �

Fomin, Shapiro and Thurston in [11] associated to a triangulation of a marked

surface (S,M) a finite quiver without cycles of length at most two. Similarly, we

associate to each triangulation of S an infinite quiver without cycles of length at

most two.

Let T be a triangulation of the infinity-gon S, we associate to T a quiver QT .

The classification of quivers QT is given in [16, Theorem 3.11]. We associate to the

triangulation T the cluster algebra A(T ) of seed (XT , QT ) in the same way as the

one for a marked surface (S,M).

Remark 3.9. Proposition 3.8 is equivalent to the Theorem 3.11 of [16].

An isomorphism f between two Z-algebras is called a strong isomorphism of

clusters algebras if f maps each cluster to a cluster and preserves mutations. For

more details we refer to [13].
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Example 3.10. We consider T = {(−n, n), (−n− 1, n) | n ≥ 1} and

T ′ = {(−n, 0), (0, n) | n ≥ 2},

two triangulations of S. The quiver associated to the triangulation T is the quiver

QT given by:

1 // 2 oo 3 // . . . oo n− 1 // n oo . . .

and the quiver associated to the triangulation T ′ is the non connected quiver QT ′

given by:

2 // 4 // 6 // . . . // 2n // 2n+ 2 // . . .

1 oo 3 oo 5 oo . . . oo 2n− 1 oo 2n+ 3 oo . . . .

There is no strong isomorphism between the cluster algebras A(T ) and A(T ′).

This shows that the theorem of Fomin, Shapiro and Thurston mentioned above does

not hold for the infinity-gon.

3.2. The specificity of cluster algebras arising from the infinity-gon. In

this section we find a criterion that allows us to decide whether two triangulations

give rise to isomorphic cluster algebras. We denote S the set of all arcs of S.

Definition 3.11. Two triangulations T and T ′ are said to be congruent if there

exists a bijection θ : S −→ S which maps T to T ′ and preserves the flips of arcs;

that is θ(T ) = T ′ and θ(fγ) = fθ(γ), where fγ is the flip of γ.

The bijection θ is called an admissible map. If T and T ′ are congruent, we

denote by T ' T ′. Congruence is an equivalence relation.

Example 3.12. Let Γ be the triangulation defined by Γ = {(−n, 0), (0, n) | n ≥ 2},
and Γ′ the triangulation given by Γ′ = {(−n, 0), (−2, 0), (1, n) | n ≥ 3}.

We observe that the sets SΓ = {(m,n) | m ≤ −1, n ≥ 1} and

SΓ′ = {(−1, 1), (m,n), (0, n) | m ≤ −1, n ≥ 0}

are respectively the complements of the triangulations Γ and Γ′. Since SΓ and SΓ′

are countable sets, they are equipotent; that is there exists a bijection ξ which maps

each element (m,n) of SΓ to a unique element ξ(m,n) of SΓ′ .

We define the map θ : S −→ S by:
θ(m,n) = (m,n) if m ≤ −2, n ≤ 0

θ(m,n) = (m+ 1, n+ 1) if m ≥ 0, n ≥ 2

θ(m,n) = ξ(m,n) otherwise

The map θ is a bijection such that θ(Γ) = Γ′ and preserves the flips of arcs. The

two triangulations Γ and Γ′ are congruent.

Let (γn)n≥1 be a sequence of arcs in S, we say that the sequence (γn)n≥1 spans

S if for any arc γ there exists an integer k such that γ is spanned by γk.



CLUSTER ALGEBRAS ARISING FROM INFINITY-GON 159

Lemma 3.13. Let T be a triangulation of type (I), then there exist a zigzag trian-

gulation Z and a sequence of common arcs (γn)n≥1 in T and Z that spans S.

Proof. Let T be a triangulation of type (I), we shall show that there exists a

sequence of distinct arcs (γkn)n≥1 of T such that γkn = (skn , tkn), where skn+1
<

skn < 0 and tkn+1 > tkn > 0.

