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Abstract 

           This study obtains some wave solutions of the B-type Kadomtsev Petviashvili equation by 

applying the modified exponential function method (MEFM). Thanks to this method, the exact 

solutions of the non-linear partial differential equations will be obtained and there will be an 

opportunity to examine the physical structure of these solutions. Due to the nature of MEFM, two 

different cases are presented here that have been analyzed to obtain more solutions in this 

structure. More wave solutions can be obtained by analyzing different situations. When the 

resulting solutions are analyzed, hyperbolic, trigonometric, and rational functions are observed. 

It has been checked whether the solution functions found with Wolfram Mathematica software 

provide the B type Kadomtsev Petviashvili equation and graphs simulating the wave solution 

behavior with the determined appropriate parameters are presented. 

Keywords: Modified Exponential Function Method (MEFM); B-type Kadomtsev 

Petviashvili Equation; Wave Solutions. 
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Akışkanlar Mekaniği Üzerine Doğrusal Olmayan Bir Matematiksel Modelin Dalga 
Çözümü Analizi 

Öz 

           Bu çalışmada, modifiye edilmiş üstel fonksiyon metodu uygulanarak B tipi Kadomtsev 

Petviashvili denkleminin bazı dalga çözümleri elde edilmiştir. Modifiye edilmiş üstel fonksiyon 

yönteminin doğası gereği, bu yapıdaki çözümlerden daha fazla elde etmek için incelenilmiş olan 

iki farklı durum burada sunulmuştur. Farklı durumlar da incelenerek daha fazla dalga çözümü 

elde edilebilir. Ortaya çıkan çözümler analiz edildiğinde hiperbolik, trigonometrik ve rasyonel 

fonksiyonlar gözlemlenmiştir. Wolfram Mathematica yazılımı ile bulunan çözüm 

fonksiyonlarının B tipi Kadomtsev Petviashvili denklemini sağlayıp sağlamadığı kontrol edilmiş 

ve belirlenen uygun parametrelerle dalga çözümünün üç boyutlu kontur, yoğunluk ve iki boyutlu 

grafiklerin analizi sunulmuştur. 

Anahtar Kelimeler: Geliştirilmiş Üstel Fonksiyon Metodu (GÜFM); B tipi Kadomtsev 

Petviashvili; Dalga Çözümleri. 

1. Introduction 

           All events encountered in natural and applied sciences such as physics, engineering, health, 

etc., are represented by mathematical models. These models are generally stated in nonlinear 

partial differential equations (NPDE). Therefore, it is important to obtain the solutions to such 

equations. There are various methods to investigate the solutions of such equations in scientific 

studies in the literature. Some of these methods are the modified extended tanh-function method 

[1], the generalized tanh function method [2], the trial equation method [3-5], the generalized 

Bernoulli sub-equation function method [6-8], the first integral method [9], the quintic B-spline 

collocation method [10-12], the modified exponential function method (MEFM) [13-17], 

            In this paper, the B type Kadomtsev Petviashvili equation [18-24] which marine scientists 

are using for oceanic investigation is considered as follows, 

                                               (1) 

where  is a real non-zero parameter. A mathematical model given as Eqn. (1) is encountered in 

fluid mechanics, a branch of physics [18-29]. 

           In the second part of this study, method is introduced and detailed information is given 

about the steps of the process. NPDEs have been reduced to nonlinear ordinary differential 

equations (NODEs) to implement this method. In the third chapter, the solutions obtained by 

applying the determined method B type Kadomtsev Petviashvili Equation graphs simulating of 

( ) ( ) ( ) 0,xxxy x y x x y z t xx zzu a u u u u u u u+ + + + - + =
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these results are presented for two cases. In the conclusion part of the study, the obtained results 

are given. 

           2. Modified Exponential Function Method (MEFM) 

           In this section, the general form of the nonlinear mathematical model is as follows; 

                                                          (2) 

where  is the function that is thought to provide the nonlinear mathematical 

model. 

           Step 1. Taking the independent variables given in Eqn. (1) into consideration, the wave 

transformation given below is considered, 

                                                 (3) 

 represents the frequency of the wave, and the height of the wave. If the necessary derivative 

terms in Eqn. (2) are arranged according to Eqn. (1) are obtained by using wave Eqn. (3) and 

written instead,
 

                                                        (4)  

          Step 2: According to MEFM, the default solution function of Eqn. (1) is as follows; 

                          (5)  

where  are constants. The balance procedure determines the 

relationship between and , which are the upper bounds of the sum symbols in the method's 

solution Eqn. (5). By applying the balance procedure to Eqn. (4), the relationship between the 

constants  and , which ensures the equivalence of the term containing the highest order 

derivative and the nonlinear term, is determined, and the general structure of the solution function 

is formed by giving values to these constants. 

