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ABSTRACT 
The development of data mining has paved the way for studies 

that identify brand associations from user-generated content 

(UGC). However, the number of studies investigating destination 

associations with social media is limited. The aim of this study is 

to explore destination associations with UGC on Twitter and to 

show how data mining and sentiment analysis methods can be 

applied to destinations to elicit brand associations. In this study, 

33,339 English-language tweets containing the word #Istanbul 

were collected over one year and analyzed using text mining 

(association rule analysis) and sentiment analysis. As a result of 

the study, a brand concept map (BCM) of what Twitter users 

associate with Istanbul was created and compared to other studies 

that measure associations using conventional methods. The main 

results show that users have positive associations with tourism in 

Istanbul. Unique and interesting associations (such as "cats") were 

observed compared to other previous studies that measured 

associations to destinations. Based on the study results, a method 

was proposed for measuring the image of a place brand by 

observing electronic word of mouth in social media. 

INTRODUCTION 

Social media is an effective platform for shaping consumers' destination 

perception and travel decisions (di Pietro et al., 2012). Word of mouth 

(WOM) plays an important role in building a destination's brand image 
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with the widespread use of social media on electronic platforms. Social 

media has created a new environment for social interaction that makes 

WOM visible and accessible. The most important advantage of WOM is 

being spontaneous and free expression (Alzate et al., 2022). UGC contains 

large amounts of data about users' thoughts and feelings which is also a 

powerful and valuable source for researchers (Wong & Qi, 2017). For this 

reason, UGC is preferred by many researchers in determining brand 

associations.  

Data mining offers great opportunities to obtain meaningful results 

from unstructured social media data. The fact that UGC is big and 

unstructured data makes data analysis very difficult (Kiran & Vasantha, 

2016). With the development of data mining, unstructured social media 

data can be configured in accordance with the analysis (Diaz-Garcia et al., 

2022). Currently, sentiment analysis techniques allow us to determine 

favorability (consumers' positive or negative feelings toward brand 

associations) (Mitra & Jenamani, 2020). Recent technologies in Big Data 

analytics have paved the way for faster data collection, processing, and 

analysis (Oliverio, 2018). A limited number of studies have attempted to 

investigate the perception of destination brands on Twitter. However, there 

is still a significant gap for new studies to measure destination associations 

on social media. Therefore, this gap was the starting point for this study. 

Brand Concept Maps (BCM) are an effective way to measure and 

visualize the strength, uniqueness, and favorability of brand associations. 

Thanks to text mining techniques, BCMs can be created from unstructured 

social media content. Therefore, this study attempts to add a new 

dimension to the BCM technique, which is rarely used in the tourism 

literature, by measuring the association network of destination brands 

using Twitter data. This method can play a key role in crafting messages for 

use in brand communication strategies and in decision making by showing 

destination managers which associations to use to position their brand and 

which negative associations to eliminate. 

Understanding associations is an important issue for brand 

communication plans of destination marketing organizations. Marketers 

use brand association to differentiate, position, and extend the brand, as 

well as to develop positive attitudes and emotions toward it (Low & Lamb, 

2000). In recent years, many destinations have been promoted through 

social media. In order to conduct an advertising campaign on social media, 

data measured through social media is required. This study will also allow 

to determine the concepts that can be used in creating the messages that 
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practitioners need for brand communication. Traditional methods such as 

surveys have been used in previous studies of destination association, but 

few studies were found that used social media data. 

In this study, Twitter users' perceived associations with travel 

destinations are determined. A method was proposed to measure the 

associations with a destination's brand by observing WOM in social media. 

The objective of this study is to (1) demonstrate that the BCM technique can 

be applied in evaluating travel destination brand associations by using 

unstructured data sources; (2) draw attention to the fact that social media is 

a powerful data source in exploring travel destination associations; (3) 

demonstrate how to explore a travel destination's brand association 

network using data mining and sentiment analysis on Twitter. It is expected 

that mining data from Twitter and creating a BCM in accordance with the 

analysis performed by the data mining and sentiment analysis method will 

provide a new perspective for destination branding researchers. 

LITERATURE REVIEW 

Conceptual and Theoretical Background 

Associations have long been a topic of interest in brand research. Aaker 

(1991, p. 109) defines brand associations as everything that is associated 

with the brand in the consumer's mind. To generate favorable feelings for a 

brand, highlight the advantages of utilizing it, and market a specific brand, 

brand managers employ brand associations in brand positioning and brand 

extension strategies (Low & Lamb, 2000).   

The cornerstones of consumer-based brand equity and brand image 

are brand associations. (Christodoulides & de Chernatony, 2010). Biel (1992, 

p. 71)  describes a brand's image as a collection of traits and connections that 

customers connect with the name of the company. According to Keller 

(2013, p. 549), a positive brand image is created by associating strong, 

favorable and unique associations to the brand in the mind. This statement 

allows to depict brand image as a network of brands and associations in the 

customer's mind (Dirsehan & Kurtuluş, 2018). Brand associations are 

theoretically based on Associative Network Theory. According to the 

theory, memory is a network of interconnected nodes that activate in 

related contexts and these nodes are linked to each other in a network of 

relationships (Anderson & Bower, 1980). Concepts are represented as nodes 

in this network, and the relationship of concepts to each other is represented 

as links  (Collins & Loftus, 1975; Teichert & Schöntag, 2010). Whether brand 
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associations are positive or negative, their uniqueness is a process that 

needs to be well managed. Therefore, an in-depth exploration of consumers' 

association networks provides brand managers with valuable insights.  

Measuring Brand Associations 

Previous studies measuring brand associations have used a traditional 

approach, collecting data directly from the respondent, and an approach 

using data derived from content generated by internet users (Gensler et al., 

2015). Nam et al., (2017), on the other hand, classified these approaches as 

primary data-based approaches (survey-interview, ZMET, BCM, sorting), 

text mining approaches, and social tag-based approaches. Text mining and 

social tagging are approaches that use UGC.  

Many qualitative, quantitative, and mixed methods have been 

proposed in traditional studies to measure brand associations (Vriens et al., 

2019; Zenker & Braun, 2015). Qualitative techniques used in measuring 

brand associations are “free association” (e.g., Cornwell et al., 2022; Keller, 

2013; Kim, 2017; Rahman & Areni, 2016; Shams et al., 2015), and projective 

techniques (e.g., Cian & Cervai, 2011; Hofstede et al., 2007; Pich et al., 2015; 

Spry & Pich, 2021). Likert scale (Chen, 2017; Cho et al., 2015; Gorin et al., 

2022; Koll et al., 2022; Phong et al., 2020; Plumeyer et al., 2019), semantic 

differential scale (Alexandris et al., 2008; Ciabuca, 2015), dichotomous scale 

(e.g., Hsieh, 2018; Lim & O’Cass, 2001), rating scales (e.g., Dillon et al., 2001; 

Romaniuk, 2014), sorting task (Blanchard et al., 2017) and “Pick Any” 

(Dolnicar et al. 2012) are quantitative methods. However, it is known today 

that these scales cannot be standardized and generalized to different 

cultural backgrounds or different contextual factors (Başfırıncı, 2016; 

Gensler et al., 2015). Lastly, Repertory Grid  (Bell, 2005) and BCM  (Goffin 

et al., 2010; John et al., 2006; Schnittka et al., 2012) are examples of mixed 

methods. 