We assume first that any arc γ = (s, t), with s < 0 and t > 0 does not belong

to T . Because (s, t) does not belong to T and T is a triangulation, there is an

arc γ1 = (s1, t1) of de T which crosses (s, t) and γ1 is closer to a vertex t and

t1 > t. Analogously, there exists an arc γ2 = (s2, t2) of de T which crosses (s, t)

and γ2 is closer to a vertex s and s2 < s. The connected components Cγ1 and Cγ2
respectively of γ1 and γ2 are distinct, this is a contradiction because T is of type

(I).

We show that T has an infinite sequence of arcs (γkn)n≥1 where skn+1 < skn < 0

and tkn+1
> tkn > 0. Assume that any sequence of arcs (γkn)n≥1 with the above

property is finite. Let γkl = (skl , tkl), with skl < 0 and tkl > 0 be an arc of T

such for all arc of (γkn)n≥1, we have skl < skn and tkl > tkn . The same argument

used for γ to γkl gives rise to a contradiction. Thus there exists a sequence of arcs

(γkn)n≥1 of T which can be chosen such that skn+1
< skn<0 and tkn+1

> tkn>0. For

now we construct a zigzag triangulation having infinitely many common arcs with

T . Because (γkn)n≥1 is sequence of infinite non-crossing arcs, we can extend it in

each polygon delimited by γkn and γkn+1
. This extension gives rise to a new set

of non-crossing arcs Z. In fact, Z is a triangulation of S by the construction, and

each γkl is a common arc of T and Z.

Finally, we show that (γkn)n≥1 spans S. Let δ = (u, v) be an arc of S, since

(γkn)n≥1 is infinite, there is an integer l such that the arc δ is spanned by γkl . This

completes the proof. �

Lemma 3.14. Let T and T ′ be two triangulations of type (II) or T and T ′ be

two triangulations of type (III)k, and let CT and CT ′ their connected components

respectively. Then there is a sequence of common arcs (γn)n≥1 in T and T ′ that

spans CT and CT ′ .

Proof. (i) Let T and T ′ be two triangulations of type (II), suppose that T has a

left-fountain m0 and a right-fountain n0, n0 −m0 = 1. There is a triangulation Γ

with one fountain such that its associated quiver QΓ is isomorphic to the associated

quiver QT of T .

Because of the above argument, it is sufficient to give a proof just for the case

where each triangulation has a left-fountain and a right-fountain. Let T and T ′

be two triangulations of type (II) such that T has a left-fountain m0 and a right-

fountain n0 and T ′ has a left-fountain m′0 and a right-fountain n′0. Because n0 and

n′0 are two integers, we can assume n0 ≤ n′0; and there is a non negative integer l
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such that l = n′0 − n0. We define the map σ : S −→ S by σ(m,n) = (m+ l, n+ l).

The map σ is a bijection and the image σ(T ) of T is a triangulation. Moreover, σ

preserves the flips of arcs. Thus σ is an admissible map. Therefore, we can suppose

without loss of generality that T and T ′ have the same left-fountain m0 and the

same right-fountain n0. Because the triangulations T and T ′ have the same left-

fountain m0 and the same right-fountain n0, there exists infinitely many common

arcs of the form (n0, n) and so, there exists infinitely many common arcs of the

form (m,m0). Thus there is a sequence of distinct common arcs (γkn)n≥1 which

spans CT and CT ′ .

(ii) Now we suppose that T and T ′ are two triangulations of type (III)k. By

using the argument above, we can assume without loss of generality that T and T ′

have the same left-fountain m0 and the same right-fountain n0.

If k is equal to zero, the proof is similar as in (i). If k ≥ 1, the frozen arc ω

bounds a polygon Pω; and by the definition of k, each arc of the restriction of T to

Pω is spanned by ω and each arc of the restriction of T ′ to Pω is spanned by ω. By

combining this argument and the one used in (i) to define the common arcs, there

exists a sequence of distinct arcs (γkn)n≥1 which spans CT and CT ′ . �

Proposition 3.15. Let T and T ′ be two triangulations of S, then T and T ′ are

congruent if and only if T and T ′ are of the same type.

