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Introduction 

An influence line or surface function of a particular point 

on a structure is the variation of any designated effect like 

displacements and internal forces due to a unit loading 

moving on the structure. These functions are of great 

importance when the structures are subjected to live loads 

since they are required when extremum displacement and 

internal force values at particular points of the structures 

due to live loads are to be determined.  

Influence lines and surfaces can be obtained using three 

main approaches which are the equilibrium method, the 

Müller-Breslau principle and the adjoint method. The 

equilibrium method is the simplest method where the 

structure is analysed for different locations of the unit 

loading in order to obtain the influence functions. 

However, high computational cost arises in this method 

since the analyses are repeated many times. A more 

efficient approach, the Müller-Breslau principle [1-3] 

which is based on the principle of virtual work states that 

the influence function of any designated effect on a 

structure is proportional to the deformed shape of the 

structure obtained by applying a known displacement in 

the direction of the designated effect [4,5]. In the adjoint 

method proposed by [6,7], an adjoint variable vector for 

any designated effect function is calculated using the 

adjoint equations and influence line ordinates are obtained 

via the equilibrium equations. A remedy is proposed by 

[8] for the deficiency of the adjoint method which is the 

necessity of a correction to the adjoint variable vector for 

the designated effect function in the directions of the 

constrained degrees of freedom. In both of these methods, 

the analysis is performed only once which significantly 

reduces the computation time. In [9], finite element 

implementation of the three main approaches used for the 

determination of influence surfaces for internal forces is 

carried out.  

Analysis of plates resting on elastic foundations are widely 

performed for the shallow reinforced concrete foundations 

[10] of various types of buildings. Extremum internal 

forces of these foundations due to live loads can be 

obtained via influence surface coefficients. In this paper, a 

a MATLAB code is written for the determination of 

internal force influence surface coefficients of plates 

resting on two-parameter elastic foundations using the 

approach proposed by [2] which is based on the finite 

element implementation of the classical Müller-Breslau 

Principle. According to this approach, the element loading 

matrices used to determine the influence surfaces of plates 

are obtained using the Betti’s law and the governing 
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equations of the finite element method. The elastic 

foundation is represented by adding the terms of elastic 

bedding and shear parameter matrices of a soil finite 

element derived by [11] to the plate element stiffness 

matrix terms corresponding to deflections. 

Kirchhoff Plate Finite Element and Inclusion 

of Foundation Parameters 

The finite element used in the implementation is a 

popular 4-noded non-conforming 12 degree of freedom 

rectangular plate finite element, Figure 1, developed by 

Melosh [12] and Zienkiewicz and Cheung [13,14], and its 

formulation is based on the well-known Kirchhoff plate 

theory. 

 

 

 

 

 

 

Figure 1. Plate bending element 

The displacement vector and the rotations of the element 

are 

{𝑑} = {𝑤 𝜃𝑥 𝜃𝑦}𝑇 , 

 𝜃𝑥 =
𝜕𝑤

𝜕𝑦
  , 𝜃𝑦 = −

𝜕𝑤

𝜕𝑥
                   (1) 

The displacement function of the finite element is  

𝑤 = {1   𝜉   𝜂   𝜉2   𝜉𝜂   𝜂2   𝜉3   𝜉2𝜂   𝜉𝜂2   𝜂3   𝜉3𝜂   𝜉𝜂3} {

𝑐1
𝑐2
:
𝑐12

}   

                                      (2) 

where 𝑐1, 𝑐2, . . . , 𝑐12  are arbitrary constants. It can also be 

expressed in terms of nodal unknowns as  

𝑤 =∑𝑁𝑖𝑑𝑖

12

𝑖=1

                                     (3) 

Here, 𝑁𝑖 are C1 continuous shape functions used to obtain 

the unknown nodal displacement components. 