All of the methods mentioned above place more emphasis on the 

relationship between an attribute and a brand than on the brand 

associations as a network. Therefore, these approaches are insufficient to 

measure the strength, favorability and uniqueness of brand associations 

(Brandt et al., 2011). Therefore, examining brand associations as a network 

structure will provide a clearer understanding of brand perceptions (French 

& Smith, 2013).    

There are two approaches to the analysis of the brand association 

network: analytic techniques (network analysis) and mapping techniques 
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(BCM-Zaltman Metaphor Elicitation Technique) (John et al., 2006). A 

mathematical technique called network analysis examines the connections 

between concepts using the parameters of centrality, cohesion, position, 

density, and equivalence (Henderson et al., 1998). The Zaltman 

Metaphor Elicitation Technique (ZMET) is a method in which a network of 

brand associations is revealed, especially through metaphors located in the 

subconscious of consumers (Zaltman, 1995). Metaphors can be explored 

using images such as paintings and objects to help express conscious and 

unconscious thoughts and emotions (Matheson & McCollum, 2008).  

One of the effective methods of assessing the structure of the 

consumer association network is the original brand concept maps (John et 

al., 2006). Important contributions of the BCM method are the set of rules 

for collecting brand association network data created individually by each 

individual in a consensus map (Böger et al., 2017). Three steps make up the 

BCM process: elicitation, mapping, and aggregation (John et al., 2006). At 

the elicitation step, brand associations are derived from responses to open-

ended questions in which at least 50% of the participants cited a specific 

brand. Each respondent is required to create a map by connecting the 

concepts with one to three lines, depending on the strength of the 

associations, during the mapping stage. The original BCM, which shows the 

strength and uniqueness of brand associations, does not reflect how 

associations are evaluated by the consumer. Schnittka et al. (2012) further 

extended the scope of BCM, which measures the strength and uniqueness 

of associations, and developed the brand association network value metric 

to show the favorable associations on the map. In this mapping, the degree 

of negative evaluation of associations is stated by the darkness of the color 

of the circles surrounding the association (Schnittka et al., 2012). 

Mapping techniques using qualitative and quantitative methods 

have weaknesses such as the tendency to choose answers that respondents 

believe are more socially desirable or acceptable, the validity and reliability 

problems of the survey and interview method, and the laboriousness and 

vapidity of individual data collection (Nam et al., 2017).  UGCs, on the other 

hand, are powerful data sources where users generate data voluntarily, 

without influence or intervention from the researcher (Culotta & Cutler, 

2016; Divakaran & Xiong, 2022).  

Approaches Using User-Generated Content 

Currently, data collection has evolved into an understanding in which 

responders are personally observed in the interaction environment without 
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any guidance. Digital transformation also manifests itself in brand research. 

Therefore, researchers are seeking brand associations not in the answers 

that the consumer gives to questionnaire or interview questions, but in the 

content that the consumer creates herself/himself. 

Web 2.0 provides gathering platforms for internet users in social 

media. Consumers leave an enormous footprint in these platforms about 

their thoughts, beliefs, experiences, and even interactions (Netzer et al., 

2012). Customers voluntarily use social networking websites and share 

pertinent information in public. The publicly sharing of UGC has opened a 

door for researchers to hear the voice of the consumer (Klostermann et al., 

2018). UGC is generally a useful information source because it is unbiased 

and reflects unofficial consumer advice (East et al., 2008). Since consumers' 

opinions and sentiments about brands are readily available online, 

researchers can quickly gather data. Data obtained from UGC are gathered 

by content analysis conducted for consumers' brand associations.  But 

manual analysis of UGC datasets is a difficult process due to the size of the 

data and its unstructured nature (Elsayed et al., 2019; Yan et al., 2022).  

Text mining has become one of the preferred methods for 

uncovering brand association networks in recent years. The main reason is 

that the qualitative analysis and interviewing methods used in traditional 

methods are time-consuming and tedious, require expertise, represent a 

limited period of time because they are applied over a period of time, have 

a small sample size, and simply focus on uncovering brand associations 

(Nam et al., 2017).   

Divakaran and Xiong (2022) qualitatively analyzed users' online 

comments on a movie brand, measured the uniqueness, strength, and 

favorability of associations, and displayed them on the BCM. The BCM was 

created by measuring the frequency (strength) of associations, the level of 

difference of associations compared to competing brands (uniqueness), and 

the number of associations coded as positive-negative (favorability). 

However, this method is much more difficult and laborious for manual 

coding of more UGC.  Advances in text mining can overcome these 

challenges.  

Finding hidden information in textual data is a process known as text 

mining, a particular type of data mining (Feldman & Sanger, 2006; Miner et 

al., 2012). Chen (2012), on the other hand, describes text mining as the 

process of obtaining interesting information or insights from unstructured 

text. Data sources used in text mining are unstructured data obtained from 

expressions freely used by people in daily life (Marchand et al., 2017). 
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Naturel Language Processes (NLP) are the language used in daily life 

regardless of terms and transforms spoken words into structured data 

(Miner et al., 2012). Text mining mainly involves clustering, association rule 

analysis, trend analysis, pattern discovery, and other knowledge discovery 

algorithms  (Zhang et al., 2015). Association Rules is a technique used in 

text mining to determine the causal relationships between two concepts 

(Lopes et al., 2007; P. C. Wong et al., 1999). A conceptually similar study 

was performed by Diaz-Garcia et al. (2022) who emphasized that 

association rule mining provides interpretability of the research model and 

results in social media mining. 

Sentiment Analysis, an important area of text mining, is the detection 

of some text to be positive, neutral, or negative in meaning (Howells & 

Ertugan, 2017) and currently preferred in many studies to determine the 

favorability of brand associations  (Karayılmazlar et al., 2019; Mishra & 

Sharma, 2019; Mitra & Jenamani, 2020; Yang et al., 2022). Sentiment analysis 

is therefore a functional method for measuring the favorability of brand 

associations. 