Proof. Let T and T ′ be two triangulations of S, and assume that T ' T ′. Since

T ' T ′, there exists an admissible map θ which maps T to T ′. Let Cγ be a

connected component of T, then θ(Cγ) is a connected component of T ′. Because

θ(γ) ∈ θ(Cγ), we have θ(Cγ) = Cθ(γ). If Cγ and Cδ are two distinct connected

components of T , then θ(Cγ) and θ(Cδ) are distinct connected components of T ′.

The number of connected components is invariant by θ. Moreover the connect

components Cγ and Cθ(γ) are both either finite, or infinite. Moreover, if T has a

finite component Cγ , then |Cγ | = |Cθ(γ)| = k. Hence T and T ′ are of the same

type. Conversely, let T and T ′ be two triangulations of S, we have three cases.

(i) If T and T ′ are of the type (I), then by Lemma 3.13 there exists a zigzag

triangulation Z and a sequence of common distinct arcs (γkn)n≥1 in T and Z that

spans S.

Let Pkn be the polygon bounded by the arc γkn . The restriction Tkn and Zkn
of the triangulations T and Z are triangulations of Pkn . We want to show that

T =
⋃
n≥1

Tkn and Z =
⋃
n≥1

Zkn . Because Tkn ⊂ T , then
⋃
n≥1

Tkn ⊂ T . For now let us

show that
⋃
n≥1

Tkn is a triangulation. Assume that
⋃
n≥1

Tkn is not a triangulation,

since
⋃
n≥1

Tkn ⊂ T and the maximality of T implies the existence of arc ς ∈ T and

ς does not belong to
⋃
n≥1

Tkn . Because the sequence (γkn)n≥1 spans S, there exist
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an integer l such that the arc ς is spanned by γkl . Hence ς is an arc of Tkl , this is

a contradiction. Thus T =
⋃
n≥1

Tkn . Analogously, one can show that Z =
⋃
n≥1

Zkn .

We know that Tkn and Zkn are related by a sequence of flips. This sequence of

flip induces an admissible map θn which maps Tkn to Zkn . Let Pkn be the set of

all arcs of Pkn , we have Pkn ⊂ Pkn+1 . We have also
⋃
n≥1

Pkn = S.

We define the map θ : S −→ S by the following: let γ be an element of S,

then there is a minimal integer n such that γ ∈ Pkn , we set θ(γ) = θn(γ). By

construction, θ is a bijection which maps T to Z and preserves the flips of arcs.

Hence T ' Z.

We reproduce the same reasoning above with T ′ playing the role of T and Z ′

playing the role of Z.

If (m0, n0) is the arc of Z and (m′0, n
′
0) is the arc of Z ′ such that n0 − m0 =

2 = n′0 −m′0. We set l = n′0 − n0 and define the map σ : S −→ S by σ(m,n) =

(m+ l, n+ l). Then σ is an admissible map which maps Z to Z ′. Then Z ' Z ′ and

thus T ' T ′.
(ii) If T and T ′ are of the type (II), because CT = CT ′ we use Lemma 3.14 and

we have a bijection θ in CT which maps T to T ′ and preserves the flips of arcs.

We define θ on each unreachable arc γ by θ(γ) = γ. Then we have extended the

bijection θ to S. Hence θ is an admissible map, thus T ' T ′.
(iii) If T and T ′ are of the type (IIIk), the restrictions of the triangulations T

and T ′ to the polygon bounded by the ice arc are congruency. Because CT = CT ′ ,

by using the same principle as in (b), we construct an admissible map θ which maps

T to T ′. �

Corollary 3.16. Let T and T ′ be two triangulations of S, if T and T ′ are mutation

equivalent, then T and T ′ are congruent.