The stiffness matrix of the element is obtained using 

𝐾 = ∫𝐵𝑇𝐷𝐵𝑑𝐴
𝐴

                                  (4) 

Here, [𝐵] = [𝜕][𝑁] where  

[𝜕] =

{
  
 

  
 −

𝜕2

𝜕𝑥2

−
𝜕2

𝜕𝑦2

−2
𝜕2

𝜕𝑥𝜕𝑦}
  
 

  
 

                                   (5) 

The elasticity matrix for the isotropic material is defined 

as  

[𝐷] =
𝐸ℎ3

12(1 − 𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

]               (6) 

where E is the Young’s modulus, h is the plate thickness 

and 𝜈 is the Poisson’s ratio.  

[𝐶] and [𝐶𝑇] elastic bedding and shear parameter matrices 

to be included in the plate finite element stiffness matrix 

are derived by [11] where 𝐶𝑖𝑗  and 𝐶𝑇𝑖𝑗 matrix terms are 

obtained using 

𝐶𝑖𝑗 = 𝑘𝑤∫𝑤𝑖𝑤𝑗𝑑𝐴                                    (7)
𝐴

 

𝐶𝑇𝑖𝑗 = 𝑘𝑝∫
𝜕𝑤𝑖
𝜕𝑥

𝜕𝑤𝑗

𝜕𝑥
+
𝜕𝑤𝑖
𝜕𝑦

𝜕𝑤𝑗

𝜕𝑦
𝑑𝐴              (8)

𝐴

 

Here, 𝑘𝑤 and 𝑘𝑝 are the coefficient of subgrade reaction 

and the shear modulus of the foundation, respectively and 

the elastic bedding and shear parameter matrices are 

[𝐶] =
𝑘𝑤𝑎𝑏

36
[

4
2
2
1

   2
   4
   1
   2

   2
   1
   4
   2

   1
   2
   2
   4

]                          (9) 

and 

[𝐶𝑇] =
𝑘𝑝
3
[

𝛼 + 𝛽
𝛼/2 − 𝛽
𝛽/2 − 𝛼

−(𝛼 + 𝛽)/2

𝛼/2 − 𝛽
 𝛼 + 𝛽

−(𝛼 + 𝛽)/2
𝛽/2 − 𝛼

𝛽/2 − 𝛼
−(𝛼 + 𝛽)/2
𝛼 + 𝛽
𝛼/2 − 𝛽

−(𝛼 + 𝛽)/2
𝛽/2 − 𝛼
𝛼/2 − 𝛽
𝛼 + 𝛽

] 

                            (10) 

where 𝛼 = 𝑎/𝑏 and 𝛽 = 𝑏/𝑎 

Influence Surface Coefficients for Stress 

Components  

In a linear elastic 2D structure discretized into finite 

elements, displacement ordinates due to a unit loading in 

the direction of any displacement component give the 

influence surface coefficients of that displacement 

component according to the Betti’s law. The influence 

coefficients of all nodal displacement components of an 

element can be obtained via  

 

       𝑆𝑈 = 𝑄                                      (11) 

where S is the system stiffness matrix, 𝑈 is a matrix 

consisting of influence coefficients of nodal displacement 

components and Q is the system loading matrix consisting 

of loading vectors with unit values in the directions of the 

nodal displacement components of the element in question 

while the rest of the vector elements are zero.   

Using the governing equations of the finite element 

method, the influence coefficients of stress components at 

a particular point of an element can be obtained via 

 

       𝜎 = 𝐷𝐵𝑈                                   (12) 
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Defining the element stress matrix as 

        𝐺 = 𝐷𝐵                                     (13) 

and substituting into Eq.(12), it yields 

        𝜎 = 𝐺𝑈                                     (14) 

or 

        𝜎𝑇 = 𝑈𝐺𝑇                                   (15) 

Multiplying both sides of Eq. (11) by 𝐺𝑇 ,  

       𝑆𝑈𝐺𝑇 = 𝐺𝑇                                 (16) 

is obtained where 𝐺𝑇  is taken as the element loading 

matrix. Substituting the element loading matrices into the 

global lading matrix Q and solving the linear simultaneous 

equations, 𝜎𝑇 is obtained giving the influence surface 

coefficients of stress components for any point in the 

system. If the influence surface coefficients of any stress 

component are to be calculated, the column of matrix 𝐺𝑇  

corresponding to the stress component in question is taken 

as the element loading vector which is denoted as r. 