There is an increasing trend toward the use of text mining in brand 

association research. For example, Netzer et al. (2012) used the frequency of 

co-occurrence of concepts and lift value to reveal brand associations and to 

measure the strength of the relationship between associations. Mitra and 

Jenamani (2020) proposed measuring the favorability, strength, and 

uniqueness of brand associations from consumer reviews using the text 

mining technique. According to Culotta and Cutler (2016), text mining 

offers a reliable, adaptable, and scalable method for tracking brand 

perceptions. Similarly, Liu et al. (2017) proposed a framework that 

automatically extracts brand topics and classifies brand sentiment by 

applying sentiment analysis and text mining to tweets about 20 brands in 5 

different industries from UGC on social media. Blasi et al. (2020) examined 

the brand perceptions of fashion consumers from Twitter data using data 

mining method and pointed out that the survey approach has weaknesses 

such as the prejudices and reluctance of the respondents, and that Twitter 

contains more reliable opinions about brands. In another study, Park et al. 

(2023) used network analysis to compare the relationship between 

associations and different aspects of brands, to compare the differences 

between brands, and sentiment analysis to measure the attributes that users 

consider important in the product and users' evaluations. Using Latent 

Dirichlet Allocation and dictionary-based sentiment analysis, Alzate et al. 

(2022) analyzed brand image and brand positioning from online consumer 

reviews. In previous studies, it is seen that measuring the strength of 
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associations, the co-occurrence of concepts in the text, and sentiment 

analysis were preferred in examining the favorability of associations. In this 

study, unlike previous studies, association rule analysis is used to calculate 

the strength of associations. Association rule analysis successfully applies 

an unsupervised data mining method and is one of the methods for 

detecting interesting associations from big data. 

Measuring destination brand associations: from conventional methods to 

user-generated content 

The measurement of brand associations is particularly found in studies of 

destination image and destination brand equity. The main reason for this is 

that the second fundamental element of brand equity is brand association 

(e.g. Aaker, 1992; Christodoulides & de Chernatony, 2010; Keller, 1993). 

Another approach is to use brand associations as a substitute for brand 

image. For example, Cai (2002) defines destination brand image as the 

perception reflected by the place-related associations in the memory of 

tourists. Kladou and Kehagias (2014) suggest that destination brand 

association is generally used in place of or represents brand image, while 

Bianchi et al. (2014) emphasize that destination brand associations relate to 

the image of the destination brand. In addition, Stepchenkova and Li (2014) 

argue that destination associations are one of the key elements of 

destination brand image.  

In the traditional methods used to measure destination association, 

standardized questionnaires and free association techniques are mainly 

used. In these studies of tourism destinations, image is generally 

conceptualized as a structure consisting of two dimensions: the affective 

image and the cognitive image (Baloglu & McCleary, 1999; Gartner, 1994; 

Gartner & Ruzzier, 2010; Huete-Alcocer & Hernandez-Rojas, 2022). Pike 

(2009) proposed that destination associations should be measured as part of 

the cognitive, affective, and behavioral components of the image. 

Furthermore, Qu et al. (2011) pointed out that uniqueness should be 

included in addition to these aspects to measure destination brand 

association. Sahin and Baloglu (2011) analyzed the brand image of Istanbul 

based on common image components or characteristics, expected 

atmosphere, unique and popular tourist attractions, tourist activities, with 

an approach similar to the BCM technique. However, measuring 

destination associations with standardized questionnaires is limited to 

defined dimensions (Zenker & Braun, 2015). The common conclusion of 

these approaches is that positive or negative assessments of associations 

and uniqueness of associations are important factors that must be assessed 
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when measuring a destination's brand. However, these studies did not 

focus on the direct eliciting of destination associations and associative 

network structures.  

Different customer groups have different expectations and complex 

structured destination brand associations. Due to this problem, previous 

studies tend to use BCMs, which are an effective method to measure the 

association network structure of destination brands (Zenker & Braun, 2017). 

Another approach used in measuring destination associations are 

association network mapping techniques. For example, Zenker (2014) 

measured the strength, favorability and uniqueness of associations using 

the Advanced BCM technique, which is based on the Keller’s (1993) 

approach. Brandt and de Mortanges (2011) tested the applicability of the 

BCM technique to place brands by measuring city brand associations. Using 

BCMs and network analysis, Ci and Choi (2017) proposed a method for 

comparing a place's image and place identity. Ivanov et al. (2010), 

combining the destination brand molecule and BCM techniques, examined 

the brand perception of two different destinations and argued that this 

technique reflects the dominant perceptions of the participants. By 

examining three different destinations with a BCM, Ibrahim and Elborsaly 

(2022) also show that it closes the gap in traditional measurements and 

provides a valid tool to explore the strengths and weaknesses of brand 

associations.  

Recently, there has been an increasing interest in UGCs as a data 

collection method in destination associations retrieval. For example, 

Alarcón-Urbistondo et al. (2021) have suggested using UGC in destination 

image research, as it contains rich current information, is easily accessible, 

and is a low-cost data source.  Marine-Roig and Anton Clavé (2015) 

analyzed the UGC in travel blogs by text mining and stated that it provides 

interesting results for brand architecture in a complex destination. 

Költringer and Dickinger (2015) also argue that the UGC is the richest and 

most diverse online source of information. Choi et al. (2015) and Mak (2017) 

applied content analysis with the help of text mining to reveal the 

destination image from websites and blogs. Liu et al. (2021) analyzed the 

tourists' comments about Macau on travel blogs by using text mining 

techniques.  

Moreover, measuring the favorableness of travel destination 

associations through sentiment analysis is becoming more widespread 

(Clarke & Hassanien, 2020; Jiang et al., 2021; Nadeau et al., 2021; Park et al., 

2020; Ren & Hong, 2017; Surugiu et al., 2021; Tseng et al., 2015). Kim et al. 
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(2017) observed that sentiment analysis in destination brand research is a 

more economical and less time-consuming method than survey method in 

predicting the favorability of brands. Jiang et al. (2021) measured the 

destination image of Hong Kong from the reviews of tourism websites and 

suggested that sentiment analysis provides a deeper understanding of the 

destination image. However, studies measuring travel destination 

associations using UGC data are generally focused on forum sites and travel 

blogs, and few studies used Twitter. 

Measuring Destination Brand Associations on Twitter 

The realization of conventional WOM communication in an electronic 

environment further increases the importance of social media in place 

branding. Kavaratzis (2004) argues that the brand of the city is transmitted 

in primary, secondary, and tertiary ways. Primary communication is the 

physical and managerial characteristics of the place. Secondary 

communication is formal brand communication such as marketing 

communications. Tertiary communication is WOM communication that 

occurs as a result of primary and secondary communication (Kavaratzis, 

2004). WOM communication is an important component that affects the 

brand image and cannot be controlled by city managers. Therefore, 

analyzing the data obtained from WOM communication or tertiary 

communication of the place branding will provide more accurate results for 

the destination image.  Social media has a significant impact on destination 

branding via its eWOM communication feature. 