Proof. Let T and T ′ be two triangulations of S. Assume that T and T ′ are flip

equivalent. Because the triangulations T and T ′ are flip equivalence, they are of

the same type. By Proposition 3.15, we have T ' T ′. �

Remark 3.17. The congruence relation generalize the notion of triangulations flip

equivalent. Thus, the notion of congruency can be used for the triangulations of

polygons.

Now we are in position to proof our second main theorem.

Theorem 3.18. Let T and T ′ be two triangulations of S, A(T ) and A(T ′) the

associated cluster algebras. Then T and T ′ are congruent if and only if the clusters

algebras A(T ) and A(T ′) are strongly isomorphic.

Proof. Let T and T ′ be two triangulations of S, assume that T ' T ′. Let A(T )

be a cluster algebra of seed (XT , QT ) :=
∑
T , where QT is a quiver of T and
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XT = {xγ | γ ∈ T} the set of undeterminates. Let A(T ′) be a cluster algebra of

seed (XT , QT ′) :=
∑
T where QT ′ is a quiver of T ′ and XT ′ = {uλ | λ ∈ T} the set

of undeterminates.

Since T ' T ′, there exists an admissible bijection θ, such that θ(T ) = T ′. We

denote by fγ the flip of the arc γ. We define ϕθ : A(T ) −→ A(T ′) on the cluster

variable by ϕθ(xγ) = uθ(γ). We have in one hand

ϕθ(xT ) = {ϕθ(xγ) | γ ∈ T}
= {uθ(γ) | γ ∈ T}
= {uθ(γ) | θ(γ) ∈ θ(T )}
= {uλ | λ ∈ T ′}.

On the other hand, we have

ϕθ(µxγ ) = ϕθ(xf(γ))

= uθ(f(γ)

= uf(θ(γ))

= µuθ(γ)(uθ(γ)).

We extend ϕθ to an isomorphism of Z-algebras from A(T ) to A(T ′). Therefore

A(T ) and A(T ′) are strongly isomorphic.

Conversely assume that A(T ) and A(T ′) are strongly isomorphic and that T and

T ′ are not congruency. Then there exists a strong isomorphism ψ : A(T ) −→ A(T ′).

According to Proposition 3.16, T and T ′ are not of the same type. We have four

cases to enumerate.

(a) T is of type (I) and T ′ is of type (II). Because T ′ is of type (II), it has

two disjoint connected components. Let uλ1
and uλ2

be the cluster variables such

that λ1 and λ2 do not belong to the same connected component. Since ψ is a

strong isomorphism, there are two arcs γ1 and γ2 such that ψ(xγ1) = uλ1
and

ψ(xγ2) = uλ2
. The two arcs γ1 and γ2 are related to a sequence of flips and then

the two variables xγ1 and xγ2 are related to a sequence of mutations, because T is

of type (I). In fact, ψ is a strong isomorphism, then uλ1
and uλ2

are related to a

sequence of mutations. Thus λ1 and λ2 are related by a sequence of flip. This is a

contradiction, because λ1 and λ2 do not belong to the same connected component.

(b) T is of type (I) and T ′ is of type (III)k. The proof is analogous of the one

in the case (a).

(c) T is of type (II) and T ′ is of type (III)k. The triangulation T ′ has a frozen

arc ω, then the cluster algebra A(T ′) has a frozen cluster variable uω in the sense

of [2]. Because ψ is strong isomorphism, there is a frozen variable xγ in A(T ) such

that ψ(xγ) = uω and A(T ) is without frozen variable. This is a contradiction.

(d) T is of type (III)k and T ′ is of type (III)k′ with k 6= k′. We assume without

loss of generality that k > k′. Let ω and ω′ be respectively the frozen arcs of T and

T ′. Because ψ is a strong isomorphism, we have ψ(xω) = uω′ . Since k > k′, there
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is an arc γ spanned by ω such that ψ(xγ) = uλ, and λ is not spanned by ω′. The

arc γ is related by a sequence of flips of arcs spanned by ω and the arc λ is not

related by a sequence of flips of arcs spanned by ω. This is also a contradiction,

because ψ is a strong isomorphism. �

Now we want to show that each cluster algebras of type A∞ can be embedded

in a cluster algebra arising from S.