Computer Implementation 

A MATLAB code is written to determine the influence 

surface coefficients for the stress components of any point 

on plates resting on Pasternak foundation. The procedure 

is as follows: 

1. Stiffness matrix of the 12 degree-of-freedom plate 

finite element is constructed. [𝐶] and [𝐶𝑇] foundation 

parameter matrix terms are added to the relevant 

stiffness matrix terms of the element. For foundation 

extensions, stiffness matrix row and column terms of 

these elements corresponding to rotations are 

eliminated and foundation parameter matrix terms are 

assigned as the stiffness matrix terms corresponding to 

deflections. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Finite element mesh of the plate 

2. System stiffness matrix is constructed. 

3. The local coordinates of the node of which the 

influence surface coefficients are to be determined are 

defined for the connected 4 elements and the element 

stress vectors for the required stress component are 

obtained. 

4. Average values of these stress vectors are assigned as 

the global loading vector terms. 

5. Static analysis of the system is performed and the 

displacement vector is obtained where the deflection 

values correspond to the influence surface coefficients 

for the stress component of the node in question. 

Benchmark Examples 

Example 1 

A benchmark example taken from the literature [15,16] is 

solved in order to verify the plate-foundation model. The 

example is a simply supported homogeneous square plate 

resting on an isotropic Pasternak foundation and is 

subjected to a uniformly distributed load of q0=E/105 

kN/m2. Length to height ratio of the plate is a/h =100 and 

the Poisson’s ratio is υ=0.3. Dimensionless central 

deflections are obtained for constant coefficient of 

subgrade reaction and increasing shear moduli values and 

compared with the reference solutions as given in Table 1. 

Note that Kw and Kp are dimensionless coefficient of 

subgrade reaction and shear modulus, respectively.   Kw 

=kw a4 / D and Kp =kp a2/ D where D =
𝐸ℎ3

12(1−𝜐2)
 . 

It is observed that the deflections obtained in this study are 

very close to the reference values and decrease with 

increasing shear modulus as expected. 
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Table 1. Dimensionless central deflections of a uniformly 

loaded square plate resting on Pasternak foundation 

 

 

 

 

 

 

Example 2  

The finite element mesh of a simply supported square plate 

solved by [2] is given in Figure 2. The thickness of the 

plate is t=1m, the Young’s modulus is E=10.92 kN/m2 and 

the Poisson’s ratio is υ=0.3. First, bending moment (Mx) 

influence surface coefficients for the central node (node 

41) are obtained using the present approach and compared 

with the reference solution, [2] and the values obtained by 

SAP2000 software package in order to verify the present 

implementation. 

The loading vectors which are the column vectors of the 

element stress matrices corresponding to Mx (1st columns) 

belong to the connecting elements of node 41 (elements 

28, 29, 36 and 37). ¼ of each element loading vector is 

used since the average Mx stress is taken into account and 

these vectors are given in Table 2 also verified with the 

values provided by [2]. Substituting these element loading 

vectors into the system loading vector and solving the 

plate, the influence surface coefficients for the central 

node (node 41) are obtained at once. 

In SAP2000, the system model is solved for a unit vertical 

load applied to the selected nodes separately and Mx 

moment values at the central node corresponding to Mx 

influence surface coefficients are obtained. This operation 

is time consuming since the analysis is repeated for each 

location of the unit load. 

It is observed that the coefficients for the selected nodes 

are very close to the reference values, Table 3. The slight 

differences may be due to the different finite elements 

used in the implementation. Twisting moment (Mxy) 

influence surface coefficients for the midpoint of the plate 

at some selected nodes are also obtained in addition to Mx 

coefficients and checked with the values obtained by 

SAP2000, Table 4. Note that the loading vectors for Mxy 

are the column vectors of the connecting element stress 

matrices which correspond to Mxy (3rd columns). 