Twitter is an important E-WOM platform that enables brands to get 

insight (Burkhalter et al., 2014; Hodeghatta & Sahney, 2016). Twitter gives 

an idea of how users react to critical decision-making and to purchasing 

products by showing immediate sensitivity to a topic (Jansen et al., 2009) 

and provides researchers with big data on how much and how a brand 

interacts. The identification of intriguing, unexpected, or noteworthy 

structures from large datasets is the key component of data mining (Hand, 

2007). On the other hand, as a platform of thought sharing, Twitter is an 

open-source database and its feature of sharing based on the text enables 

researchers to collect and analyze data more easily and quickly (Nadeau et 

al., 2021).  

The use of Twitter as a data source, which has a significant impact 

on tourists' decision-making, is rapidly increasing in tourism research 

(Curlin et al., 2019). Table 1 shows that studies measuring Twitter users' 

perceptions of destinations focus on destination perception or satisfaction 
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rather than measuring brand associations. Machine learning and 

dictionary-based sentiment analysis are considered prominent among the 

methods used in these studies. In recent studies, sentiment analysis on 

Twitter has become a growing trend.  Three different sentiment analysis 

methods are used in the tourism literature: machine learning, dictionary-

based, and hybrid (Alaei et al., 2017).  In the case of machine learning-based 

methods, the system is trained with pre-labeled training data and emotion 

classification is performed with the trained system (Flores-Ruiz et al., 2021; 

Paolanti et al., 2021; Shimada et al., 2011; Viñán-Ludeña & de Campos, 

2022).  The dictionary-based approach relies on the sentiment dictionary, 

which is a set of known and precompiled sentimental terms (Becken et al., 

2020; Zhang et al., 2022). The hybrid approach is based on a combination of 

a machine learning approach and a dictionary-based methods, which is 

used together with the sentiment dictionary in procedures (Claster et al., 

2013). Moreover, deep learning has gained popularity in recent years. It 

should also be noted that sentiment analysis was used to track changes in 

users' perception of Twitter between cyclical and normal time periods. 

However, the BCM evaluation model was not used to visualize the 

concepts emerging from the analyses. Instead of measuring the strength-

favorability and uniqueness of associations, the articles focused on thematic 

analysis. There are few studies that aim to elicit destination associations. 

For example, Andéhn et al. (2014) applied a thematic analysis based on 

word frequency and occurrence to measure the brand equity of Stockholm 

on Twitter. This study classified brand associations of the destination to 

specific themes. However, this study did not focus on the strength and 

favorableness of associations. 

Unlike others, Nautiyal et al. (2022) classified the hashtags shared by 

Twitter users and the destination management organization into different 

topics and analyzed the content of the regional tourism organization and 

locals and international Twitter users in comparison. In some previous 

studies, visual content was used as data in addition to text. Bui et al. (2022) 

argue that textual data is not sufficient to explain the destination brands. 

For this reason, the visual and textual data collected from social networks 

(Flicker, Twitter, etc.) via API set and web crawling tool were classified by 

popularity, sensitivity, time and location characteristics using the 

developed classification module. 
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Table 1. Previous studies on measuring destination associations on Twitter 

Authors (Year) Research Tools/ Method Data 

Type 

    Objective Data reporting 

and visualization 

Bui et al. (2022) Construct popularity 

measurement / Word 

frequency, text 

classification, topic analysis 

Textual and visual 

sentiment analysis /   

aspect-oriented sentiment 

analysis 

Textual 

and 

visual 

To measure tourism destination 

image from unstructured big 

data and develop a holistic 

measurement framework. 

heat-map, 

semantic graph, 

charts, and tables 

Leelawat et al. 

(2022)  

Term frequency Sentiment 

Analysis / Machine 

learning-based 

Textual 

data 

To monitor tourists' moods and 

visit intentions towards 

Thailand during the Covid 19 

pandemic period. 

WordCloud,  

graph, charts, 

and tables 

Nautiyal et al. 

(2022) 

Content analysis/   

Classifying hashtags 

according to their 

attributes and location 

using cross-tabulation 

 

Hashtags  To categorize the hashtags 

shared by Twitter users and the 

destination management 

organization into different topics 

and analyzed the content of the 

regional tourism organization 

and locals and international 

Twitter users in comparison 

tables and charts  

Viñán-Ludeña & 

de Campos 

(2022) 

Sentiment Analysis/ Deep 

learning based 

Textual 

data 

By utilizing sentiment analysis 

techniques on the information 

gathered from Twitter and 

Instagram, to develop an 

information infrastructure for 

managers to enhance the 

perception of a tourism 

destination. 

figures, tables 

Zhang et al. 

(2022) 

Latent Dirichlet Allocation 

Term Frequency-Inverse 

Document Frequency 

Sentiment Analysis/ 

Dictionary based 

Textual 

data 

 

Assessing Beijing's international 

image on Twitter and providing 

data support for destination 

managers' communication 

strategies 

graph, charts, 

and tables 

Flores-Ruiz et al. 

(2021) 

Sentiment Analysis / 

Machine learning-based 

Textual 

data 

Matching current Twitter users' 

perceptions of the destination 

with the results of the 

Destination Management 

Organization's survey in the 

Covid-19 pandemic and 

observing the change in 

destination image. 

Word cloud 

charts, figures, 

tables 

Paolanti et al. 

(2021) 

Sentiment Analysis/ Deep 

learning  

Textual 

data 

To compare the performances of 

four different classification 

algorithms used in sentiment 

analysis. 

statistical  

graphics,  plots,  

information  

graphics 

Becken et al. 

(2020) 

Sentiment Analysis / 

Dictionary based 

Textual 

data - 

Meta data 

Analyzing metadata, testing 

Twitter's reliability in measuring 

destination satisfaction. 

figures, tables 

Yan et al. (2020) Sentiment analysis/  

Dictionary based Latent 

dirichlet Allocation  

Textual 

data 

 

Evaluating the recovery level of 

tourism destinations after a 

disaster. 

charts, figures, 

tables 

Garay (2019) Quantitative content 

analysis/ Coding 

Textual 

data 

 

To evaluate the relationships 

between destination image on 

Twitter by separating them 

according to cognitive and 

affective characteristics. 

Word cloud 
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Twitter data is also used to track seasonal or cyclical changes to 

destination imagery. The destination image of the two cities was evaluated 

by Nadeau et al. (2021) using text mining and sentiment analysis methods 

throughout the Covid 19 pandemic era and the pre-pandemic period on 

Twitter. They found that the destination image is flexible despite a 

noticeably higher level of fear projections for both locations. Garay (2019) 

categorizes the affective and cognitive attributes of Spain's destination 

image by creating a codebook that describes emotional states for tweets 

containing #visitspain.  