Lemma 3.19. Let Q be a connected quiver mutation equivalent to a quiver of type

A∞. Then Q is not a quiver associated to a triangulation of S if and only if Q has

a subquiver of type A∞ with linear orientation.

Proof. Assume that Q connected quiver and is mutation equivalent to a quiver of

type A∞ with non linear orientation. Because Q is a connected quiver of type A∞,

its underlying graph is an infinite half-path A∞. Since Q is a quiver with no linear

orientation, then Q is locally finite. Thus, Q can be associated to a locally finite

triangulation of S, that is there exists a triangulation T of S such that QT ∼= Q.

Conversely, assume that Q has a subquiver of type A∞ with linear orientation.

It is sufficient to show that the quiver R: 1 −→ 2 −→ . . . . is not the quiver

associated to any triangulation. Suppose that there exists a triangulation T such

that QT = R. We denote by τi the arc of T corresponding to the vertex i. All

τi, where i is a non-negative integer have the same origin and are the arc of the

same half-line. T = {τi | i ≥ 1} is a triangulation of S with left-fountain, but not

right-fountain. This is the contradiction see [17]. �

Corollary 3.20. Let Q be a quiver mutation equivalent to a quiver of type A∞. Let

u = {ui | i ≥ 1} the set of undeterminates attached to a vertices of Q. Then there

exists a seed ΣT = (xT , QT ) associated to a triangulation T of S and an embedding

η : A(u,Q) ↪→ A(ΣT ).

Proof. Assume that Q is a mutation equivalent to a quiver of type A∞. If Q has

a subquiver with orientation not necessarily linear, then Q is quiver associated to

a triangulation of S; hence the result.

Assume now that Q has a subquiver of type A∞ with linear orientation. By

Lemma 3.20, Q is not the quiver of any triangulation of S. We defined the quiver

R of type A∞ with linear orientation distinct to the one of Q. The Quiver Q∪R is

a quiver associate to a triangulation T of S. The inclusion of the quiver Q ⊂ Q∪R
induces an embedding of cluster algebras η : A(u,Q) ↪→ A(ΣT ). �

4. The cluster category of associated to S

4.1. The infinite cluster category of type A∞. We recall the description of

the infinite cluster category given in [17, 18]. Let K be a field and R = K[T ] be the

polynomial algebra. We view R as a differential graded algebra with zero differential
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and T placed in homological degree 1. Then we set Df (R) be the derived category

of differential graded R-modules with finite dimensional homology over K, then

D = Df (R) is the infinite cluster category of type A∞. The suspension and the

Serre functor of D are denoted by Σ and S respectively. The category D is a K-

linear, Hom-finite, Krull-Schmidt, triangulated and 2-Calabi-Yau category whose

Auslander-Reitein quiver is of the form ZA∞, we refer to [18]. The Auslander-

Reiten translation of D is τ = SΣ−1 = Σ. For a given integer r ≥ 0, we have a

differential graded R-module Xr = R/(T r+1) which is concentrated in homological

degrees from 0 to r. The indecomposable objects of D are ΣjXr for j, r integers,

r ≥ 0 and Σ the shift of D. The Auslander-Reiten quiver Γ(D) of D is of the form

...
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By using the identification (m,n) := Σ−nXn−m−2, we have the following represen-
tation of the quiver Γ(D)

. . .

%%

.

.

.

##

.

.

.

##

.

.

.

##

.

.

.

  

. . .