 

 

 

 

 

 

Table 2. Loading vectors for Mx influence surface 

coefficients for node 41. 

freedom r28 r29 r36 r37 

1 0.0       -115.2 -384.0 499.2 

2 0.0 -4.8 0.0 9.6 

3 0.0 0.0 16.0 -32.0 

4 -384.0 499.2 0.0 -115.2 

5 0.0 -9.6 0.0 4.8 

6 16.0 -32.0 0.0 0.0 

7 499.2 -384.0 -115.2 0.0 

8 -9.6 0.0 4.8 0.0 

9 32.0 -16.0 0.0 0.0 

10 -115.2 0.0 499.2 -384.0 

11 -4.8 0.0 9.6 0.0 

12 0.0 0.0 32.0 -16.0 

 

Table 3. Nodal Influence Surface Coefficients for   Mx 

Node 

Number 

Influence surface coefficient for Mx 

present [11] SAP2000 

11 0.011273 0.010770 0.011536 

21 0.046316 0.044470 0.047332 

31 0.121609 0.116450 0.124347 

39 0.058019 0.057770 0.058426 

41 0.366410 0.346090 0.375326 

 

Then, a two-parameter elastic foundation is added to the 

square plate and Mx influence surface coefficients for node 

41 are obtained for constant coefficient of subgrade 

reaction and increasing shear modulus and given 

comparatively in Table 5. It is seen that the influence 

surface coefficients at the selected nodes decrease as the 

shear modulus increases. 

In order to verify the results, the system model is also 

created in SAP2000 using the procedure given in [17]. The 

two-parameter elastic foundation is modelled using 

“shell” element where the section type is selected as 

“Plane-Strain” and the thickness of the section is assigned 

to a unit value. The elastic moduli and Poisson’s ratios in 

all directions are set to zero values and the in-plane shear 

moduli (G13 and G23) are assigned to the shear moduli of 

the foundation. Thus, shear stresses in the thickness 

direction and vertical end forces occur only. The first 

parameter of the Pasternak foundation is represented by 

“area springs” assigned to the surface of the foundation. 

The deflections of the plate and the foundation nodes are 

equalised in order to provide the connection between the 

plate and the foundation, [17]. It is seen that the results 

obtained are close to each other, Table 6. 

 

Kw Kp 

Dimensionless central deflection 

(w'= 103 D w / qa4) 

present [16] [15] 

1 1 3.8517 3.8546 3.8530 

1 81 0.7637 0.7630 0.7630 

1 625 0.1154 0.1153 0.1150 
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Table 4. Nodal influence surface coefficients for Mxy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Nodal Mx Influence Surface Coefficients for 

different soil parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Plan and vertical section of the plate-foundation 

system 

Table 6. Nodal Mx Influence Surface Coefficients for 

different soil parameters 

Node  

Number 

Influence surface coefficients for Mx 

   Kw=1 Kp=1        Kw=1 Kp=625 

present SAP2000   present SAP2000 

11  0.005873 0.006043  0.000004  0.000002 

21  0.026425 0.027149  0.000054  0.000061 

31  0.082964 0.085161  0.001179  0.001192 

39  0.029468 0.029610  0.001283 0.001439 

41  0.314923 0.322896  0.019719  0.019542 

Example 3 

Plan and vertical section views of a rectangular plate 

resting on a two-parameter elastic foundation solved by 

[11] is given in Figure 3. The foundation has extensions in  

all directions and no boundary conditions are assigned to 

the plate edges which is a more realistic approach. First, 

the system is solved under the given distributed load for 

different soil parameters and midpoint deflections are 

compared with the values given in reference [11] in order 

to verify the present model. It is observed that the 

deflection values are very close to each other as given in 

Table 7. It is also seen that the results are very close to 

those obtained in an earlier study where the finite 

difference method is used in the system analysis, [18]. 

