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 Abstract 

In this study, Charpy impact test specimens were prepared by cutting Al 7075 alloy according to   
ASTM-E23 standards. The prepared test specimens were dissolved in a single-phase region for 1 
hour at 480°C in vacuum atmosphere and artificially aged at 120°C for 24 hours after quenching. 
After the first step aging heat treatment applied, the specimens were artificially aged for 5-50 
hours at 180°C for the second time. Microstructural characterization and fracture surface analyzes 
of the specimens were determined using SEM (Scanning Electron Microscope) device, 
crystallographic analysis of the precipitated phases were determined using XRD (X-ray 
diffraction) device. The increase in the amount of ƞı phase (MgZn2) with increasing double aging 
heat treatment time was effective in increasing the strength. After 10 hours of double aging heat 
treatment, the impact toughness value is improved by 300% compared to the single aged 
condition.  
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1. INTRODUCTION 

7XXX series (Al-Zn-Mg-Cu) aluminum alloys are widely used in automobile, aerospace and defense 
industries due to their low density, easy formability, high mechanical and corrosive resistance [1-3]. With 
the increase in global fuel prices, the advantage of using aluminum alloys in vehicles comes to the fore. It 
has been stated that by reducing the weight of land vehicles by 10%, fuel efficiency can be increased by 
5% and greenhouse gas emissions can be significantly reduced. In addition, increasing the range of electric 
vehicles by reducing the weight of the automobile is an important financial indicator [4,5]. Microstructure, 
corrosive and mechanical properties of aluminum alloys can be improved by applying aging heat treatments 
with different cycles, thermo-mechanical methods and retrogression and re-aging (RRA) heat treatment 
processes [6-10]. Sequence of precipitation of artificially aged 7000 series aluminum alloys;  

Solid solution (SS) → GP zones → 𝜂ı → 𝜂(MgZn2) 
 

It has been reported that GP regions [11,12] and metastable η' (MgZn2) precipitates [13,14] are effective in 
the increase in strength of the alloy as a result of aging heat treatment. In the study by Y. Fan et al. [15] in 
which the effects of single and two-stage aging processes applied to Al 7075 alloy on age hardening and 
precipitation behavior were compared, it was reported that the hardness was 184 HV after single aging, 182 
HV after double aging, and mechanical properties gave similar results. In a study by Cai, SW et al. [16] 
investigating the effects of single and double aging heat treatment applied to Al 7075 alloy on strength, in 
double aging heat treatment the hardness of the alloy is double peak and the strengthening stage of the first 
peak aging state is mainly high density GP regions. , and the strengthening phase of the second peak aging 
state was reported to be the η'(MgZn2) phases. 

Many studies [17-20] have been carried out on the thermodynamic and crystallographic formation 
processes of the precipitations of Al7075 alloy formed as a result of aging heat treatment, and in this study, 
the effects of double aging at different times on microstructural and crystallographic properties and impact 
toughness will be examined. 
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2.MATERIALS AND METHODS 

Commercially purchased 10 mm thick Al 7075 sheet was used in the experimental studies. V-notched 
impact test specimens conforming to ASTM-E23 standard were cut with the help of Mitsubishi MV1200S 
CNC Wire Erosion cutting device and made ready for heat treatment. The chemical composition of the Al 
7075 alloy used as the starting specimen was determined with a spectrometer (Q4 TASMAN) and presented 
in Table 1. 

Table 1. Chemical composition of Al 7075 alloy (% by weight) 
 

 wt (%) 
Standart 

(TS-EN 573-3) 
Fe Si Mn Cr Ti Cu Mg Zn Al 
0,12  0,07 0,03 0,19 0,05 1,6 2,7 5,8 Balance 

. 

The dissolution of the specimens in the single-phase region and the subsequent artificial aging heat 
treatments were carried out in a 5x10-2 Pa vacuum atmosphere in a chamber type horizontal high 
temperature furnace. After solid solution heat treatment the specimens for 1 hour at 480°C, they were 
rapidly cooled in cold water to form a supersaturated solid solution structure and then artificially aged at 
120°C for 24 hours. These single-aged serial specimens were coded as FA. Some FA specimens were re-
aged a second time for 5-50 hours at 180°C and were coded as DA5-DA50, respectively. The schematic 
representation of the heat treatments applied to the specimens is given in Figure 1.  
 

 
Figure 1. Schematic representation of the double aging heat treatment applied to the specimens 
 

The HV1 Vickers macro hardness values of the specimens were determined using 1 kg (9,807N) indenter 
for 15s and according to the ASTM E384 with HMV-2 Shimadzu Hardness tester. The tests of V-notched 
Charpy impact specimens prepared according to ASTM E23 standard were carried out at room temperature 
in an Instron –Wolpert brand impact tester with 300 J hammer capacity. Microstructure and fracture surface 
analyzes were performed using the JEOL JSM-6060LV Scanning Electron Microscope (SEM). For 
microstructure studies, all specimens were etched with Keller solution (95% H2O, 1.5% HCl, 1% HF and 
2.5% HNO3) after conventional metallography processes. After heat treatment detection of Al and MgZn2 
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precipitated and the other possible phases were made with Bruker D8 Advanced X-ray device using CuKα 
(λ=0.154 nm) target and step size 0.06 °/s..  