(−4, 1)

%%

;;

(−3, 2)

%%

;;

(−2, 3)

%%

;;

(−1, 4)

$$

==

(0, 5)

%%

;;

. . . (−4, 0)

88

''
(−3, 1)

99

%%
(−2, 2)

99

%%
(−1, 3)

99

%%
(0, 4)

;;

##
(1, 5) . . .

(−3, 0)

99

%%
(−2, 1)

99

%%
(−1, 2)

99

%%
(0, 3)

::

$$
(1, 4)

99

%%
(−3,−1)

88

(−2, 0)

99

(−1, 1)

99

(0, 2)

99

(1, 3)

;;

(2, 4)

The identification of the indecomposable objects Σ−nXn−m−2 of D given by

(m,n) := Σ−nXn−m−2 is called the standard coordinates system on Γ(D). The

morphisms between indecomposable objects are described as follows: Let x =

Σ−jXj−i−2 be a vertex of the Auslander-Reiten quiver of D, we define the sets

H−(x) and H+(x) of vertices of the Auslander-Reiten quiver as

H−(x) = {Σ−nXn−m−2/m ≤ i− 1, i+ 1 ≥ n ≤ j − 1}
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and H+(x) = {Σ−nXn−m−2/i + 1 ≥ m ≤ j − 1, j + 1 ≤ n}. We write H(x) =

H−(x) ∪H+(x). This situation can be sketched as follows.

H−(x) H+(x)

Σx x Σ−1x

Moreover we have H−(x) = {Σ−nXn−m−2/m ≤ i − 1, i + 1 ≥ n ≤ j − 1} and

H+(x) = {Σ−nXn−m−2/i + 1 ≥ m ≤ j − 1, j + 1 ≤ n}. We write H(x) =

H−(x) ∪H+(x).

The following proposition in [17] characterizes the morphisms of D.

Proposition 4.1. Let x and y be two indecomposable objects of D. Then

HomD(x, y) =

{
K if y ∈ H(Σx)

0 if not

The following remark is due to Holm and Jørgensen [17, Remark 2.4].

Remark 4.2. There are two distinct types of non-zero morphisms going from x to

indecomposable objects of D: those going to objects in H+(x) are called forward

morphisms, and those going to objects H−(x) are called backward morphisms.

The forward morphisms have an easy model: up to multiplication by a nonzero

scalar, they are induced by certain canonical morphisms of differential graded mod-

ules.

The backward morphisms cannot be seen in the Auslander-Reiten quiver; they

are in the infinite radical of D.

4.2. The category of diagonals of ∞-gon. In this section we provide a geo-

metric realization of the category D.

We adopt the same philosophy as that of [17], that is, the integers can be viewed

as the vertices of the ∞-gon and the pairs of integers can be viewed as the arcs of

the infinity-gon. Let (m,n) be an arc of ∞-gon, with m < n. If n−m = 1, we say

that the arc (m,n) is a boundary arc, and if m ≤ n − 2, we say that (m,n) is a

diagonal of the infinity-gon. Our construction is similar to that of [7] in the case of

the (n+ 3)-gon.

One can define a combinatorial K-linear category C as follows:

The indecomposable objects are the arcs (m,n) of S, with m,n ∈ Z and m ≤ n−2;

the objects of C are direct sums of the arcs and each arc is stable by the product of

the scalars of K. The boundary arcs are identified to zero. The space of morphisms

between two arcs (m,n) and (p, q) is given by:
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HomC((m,n), (p, q)) =

{
K if (p, q) ∈ F (m,n)

R ∪ F (m,n)
L

0 if not

where F
(m,n)
R = {(l, k) | m ≤ l ≤ n − 2, k ≥ n} and F

(m,n)
L = {(k, s) | m + 2 ≤

s ≤ n, k ≤ m}. The morphisms between two objects are direct sums of morphisms

between arcs. The composition of morphisms between arcs is given by the product

of scalars in K. The construction of C is inspired by the standard coordinates used

in [17]. The category C is a category generated by all the diagonals of S. Therefore

by construction C is K-linear, Hom-finite and Krull-Schmidt. Our main result is

the following.

Theorem 4.3. The categories C and D are equivalent.

Proof. Let F0 : indC −→ indD be such that, for (m,n) ∈ indC we have F0(m,n) =

Σ−nXn−m−2. According to [17], F0 is a bijection. One can define the additive

functor F : C −→ D as follows:

F (m,n) = F0(m,n), and we extend F by additivity and K-linearity to all objects

of C. Let uα : (m,n) −→ (p, q) be a morphism of C which is identified with the

scalar α of K.