In summary, the above literature review reveals these important 

gaps in the current literature: 

 Although studies analyzing brand associations on Twitter through 

text mining have multiplied, Twitter is still a new source of data in the field 

of destination branding and requires new research. 

 In previous studies, researchers focused more on UGC in travel 

blogs, but research on destination brands on Twitter received less attention. 

 Previous studies have generally focused on categorizing content into 

different topics using content analysis. However, research is lacking to elicit 

the destination's brand association network and the strength of these 

associations.  

 The BCM approach is rarely used in studies to measure the 

destination brand associations. 
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METHODOLOGY 

The empirical case of Istanbul 

This study focused on the city of Istanbul to demonstrate the utility of the 

BCM method and UGC. Istanbul is an important city in Europe as an 

economic, touristic, financial, educational, cultural, artistic, and historical 

heritage. As one of Europe's most populous metropolises (Statista, 2020), 

Istanbul is a melting pot of both Eastern and Western cultures. It possesses 

the historical and cultural heritage of the Byzantines and the Ottomans. 

Thus, Istanbul will be a suitable case for measuring the destination brand 

from social media, and deeper and unique associations can be reached 

about the destination.  

Procedure 

The associations are the building blocks of the brand image which take 

place in the mind of the consumer as interrelated concepts. These 

associations with the target brand can be strong or weak, positive or 

negative. Associations can be related to each other apart from the target 

brand. Therefore, every association in the human mind is in a network and 

has a complex structure. One of the important tasks in the development of 

brand strategies is to reveal the associations and to determine how strong 

and positive the associations are brand and other associations.  

Therefore, the association network was revealed in a similar way to 

the approach of the BCM technique, which is a mixed method that measures 

brand associations (John et al., 2006; Schnittka et al., 2012). Today, text 

mining methods provide the opportunity to determine the positive or 

negative states of expressions with the sentiment analysis technique. In this 

study, the favorability of associations was determined by applying 

dictionary-based sentiment analysis, one of the text mining methods, to 

tweets tagged Istanbul and shown in the BCM. The research process is 

shown in Figure 1. 

 

Figure 1. Procedure 

Data Collection 

English tweets that contain #Istanbul on Twitter and that were shared 

between June 1, 2018-31 May 2019 were collected using Rapidminer 
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software and a total of 42.740 tweets were obtained. This number was 

reached by filtering retweets, posting tweets shared by robot accounts 

called “bot”. Bot accounts increase the access to tweets by frequently 

retweeting tweets. This adversely impacts the reliability of the data. In 

addition, tweets containing the phrases “like us”, “follow us” etc. were also 

removed from the data set due to their nature of ad. Two elections were 

held in Turkey namely presidential and national elections on June 24 March 

2018 as well as local elections on March 31, 2019.  Therefore, tweets on the 

election agenda were also shared in the range of the data collection date.  

Because the study focused on the associations of Istanbul's city and the 

statements reflected only the agenda of that year, 9189 tweets on politics 

and the agenda were excluded from the data set. Finally, 33.339 tweets were 

attained to be analyzed.   

Preparing Data for Analysis 

Text mining is the process of revealing hidden and useful information from 

text-based data (Jo, 2019). Data sources used in text mining are unstructured 

data obtained from expressions freely used by people in daily life. 

Unstructured data is complex and difficult to analyze. Text mining can 

analyze datasets with unstructured text content thanks to natural language 

processing. For this purpose, text mining can extract significant numerical 

indexes from text by processing the unstructured data (Özyirmidokuz, 

2014). Another method used in preparing the data for analysis is to convert 

some words that are frequently repeated but expressed differently into a 

single word. Therefore, this process was carried out manually. For example, 

"Istanbul third airport", "Istanbul 3rd airport", "Istanbul 3rd Airport", 

"Istanbul's 3rd airport", "Istanbul Grand international airport", "Istanbul 

airport" were merged into "istanbulairport". "Blue Mosque", "Sultan Ahmet 

Mosque", "Sultan Ahmed Mosque", "Sultan Ahmad Mosque", are merged 

as "bluemosque". "Aya Sophia", "Haya Sophia", "Hagia Sophia", "Agia 

Sophia", "St. Sophia", "Saint Sophia", "Hagya Sophia" are merged as 

"hagiasophia"; "Grand Bazaar", "Grand Market" are merged as 

"grandbazaar"; "Spice Bazaar", "Spice Market" are merged as "spicebazaar"; 

"bosporus", "bosphorus" are merged as "bosphorus". 

The text flow is divided into statements, words, symbols, or other 

significant elements by tokenization in the decomposition process, also 

called text pre-processing. Then, through the “transform cases” operator, 

all the text is converted into lower case. Prepositions, pronouns, 

punctuation marks and conjunctions that do not make sense alone were 

removed from the data set via the “Stopwords” process. In this way, the 
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data are cleared of unnecessary words and made ready for analysis. With 

the help of the "Stem (snowball)" operator, words with the same root are 

converted into root cases.  Words consisting of less than 2 to more than 25 

characters are removed from the data set using the filter tokens by the 

length operator. The text preprocessing process applied via RapidMiner is 

indicated in Figure 2. Data are structured and ready for analysis with text 

preprocessing. 

Figure 2. Text preprocessing 

Association Rule Mining 

By using association rule analysis and sentiment analysis, it is crucial to 

measure the strength and favorability of brand associations.  In a manner 

similar to the BCM, associations from big data will also be shown in this 

manner (Schnittka et al., 2012) . The association rule, also known as market 

basket analysis in marketing research, is used to reveal the frequency and 

probability of selling products in a market together (Wong et al., 1999). In 

this study, the probability and the values of the words co-occuring were 

calculated using the association rule analysis. The association rule analysis 

is also similar to “contingency analysis”(Osgood, 1959). The concept of 

counting the co-occurrence of a word with another word as opposed to the 

quantity of times a word appears gave rise to contingency analysis.  

Figure 3. Association Rule Analysis Process in Rapidminer 

The tweets were analyzed via Rapid Miner software with association 

analysis (Figure 3). In the association rule, the co-occurrence of two 

elements is symbolized as X→Y. The meaning of this rule is the probability 

that operations in a database containing X contain Y (Agrawal et al., 1996). 

The association rule is a commonly used technique for studying 

relationships and outcomes between subjects or descriptive concepts used 

to characterize structured text (Cherfi et al., 2003; Lopes et al., 2007; Rajman 

& Besançon, 1998). In association rule mining, two measures are used, 

namely “support” and “confidence”.  The support determines the rate at 

which a relationship repeats throughout the data. In an association rule, the 

support is defined as the percentage of document containing X∪Y in the 
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total number of documents in the database. In Formula 1, N (X∪Y) refers to 

the number of documents in which X and Y contain together, and N refers 

to the total number of documents. So, Support (X ⇒ Y) refers to the 

frequency with which the concepts of X and Y in tweets coexist in all tweets. 