3.RESULTS 

In Figure 2a, the SEM microstructure image of the FA specimen, which was treated with conventional 
aging heat treatment in single step, is given. It is seen that the grains due to rolling are oriented in the 
microstructure. Spheroidal precipitates (in circles) with an average diameter of 9µm in the Al matrix are 
thought to be metastable ƞı phases [21]. In the studies [22,23], it is supported that the very small size (<4nm) 
precipitates indicated by the red arrow are GP regions. 

 

   

 

Figure 2.  Microstructure images of the FA specimen (a) SEM, (b) General EDS and (c) Linear EDS 
 

The precipitates characterization performed on both conventional single aged and double aged specimens 
at different times shows several disc-like stable precipitates and a large amount of fine precipitate in both 
of these two specimens. It was also observed that the precipitates grew with increasing second aging time. 
This can be explained by the Ostwald ripening, which has a more stable thermodynamic structure and small 
particles disappear [24,25]. As a result of coalescence and Ostwald ripening, spherical precipitates appear 
in the microstructures with some increase in average grain size (Fig.3d-f). 

 

 

(a) (b) 

(c) 
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Figure 3. SEM microstructure images of specimens double aged at different times; (a) DA5, (b) DA10,    
                (c)DA20, (d) DA30, (e) DA40, (f) DA50 
 

In Figure 4, the impact toughness and hardness values of all specimens are presented together graphically. 
The impact toughness value of the DA10 specimen increased by approximately 300% compared to the 
initial specimen (FA).  It is observed that the hardness and impact toughness increase together in the double 
aging heat treatment process up to 10 hours. The highest hardness and impact toughness were determined 
as 178 HV1 and 31 J.cm-2 respectively in the DA10 specimen.  It is thought that this situation is caused by 
the GP and ƞı phases, which precipitated in large amounts in the matrix. Although the hardness values of 
DA20-DA50 specimens decreased significantly the impact toughness values decreased relatively. This 
situation is thought to be caused by the ƞ phases, which are abundant in the matrix due to over aging. 
 

 

Figure 4. The graph of macro hardness (HV1) and impact toughness (J.cm-2) values of the specimens 

 

 

(a) (b) (c) 

(d) (e) (f) 



Onur ALTUNTAŞ/ GU J Sci, Part C, 10(2):195-202(2022)                                                                                                           199 
 

 

Figure 5 illustrates the SEM fractograph of all specimens. In Fig.5a, in the fracture surface photograph of 
the FA specimen, there are very dense cleavage separations as well as a small amount of dimples. This is 
the most important indicator of brittle fractures due to low impact toughness. In figure 5(b-f), the fracture 
morphologies of the DA5-DA50 specimens which were second aged are presented respectively. The 
presence of very intense dipmles is striking in all double-aged specimens. It shows that high impact 
toughness and ductile fracture are provided together. It is also observed that the dimples become larger with 
increasing double aging time. It is thought that the strength increases with the increase of the secondary 
phase particles formed in the depressions of the fracture surfaces [26,27]. 
 

 

Figure 5. Fracture surface morphology of the (a) FA, (b) DA5, (c) DA10, (d) DA20, (e) DA30, (f) DA40, 
(g) DA50 specimens. 
 

In Figure 6, the XRD results of the specimens are presented. In the XRD graph the main Al peaks in (111), 
(200), (220) and (311) planes respectively and MgZn2 peaks in the form of noise are seen in all heat 
treatment series. This supports that the microstructure is formed by α-Al and MgZn2 precipitates [28]. As 
a result of different heat treatment and thermo-mechanical treatments applied to the specimens the intensity 
and widths of the peaks can change [29,30]. As a result of the double aging process, the peak intensity of 
the (111) plane at 38° decreased compared to the FA specimen while all other Al peaks intensities are 
increased significantly.  
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Figure 6. XRD patterns for all of specimens. 

 

4.CONCLUSIONS 

The following results were obtained for the Al 7075 alloy, which was subjected to double aging heat 
treatment at different times. 

1- The highest hardness and impact toughness values were determined as 178 HV1 and 31 J.cm-2 in the 
DA10 specimen respectively. 

2- An increase was observed in the precipitated MgZn2 phases depending on the increasing secondary 
heat treatment time. 

3- It was determined by the mechanical properties that the samples exhibited over aging properties with 
secondary aging of 20 hours and above. 

4- The impact toughness value of the DA10 specimen has been improved by approximately 300% 
compared to the inital specimen (FA). 
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