We recall that, via the standard coordinates defined above, if F (m,n) = x

and F (p, q) = y, then (p, q) ∈ F
(m,n)
R if and only if y ∈ H+(Σx). We have also

(p, q) ∈ F (m,n)
L if and only if y ∈ H−(Σx).

On the one hand, if (p, q) ∈ F
(m,n)
R , then y ∈ H+(Σx); let f : x −→ y be

a forward morphism of D that is f is induced by a canonical morphism of DG-

modules. Then each morphism from x to y is of the form λf where λ ∈ K and we

set F (uα) = αf = fα. On the other hand, if (p, q) ∈ F (m,n)
L , then y ∈ H−(Σx);

let ḡ : x −→ y be a backward morphism, because the category D is 2-Calabi-Yau

that is HomD(x, y) = DHomD(y, S(x)), where D=Hom(−,K) is the usual duality.

The morphism ḡ is the isomorphic image of a forward morphism g : y −→ Σ2x. We

set F (uα) = αḡ = ḡα and F (1(m,n)) = 1x. Let show now that F is a functor. Let

uα : (m,n) −→ (p, q) and uβ : (p, q) −→ (r, s) where F (m,n) = x, F (p, q) = y and

F (r, s) = z. The proof is completed in three steps (a), (b), (c).

(a) If (p, q), (r, s) ∈ F
(m,n)
R and (r, s) ∈ F

(p,q)
R , then y, z ∈ H+(Σx) and z ∈

H+(Σy). We have F (uα) = αf and F (uβ) = βg, where f : x −→ y and g : y −→ z

are forward morphisms. The morphism uβuα = uβα is a morphism from (m,n)

to (p, q). Then F (uβα) = βαh, where h : x −→ z is a forward morphism of D.

According to [17, Lemma 2.5], the morphism g is a nonzero morphism and we have

the following commutative triangle

x
h //

f ′ ��

z

y

g

??
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where f ′ is the morphism induced by a canonical morphism of differential graded

modules. By uniqueness of the canonical morphism between two indecomposables

objects, we have f ′ = f and thus F (uβα) = F (uβ)F (α).

(b) If (p, q), (r, s) ∈ F
(m,n)
g and (r, s) ∈ F

(p,q)
d , then y, z ∈ H−(Σx) and z ∈

H+(Σy). We have F (uα) = αf̄ and F (uβ) = βg where g : y −→ z is a morphism

induced by a canonical morphism of differential graded modules. So, f̄ : x −→ y is

the isomorphic image of a morphism f : y −→ Σ2x induced by a canonical morphism

of differential graded modules. Since g is a nonzero morphism, in accordance with

[17, Lemma 2.7], we have the following commutative triangle

x
h̄ //

f̄ ′ ��

z

y

g

??

where h̄ is the isomorphic image of a forward morphism h and f̄ ′ is the image of

the morphism f ′ : y −→ Σ2x which is induced by the canonical morphism of DG-

modules from y to Σ2x. By uniqueness of the canonical morphism between two

indecomposables objects, we have f̄ ′ = f̄ and hence F (uβα) = F (uβ)F (α). For all

other cases not mentioned above, the composition of morphisms are equal to zero

see [17, Corollary 2.3]. This show that F is a functor.

(c) F is essentially surjective because by the definition, each indecomposable

module ofD is the image of an arc of C under F . The map F : HomC((m,n), (p, q)) −→
HomD(x, y) which associates to uα, the function F (uα) is a bijection because of the

step (a) and (b). Therefore F is full and faithful.

Finally, it follows from (a), (b), (c) that F is an equivalence. �

We can give now the description of the category C, via the equivalence established

above; clearly, the category C is triangulated, 2-Calabi-Yau and has Auslander-

Reiten triangles. In addition, the suspension is given by (m,n)[1] = (m− 1, n− 1)

and the Serre functor is given by S(m,n) = (m − 2, n − 2); this situation was

predictable from Holm and Jørgensen in [17].