Then, Mx influence surface coefficients for the midpoint 

at some selected nodes shown in Fig. 4 are obtained for 

the given soil parameters and verified with the coefficients 

obtained by SAP2000, Table 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Node 

Number 

Influence surface 

 coefficient for Mxy 

present SAP2000 

11 -0.005105 -0.005262 

17 0.005105 0.005262 

21 -0.016096 -0.016459 

25 0.016096 0.016459 

31 -0.026572 -0.026646 

33 0.026572 0.026646 

39 0.000000 0.000000 

41 0.000000 0.000000 

49 0.026572 0.026646 

51 -0.026572 -0.026646 

57 0.016096 0.016459 

61 -0.016096 -0.016459 

65 0.005105 0.005262 

71 -0.005105 -0.005262 

Node 

Number 

Influence surface coefficients for Mx 

No  

Foundation 

Kw=1 

Kp=1 

Kw=1 

Kp=625 

11 0.011273 0.005873 0.000004 

21 0.046316 0.026425 0.000054 

31 0.121609 0.082964 0.001179 

39 0.058019 0.029468 0.001283 

41 0.366410 0.314923 0.019719 

9.144 m 9.144 9.144

9
.1

4
4

9
.1

4
4

 m

plate

foundation

1
2

.1
9

2

q=23.94 kN/m2 
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Table 7. Central deflections for different soil parameters 

kw kp 

Central deflection 

(m) 

present [11] 

27192 26826 0.000878 0.000853 

13757   50410 0.001500 0.001526 

 9377 70586 0.001900 0.001893 

 5964 104664 0.002200 0.002212 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Finite element mesh of the plate-foundation 

system 

Table 8. Mx Influence Surface Coefficients for different 

soil parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Node 

Number 

Influence surface coefficients for Mx 

kw=27192  kp=26826 kw=13757    kp=50410 kw=9377    kp=70586 kw=5964    kp=104664 

present SAP2000 present SAP2000 present SAP2000 present SAP2000 

290 -0.000002 -0.000003 -0.000032 -0.000025 -0.000042 -0.000031 -0.000036 -0.000020 

354 -0.000059 -0.000063 -0.000110 -0.000091 -0.000075 -0.000052 -0.000021 -0.000035 

476 -0.000106 -0.000196 -0.000486 -0.000506 -0.000500 -0.000503 -0.000403 -0.000328 

478 -0.002412 -0.002304 -0.001977 -0.002064 -0.001532 -0.001684 -0.001122 -0.001275 

481 0.122743 0.111566 0.101862 0.094453 0.088089 0.081619 0.071632 0.064130 

480       481

449        450

481         482

450         451

511      512

480       481

512        513

481       482

435              436

465              466

x

y481

290

476 478

354

plate

foundation

30 x 0.9144m

3
0

 x
 1

.0
1

6
m
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Conclusions 

In this paper, internal force influence surface coefficients 

required for the extremum internal force values due to live 

loads are obtained for the plates resting on Pasternak 

foundation. It is demonstrated that the two-parameter 

elastic foundation can be accounted for by adding the 

elastic bedding and shear parameter matrices of a soil 

element to the stiffness matrix terms of the plate element 

corresponding to the deflection freedom which is a 

straightforward procedure. The approach for the 

determination of influence surface coefficients of plates 

proposed in the literature is adapted to the plates on two-

parameter foundations. Compared with the classical 

techniques, the influence surface coefficients are easily 

and directly obtained with this approach through the finite 

element analysis of the plate-foundation system using the 

loading vectors derived from the element matrices 

obtained by the governing equations and the Betti’s law. 

No modifications to the input data of the systems 

discretised by different types of finite elements are 

required since the loading vectors are derived from the 

element matrices of the finite elements used in the 

implementation. Besides, the values within the elements 

can easily be obtained by using the nodal values of the 

influence surface coefficients and the element shape 

functions. The obtained results show good agreement with 

the reference values and it is demonstrated that the 

aforementioned approach is also very suitable for the 

plates on two-parameter elastic foundations since the 

plate-foundation system is solved only once to obtain the 

influence surface coefficients for the stress component at 

a particular point.  
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