In this direction, support states the strength of the relationship between 

associations.  Support (X ⇒ Y) is calculated as in Formula 1.  

Support (X ⇒ Y) =           (1) 

The confidence reveals the probability of customers who buy 

product “X” to buy product “Y”.  Confidence (X ⇒ Y) implies the frequency 

of the number of tweets where X and Y are together in tweets where X is 

present. For example, a result with confidence (X ⇒ Y) = 0.40 means that 40 

percent of tweets containing the word “X” also contain the word “Y”. 

Conf (X)=           (2) 

In other words, the support measure shows how frequent this 

correlation is in the dataset whereas the confidence measure shows the 

probability of the use of Y in tweets with the concept of X. Rules with a high 

confidence and support are called strong rules. Association rule mining 

requires obtaining strong patterns of co-occurrence from big databases.  In 

association rule analysis, all frequent item sets of products must be 

established above a minimum support previously determined by the 

researcher, and strong association rules created from frequent item sets 

must be above a minimum support and confidence threshold determined 

by the user (Agrawal & Srikant, 1994). For this reason, a threshold is 

required for support and confidence. X⇒Y the association rule is created by 

the user to provide the lowest value of support and confidence (Han et al., 

2012). When the minimum support is high, valuable rules cannot be 

obtained because they are not repeated frequently, and when the minimum 

support value (minsup) is low, both the number of rules increases 

excessively, and the importance and interestingness of the obtained rules 

decrease. Therefore, if the minsup is kept high, very few rules will be 

obtained, but if it is kept low, a large number of rules will be obtained, 

which occur very rarely (Lai & Cerpa, 2001). For this reason, “0.02” as the 

minsup threshold value and “0.7” as the minimum confidence value is 

preferred.  

The use of support and confidence measures along with 

interestingness measures is recommended by many authors (McNicholas et 

al., 2008; Tan et al., 2018). In other words, although the rules of association 

show that the greater the values of support and confidence are, the stronger 
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the relationship is, this may not always reflect the truth. Lift is the ratio of 

co-occurrence of two terms to the frequency expected to see them together. 

Therefore, when the lift value is calculated, there are three possibilities. If 

the lift is greater than 1, the correlation is positive, when it is less than 1, the 

correlation is negative. When equal to 1, the correlation is independent 

(Hussein et al., 2015).  

Sentiment Analysis 

Two approaches are used in sentiment analysis; lexicon-based and machine 

learning-based (Feldman & Sanger, 2006; Liu, 2010; Liu & Zhang, 2012). 

Machine learning approaches are supervised approaches as they perform 

learning over labeled training data. On the other hand, lexicon -based 

approaches are semi-supervised approaches that are implemented by 

constructing a set of terms into a sentiment dictionary. The lexicon-based 

approach takes advantage of a dictionary where there are known and pre-

compiled terms of emotion (Medhat et al., 2014). The dictionary-based 

approach to sentiment analysis has been used by many researchers (Han et 

al., 2018; Kumar & Babu, 2021; Lopez et al., 2020). For dictionary-based 

sentiment analysis, it is necessary to use a dictionary that describes mood 

states. This study used AFINN, an English Dictionary of emotion 

containing 2477 words rated between -5 (negative) and 5 (positive) (Nielsen, 

2011). Analysis was carried out using Phyton software. 

FINDINGS 

In this part of the study, the findings obtained from the association rule and 

sentiment analysis of English tweets containing #Istanbul are visualized in 

a way similar to the advanced BCM (Schnittka et al., 2012) method. As a 

result of the association rule analysis, 50 rules (relationships) were 

identified. Table 2 indicates the results for this analysis which consists of 

the columns, premise, conclusion, confidence value, support value, 

normalized support value, and lift value, respectively. If the premise is 

present, the probability of the conclusion is shown. Since the word 

"Istanbul" has been mentioned at least once in each tweet, all of the results 

have been included in the conclusion column. For this reason, in 

conventional market basket analysis, support value has become a more 

important measure than a confidence value because the frequency of words 

used together is decisive in assessing the strength of the relationship 

between associations. Support values are low because they are obtained 

from the unstructured data. 
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Table 2. Findings of the association rule mining 

Associations with Istanbul Support Normalized Support Confidence Lift 

Turkey 0.3237 1.0000 0.9943 1.0040 

travel 0.1323 0.3802 0.9946 1.0043 

turkey, travel 0.0820 0.2173 0.9975 1.0072 

love 0.0728 0.1876 0.9976 1.0073 

city 0.0666 0.1674 0.9942 1.0039 

world 0.0532 0.1241 0.9835 0.9931 

photography 0.0505 0.1154 1.0000 1.0097 

turkish 0.0482 0.1077 0.9872 0.9968 

time 0.0452 0.0982 0.9902 0.9999 

life 0.0442 0.0950 0.9980 1.0077 

visit 0.0424 0.0891 0.9986 1.0083 

beautiful 0.0392 0.0787 0.9985 1.0082 

bosphorus 0.0354 0.0664 0.9992 1.0089 

view 0.0319 0.0550 0.9963 1.0060 

street 0.0296 0.0478 0.9990 1.0087 

cats 0.0285 0.0442 0.9938 1.0035 

europe 0.0285 0.0442 0.9938 1.0035 

great 0.0283 0.0436 0.9958 1.0055 

hotel 0.0266 0.0380 0.9978 1.0075 

trip 0.0263 0.0368 0.9977 1.0075 

bluemosque 0.0260 0.0359 1.0000 1.0097 

food 0.0259 0.0358 0.9966 1.0063 

design 0.0247 0.0316 0.9952 1.0049 

turkey, love 0.0246 0.0316 0.9988 1.0085 

turkey, city 0.0246 0.0314 0.9988 1.0085 

night 0.0236 0.0281 0.9987 1.0085 

hagiasophia 0.0233 0.0273 0.9962 1.0059 

turkey, photography 0.0225 0.0248 1.0000 1.0097 

mosque 0.0221 0.0235 1.0000 1.0097 

turkey, turkish 0.0215 0.0214 0.9918 1.0014 

amazing 0.0212 0.0206 0.9944 1.0041 

turkey, world 0.0208 0.0192 0.9873 0.9969 

turkey, visit 0.0198 0.0158 1.0000 1.0097 

people 0.0188 0.0127 0.9953 1.0050 

happy 0.0185 0.0116 0.9968 1.0065 

history 0.0184 0.0115 0.9984 1.0081 

music 0.0181 0.0104 1.0000 1.0097 

tour 0.0172 0.0076 1.0000 1.0097 

summer 0.0171 0.0070 1.0000 1.0097 

good 0.0170 0.0069 0.9983 1.0080 

turkey, life 0.0170 0.0068 1.0000 1.0097 

turkishairlines 0.0170 0.0067 0.9330 0.9421 

turkey, bosphorus 0.0168 0.0061 1.0000 1.0097 

travel, photography 0.0165 0.0051 1.0000 1.0097 

turkey, bluemosque 0.0158 0.0029 1.0000 1.0097 

turkey, beautiful 0.0157 0.0025 1.0000 1.0097 

business 0.0152 0.0010 0.9827 0.9923 

istanbulairport 0.0152 0.0010 0.0619 3.1897 

east 0.0151 0.0009 0.9884 0.9980 

holiday 0.0149 0.0000 1.0000 1.0097 

 

According to these results, all support values were normalized using 

the min-max method to give a more significant image of the BCM and to 

take values between 0-1. Results point out that the lift value takes values 
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close to 1. For this reason, there is no interestingness, but there is an 

expected co-occurrence. 