We have also the following operations between the arcs of S defined by: s(m,n) =

(m+ 1, n) and (m,n)e = (m,n+ 1). These operations are defined for the n+ 3-gon

in [7] and for marked surfaces without punctures in [3]. The operations s(m,n) and

(m,n)e can be extended as functors in the category C.

Proposition 4.4. The following statements are equivalent.

(a) Hom((i, j), (p, q)[1]) 6= 0

(b) (i, j) and (p, q) cross

(c) (p, q) = sz(i, j)en or (p, q) = s−n−2(i, j)e−r where n ≥ 0, 0 ≤ z ≤ l − 2, 0 ≤
r ≤ l and j − i = l.
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Proof. Let (i, j) and (p, q) be two arcs of C. Then we have Ext1((i, j), (p, q)) =

Hom((i, j), (p, q)[1]). By Theorem 4.3 and [17, Lemma 3.5], Hom((i, j), (p, q)[1]) 6= 0

if and only if the arcs (i, j) and (p, q) cross; that means, (a) and (b) are equivalent.

Now assume that Hom((i, j), (p, q)[1]) 6= 0. By the definition of the morphisms

spaces of C, we have m ≤ p− 1 ≤ n− 2 and n ≤ q − 1, or m+ 2 ≤ q − 1 ≤ n and

q−1 ≤ m. Because i and j are integers, l = j− l is a positive integer. If we consider

the integers n, z, r such that n ≥ 0, 0 ≤ z ≤ l − 2 and 0 ≤ r ≤ l, then we have

(p, q) = (i+ z, j + n) or (p, q) = (i− n− 2, j − r). By definition, we have s(i, j) =

(i + 1, j) and (i, j)e = (i, j + 1), thus (p, q) = sz(i, j)en or (p, q) = s−n−2(i, j)e−r . It

follows that (a) and (c) are equivalent. �

Corollary 4.5. Let (m,n) be a diagonal of the infinity-gon, then there is an

Auslander-Reiten triangle in C as follows

(m,n) −→ s(m,n)⊕ (m,n)e −→ s(m,n)e −→ (m,n)[1].

Moreover, all Auslander-Reiten triangles of C are of this form.

Proof. It is shown in [18] that the following triangle

Σ−nXu −→ Σ−nXv ⊕ Σ−nXn−m−1 −→ Σ−n−1Xu −→ Σ−n+1Xu

is an Auslander-Reiten in D, where u = n −m − 2, v = n −m − 3. By using the

equivalence F of Theorem 4.3, we have

(m,n) −→ (m+ 1, n)⊕ (m,n+ 1) −→ (m,n+ 1) −→ (m− 1, n− 1).

That is

(m,n) −→ s(m,n)⊕ (m,n)e −→ s(m,n)e −→ (m,n)[1].

Assuming now that

(m,n) −→
n⊕
i=1

(mi, ni) −→ (p, q) −→ (m,n)[1]

is an Auslander-Reiten triangle of C. Since F is an equivalence of categories,

F (m,n) −→
n⊕
i=1

F (mi, ni) −→ (p, q) −→ F ((m,n)[1])

is an Auslander-Reiten triangle of D; that is

Σ−nXn−m−2 −→
l⊕
i=1

Σ−niXni−mi−2 −→ Σ−qXq−p−2 −→ Σ−n+1Xn−m−2

is an Auslander-Reiten triangle of D. The form of the Auslander-Reiten triangle of

D is well known; by identification, we have Σ−qXq−p−2 = Σ−n−1Xn−m−2. There

exist r, s with 1 ≤ r, s ≤ l such that F (mr, nr) = Σ−nXn−m−3, F (ms, ns) =

Σ−nXn−m−1 and F (mi, ni) = 0, for all i different from r and s. This completes

the proof of our assertion. �
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