                                                         (6) 

when the Eqn. (6) is solved, the following families are obtained by He et al [13]: 

 
           Condition 1: If  

                                  (7) 
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           Condition 2: If  

                                  (8) 

 

           Condition 3: If  

                                          (9) 

 

           Condition 4: If  

                                                              (10) 

 

           Condition 5: If  
                                                            (11) 

            

           Step 3: After Eqn. (6) is solved, when Eqn. (5) is written in its place, an algebraic equation 

system consisting of coefficients is obtained. After this system of equations is solved with the 

Mathematica program, the relations between the coefficients of the solution function satisfying 

the Eqn. (4) are obtained. Therefore, the solution obtained in each case is checked and the 

traveling wave solution satisfying Eqn. (1) is found. 

 

3. Application     

          When Eqn. (3) is applied to Eqn. (1) and after one integration with respect to , the 

following nonlinear ordinary differential equation is get, 

                                               (12) 

If  is Eqn. (12),  

                                                                                                             (13) 

If the balance procedure is applied between the terms and  in Eqn. (13),  
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                                                            (14) 

If then  is obtained from the Eqn. (14). Thus, the upper limits of the sum symbols in 

the sought solution function in Eqn. (5) are determined. Accordingly, the terms required in the 

Eqn. (15) are given. 

                                            (15) 

 
           Case 1:  

              

 

           By using these coefficients, solutions of the mathematical model are presented and 

analyzed by considering the previously mentioned family cases. 

 
           Family 1: 

                                                 (16) 

  where  Integrating Eqn. (16) with respect to ,  

                                    (17) 

is obtained. 
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Figure 1: Graphs simulating the behavior of Eqn. (17) for the values , , , , 

, , ,  and two-dimensional graph for  
 
           Family 2: 

                                                                      (18) 

where  Integrating Eqn. (18) with respect to ,  

                                           (19) 

is obtained. 
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Figure 2: Graphs simulating the behavior of Eqn. (19) for the values , , , ,

, , , ,and two-dimensional graph for  
 

Family 3: 

                                                                      (20) 

Integrating Eqn. (20) with respect to , 

                                                                                         (21) 

 

                                                   
Figure 3: Graphs simulating the behavior of Eqn. (21)  for the values , , , , 

, , ,  and two-dimensional graph for  
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                                      (22) 

Integrating Eqn. (22) with respect to ,  

                                                       (23) 

  

  

                                                
Figure 4: Graphs simulating the behavior of Eqn. (23)  for the values , , , 
, , , ,  and two-dimensional graph for  
 
           Family 5: 

          .                                                       (24) 

Integrating Eqn. (24) with respect to ,  

                                                                                  (25) 

is obtained. 
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Figure 5: Graphs simulating the behavior of Eqn. (25) for the values , , , 
, , , ,  and two-dimensional graph for  
 
           Case 2:  

 
 , . 

           By using these coefficients, the traveling wave solutions of the nonlinear differential 

equation are presented and analyzed by considering the previously mentioned family cases. 
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is obtained. 

  

 
Figure 6: Graphs simulating the behavior of Eqn. (27) for the values , , , , 

, , ,  and two-dimensional graph for  
 
           Family 2: 

                      (28)                                                                        

where . Integrating Eqn. (28) 
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Figure 7: Graphs simulating the behavior of Eqn. (29) for the values , , , , , 

, ,  and two-dimensional graph for  
 
           Family 3: 

                                              (30)    

Integrating Eqn. (30) with respect to , 

                                               (31)     

                                                      
 

  

 
Figure 8: Graphs simulating the behavior of Eqn. (31) for the values , , , , 
, , ,  and two-dimensional graph for  
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           Family 4: 

                                                          (32) 

Integrating Eqn. (32) with respect to ,  

                                                                               (33)   

 

  

 
Figure 9: Graphs simulating the behavior of Eqn. (33) for the values , , , , 

, , ,  and two-dimensional graph for  
 
           Family 5: 

                                                    (34) 

Integrating Eqn. (34) with respect to ,  

                                                                      (35)   

is obtained. 
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Figure 10: Graphs simulating the behavior of Eqn. (35) for the values , , , 
, , , ,  and two-dimensional graph for  
 

4. Conclusion  

This article has been applied to the B-type Kadomtsev Petviashvili equation representing 

fluid mechanics, which is a nonlinear mathematical model of the developed exponential function 

method. In this research, it was seen that the analytical solutions found under the conditions were 

obtained according to the method provided by the Eqn. (1). When the mobile solution functions 

obtained were evaluated, it was determined that they were soliton, periodic and rational functions. 

All calculations related to the method and solution function graphs representing the nonlinear 

mathematical model were made using the Mathematica 12.0.0 software program. It has been 

observed that two and three-dimensional graphs obtained by determining the appropriate 

parameters are suitable for the physical behavior of wave solutions. In addition, contour graphics 

and density graphics were found with the help of software program for analytical solutions. It has 

been observed that hyperbolic functions are obtained when the solutions of equations with similar 

structures are investigated with other solution methods in the literature [18-24]. Using this 

method, different traveling wave solutions can be obtained if more cases are investigated, and 

different coefficient values are taken. When the obtained solutions are analyzed, it can be stated 

that MEFM is effective method for finding the traveling wave solutions of nonlinear partial 

differential equations. The resulting solution functions help us learn more about the physical 

phenomenon that represented fluid mechanics. 
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