As shown in Table 2, all the rules show the relationship with 

Istanbul. This is because each of the tweets in the data set contains the word 

Istanbul at least one time. There has been no relationship between the other 

concepts. The strength of associations must be demonstrated according to 

the values of support. Therefore, the data in Table 2 are listed by support 

values. The highest support value is between Turkey and Istanbul. With the 

“travel” association, the support value of “Istanbul” is “0.1323”, while the 

confidence is “0.9943”. Accordingly, “travel” and “Istanbul” were used 

together in 13 percent of all tweets. ‘Travel’, ‘city’, ‘Turkish’, ‘visit’, ‘love’, 

‘photography’, ‘bosphorus’, ‘cats’, and ‘beautiful’ are the most common 

associations. The support value of all words in the dataset except “Turkey” 

and “travel” is less than 10 percent, but given that the analysis applies to 

33,339 tweets, this is quite a big ratio.  

Dictionary-based sentiment analysis findings obtained from the 

association rule analysis revealed whether each tweet was positive, 

negative or neutral statements. The results obtained from the analysis are 

illustrated in Table 3 which indicates frequencies for the negative, positive, 

and neutral tweets, the negative and positive tweet percentages. Results are 

ranked by decreasing from top to bottom according to the document 

frequency. Negative tweet percentages point out how many tweets consist 

of a negative statement. Of the 33,339 tweets in which the word “Istanbul” 

is used, which makes up the entire data set, 7.46 percent are negative, and 

48.21 percent are positive tweets. 44.32 percent of all tweets are neutral 

statements.  

Table 3. Findings of the sentiment analysis 

Associations 
Document 

Frequency 

Positive tweet 

Frequency 

Negative 

tweet 

Frequency 

Neutral tweet 

Frequency 

Percentage of 

negative 

tweets 

Percentage of 

positive 

tweets 

Istanbul 33339 16072 2488 14779 7.46 48.21 
turkey 10337 4395 1435 4507 13.88 42.52 
travel 4478 2337 244 1897 5.45 52.19 
city 1858 1265 134 459 7.21 68.08 
turkish 1589 844 140 605 8.81 53.12 
visit 1426 851 81 471 5.68 59.68 

love 1391 1356 20 15 1.44 97.48 
photography 1250 786 95 369 7.6 62.88 
beautiful 1210 1199 6 5 0.5 99.09 
bosphorus 1173 527 27 619 2.3 44.93 
cats 962 518 73 371 7.59 53.85 
time 921 393 61 575 6.62 42.67 
view 905 618 44 415 4.86 68.29 
bluemosque 858 373 22 495 2.56 43.47 
great 851 838 6 7 0.71 98.47 
Istanbulairport 831 266 104 461 11.97 40.33 
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street 800 319 90 393 11.25 39.88 
hotel 799 541 34 224 4.26 67.71 
night 776 357 62 357 7.99 46.01 
life 759 479 80 250 10.54 63.11 
hagiasophia 747 364 83 300 11.11 48.73 
tour 714 361 35 318 4.9 50.56 
good 705 692 8 5 1.13 98.16 
trip 703 463 46 194 6.54 65.86 
europe 702 325 64 313 9.12 46.3 
amazing 663 660 2 1 0.3 99.55 
food 658 328 46 284 6.99 49.85 
mosque 655 341 36 278 5.5 52.06 
history 610 338 39 233 6.39 55.41 
turkishairlines 600 242 70 288 11.67 40.33 
people 595 329 98 168 16.47 55.29 
happy 526 521 1 4 0.19 99.05 
east 516 3 70 216 13.57 44.57 
summer 474 265 23 186 4.85 55.91 

holiday 469 266 21 182 4.48 56.72 
design 462 238 21 203 4.55 51.52 
music 455 250 27 178 5.93 54.95 
business 407 216 35 156 8,6 53,07 

 

The findings obtained from the association rule mining and 

sentiment analysis are visualized in a concept map in Figure 4. The 

dimensions of the nodes indicate the frequency values of the association 

while the thickness of the lines indicate the support value between the two 

associations, i.e., the strength of the associations. A triple line between 

concepts shows a high confidence value, a double line shows a medium 

confidence value, and single line indicates a low confidence value. The 

confidence value of all associations is between 98 percent and 100 percent. 

For this reason, all associations are connected to Istanbul, which is the main 

brand, with 3 lines. Therefore, confidence values are quite high. The 

strongest relationship with Istanbul is the concept of “travel” following 

“Turkey”2. This finding is a significant indicator that Istanbul is a tourist 

city. Since the values of other associations are close to each other, there is 

no significant difference in line thicknesses in terms of relationship strength. 

The difference between the frequency of these concepts can also be 

understood by the size of the circles of the concepts. Since the confidence 

value in all concepts ranges from 98 percent to 100 percent, all concepts are 

connected to the main brand with 3 lines. The words “city”, “world” and 

“time” were among the top 10 concepts. The word “city” was used to 

emphasize that Istanbul is a city. “World” and “time” are associations that 

add different meanings depending on where they are used. Therefore, it is 

difficult to say that they are the defining association of Istanbul. For this 

reason, the concepts of world and time are not included in the map. 

                                                           
2 Since the word Turkey expresses the country where Istanbul is located, it will negatively affect the 
interpretation of the brand image on the map (Figure 4). Therefore, Turkey was removed from the map 
in order to make the map more meaningful. 
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Table 2 illustrates the relationship of binary concepts such as 

“Turkey-travel”, “Turkey-love”, “Turkey-city” and “Turkey-photograph” 

with Istanbul. Since BCMs show the relationship of a single concept with 

another concept, these binary associations are not included in the map. 

Since each tweet included “Istanbul”, there was no relationship between the 

concepts other than Istanbul. In order to see if there is a relationship 

between concepts other than Istanbul, the word Istanbul was excluded from 

the data set, analyzed again, and no rules have been formed. No other 

association has occurred due to words directly related to the concept of 

Istanbul. If there was an association that indirectly connects to the main 

brand in this way, the line around words that are not connected to the main 

brand would be illustrated by a dashed line. 

The results of sentiment analysis were also shown in the BCM, 

revealing the favorability of associations.  In Figure 4, as the negativity level 

of associations increases, the color inside the circles gets darker. As a result 

of the sentiment analysis, the association in the highest negative expression 

is the concept of “people” with 16.47 percent. Therefore, the concept of 

“people” appears to be darker than other associations. On the other hand, 

55.29 percent of the concept of people were among positive statements.  

Figure 4. The Brand Concept Map of Istanbul 
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DISCUSSION AND CONCLUSIONS 

In the present research, the brand associations of a destination reflected in 

the eWOM environment are measured and, with the help of data mining, it 

is indicated how meaningful information is generated from big data. 

Considering the influence of social media on the formation of destination 

branding, social media holds a unique position in destination branding 

research. Thus, thanks to developing data analysis technologies, social 

media, which was used as a secondary data source in the past, has become 

the primary data source. One of the most important features of the study is 

that the data are derived from Twitter. Destination branding practitioners 

can gain a better insight from research on social media data. Data mining, 

which many businesses are increasingly using, will also pave the way for 

these studies to facilitate the analysis.  

This study attempted to bring a new perspective to research in this 

area by using text mining in the BCM to measure associations with the 

destination brand. BCM method is one of the mixed methods that have the 

common advantages of quantitative and qualitative methods. In addition, 

BCM is an effective method of collecting the strength, uniqueness, and 

favorability of associations in a visual and in revealing the network of 

associations in the consumer's mind.  While previous BCMs were created 

qualitatively and on a smaller sample, in this study, the favorableness of the 

associations that make up the brand image and their association strength 

with the brand were measured and used in a larger sample group. In this 

context, emotions toward destination associations were determined 

through in-depth information extraction from the content generated by 

Twitter users and the connection strength of these associations was 

analyzed. 

This paper showed that favorability dimension can also be measured 

from Twitter data using sentiment analysis. Text mining allows the 

unstructured social media data to be configured and to be transformed into 

significant data. One of the most important advantages of the information 

obtained from data on social media is that it has a very large volume of 

sample. Therefore, it paves the way for more reliable results. Today, 

developing data mining technologies can collect and analyze big data faster.  

This paper also showed that unexpected and interesting results can 

be obtained from big data. For example, the association of “cats” is a very 

authentic result for Istanbul. The documentary directed by Ceyda Torun in 

2016, which tells about Istanbul from the eyes of stray cats, may have played 

an important role in the formation of these associations. The documentary 
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was defined as “Citizen Kane of Cats” (Kohn, 2020). The most basic result 

of this study is that Istanbul has a high strength of relationship with 

“travel”. Therefore, it can be considered that Istanbul is an important 

tourism destination and is mainly mentioned in terms of tourism on 

Twitter. However, this result may be because the tweets are in English. If 

Turkish tweets were collected and analyzed, different findings could be 

obtained. The associations of 'Travel', 'Visit', 'Trip', 'Tour', and 'Hotel' also 

indicate that most of the tweets are for tourism. Moreover, findings point 

out that orientalist elements such as the “Blue Mosque” and “Hagia Sophia” 

are one of Istanbul's unique tourist attractions. The concept of 'street', one 

of the strong associations with Istanbul, is also associated with 

'photograph'. It suggests that street photographers show interest in 

Istanbul. The chaotic appearance of the streets of Istanbul is a feature that 

attracts the attention of photographers. The association of love is among the 

concepts that have the highest relationship with Istanbul. It is seen that 

“love” is also used as loving Istanbul in tweets. However, it is difficult to 

claim that love and romance are unique associations in terms of being able 

to compete with Paris, Amsterdam, Prague, Venice, and Rome. 

Comparison with Previous Studies 

In the studies that created the brand association network using text mining, 

the relationship between concepts was measured by considering word co-

occurrence, but in the current study, the relationship between concepts was 

measured by association rule analysis. In association rule analysis, the 

degree of concept co-occurrence is represented by the support score. In 

addition to this parameter, confidence and lift scores are also important 

elements of the analysis. This study demonstrates the applicability of 

association rule mining by taking a different approach than previous 

studies.  

Due to the dynamic and changing nature of social media, different 

results may be obtained from Twitter in different time periods. In this way, 

it provides an opportunity to observe the changes in the destination 

associations. For example, while some associations of a travel destination 

are positive in a time period, negative associations may increase in another 

time period. Also, if an association has a strong relationship with the 

destination, the relationship between them may weaken soon. However, it 

is very difficult and time-consuming to monitor this change in traditional 

studies measuring destination associations. 
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Implications for Practitioners 

These results will play an important role in determining the content of the 

messages that will be created in the brand communication projects of 

Istanbul. The findings can guide the Destination Marketing Organizations. 

It is estimated that destination brand practitioners will play a key role in 

creating the messages to be used in brand communication strategies and 

making effective decisions by seeing which associations they should 

position their brands with and which associations they should eliminate. 

Based on the study findings, besides the well-known tourist attractions and 

the orientalist elements, the hospitality and friendship of the people of 

Istanbul can be emphasized in the brand communication messages. One of 

the significant findings of Istanbul is its association with food. It is seen that 

nearly half of the tweets containing the word “food” are positive tweets. In 

this context, it shows that food in Istanbul is an important travel motivation 

that makes it preferable. Thus, it is recommended to include messages 

about Istanbul culinary culture in promotions. 

Future Research and Limitations 

In future studies, revealing the brand associations of competing cities 

abroad simultaneously with Istanbul will allow us to determine the unique 

brand associations of Istanbul more clearly. This study tried to draw 

attention to the importance of UGC in destination image research. It will 

shed light on the development of new methods on the perceptions of the 

destination image in the online environment and new studies on the use of 

text mining. 

There are some limitations to the study. The most obvious of these 

are the restrictions imposed by Twitter on the collection of data from this 

platform. Buying this information from Twitter poses serious costs. For this 

reason, the data in this study were collected weekly for a year. It is hoped 

that when this cost is overcome, more effective results will be achieved with 

larger data. Because of the size of the data, high-performance computers are 

also needed for data analysis.  

The most important limitation of the sentiment analysis method is 

that it does not perform well in all languages. For example, it has been 

observed that sentiment dictionaries are not sufficient for Turkish language 

texts. For this reason, more accurate results can be achieved by applying the 

machine learning technique. The number of training data will positively 
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affect the accuracy of the results of the sentiment analysis applied with the 

machine learning technique. 
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