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Abstract
An important bias can occur when estimating coefficients by maximizing the known par-
tial likelihood function in the Cox regression model with the measurement error covariate.
We focus here on Bayesian methods in order to adjust measurement error and aim to pro-
pose an adjusting Bayesian method. Constructing simulation studies using Markov Chain
Monte Carlo simulation techniques to investigate the performance of models. We com-
pare the proposed method with the existing method that used partial likelihood function,
Bayesian Cox regression model ignoring measurement error, the adjusted Bayesian Cox
regression model that exists in the literature by a simulation study which consists of differ-
ent sample sizes, censoring rates, reliability levels, and regression coefficients. Simulation
studies indicate that the proposed method outperformed others given some scenarios. A
real data set is analyzed for an illustration of the findings.
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1. Introduction
Measurement error occurs when the actual values of explanatory variables can not

be obtained due to laboratory error, calibration error in the measuring instruments, or
sampling [17]. Biological measurements such as blood pressure and CD4 count, which are
frequently used in survival analysis, are mostly variables with measurement error. When
the values of explanatory variables that contain measurement error are used in classical
analyses, they will cause misleading results [22]. Cox model, being the most commonly
used model in survival analysis is easy to understand, apply and does not depend on any
distribution. If the measurement error is not taken into consideration, the estimates of
regression coefficients obtained by the partial likelihood method in the Cox model will
cause bias [25].
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The simplest and most commonly assumed form of measurement error model is the
additive error model also known as the classical error model. The error terms are assumed
to have zero mean and, typically, constant variance. With the increasing advantage of flex-
ible model structure and available software programs, adjusted Bayesian methods become
popular for coping with the measurement error problem. Bayesian approaches provide a
flexible framework for analysis by combining a prior distribution and expert knowledge,
considering the measurement error of explanatory variables whose true values can not be
observed [21].

Bayesian methods have also become much more useful in the analysis of survival data
with recently developed software programs. The process for the Cox regression model
generally follows these steps: determination of a prior distribution for the regression coef-
ficients and baseline hazard function or baseline cumulative hazard function, creating the
likelihood function, obtaining the posterior distribution, and making inferences [14].

The gamma process is commonly used prior to the baseline cumulative hazard in the
Bayesian Cox regression model. Cumulative hazard increases are assumed to be indepen-
dent during the gamma process. However, this may not be realistic in many applications.
It also does not allow reflecting activity between adjacent intervals [20]. The use of the
polygonal function defined by [4] for the baseline hazard function instead of the gamma
process has been proposed as an alternative method to Bayesian approaches used in the
correction of measurement error in the Cox regression model.

In this study, we propose a new adjusting Bayesian method for measurement error
and compare the performances of the following four models; partial likelihood method
for the Cox regression model, Bayesian Cox regression model ignoring measurement error,
Bayesian Cox regression model adjusting measurement error using gamma process and the
proposed method that adjusting measurement error using polygonal prior for baseline cu-
mulative hazard function in the estimation of the beta regression coefficient. The additive
error model is defined with replicate observations to adjust the covariate measurement
error effect.

The remainder of the paper proceeds as follows: In Section 2, we describe the models
and notations. Section 3 presents a comparison of approaches through simulation studies,
while Section 4 makes comparisons using a real data set as known primary biliary cirrhosis
(PBC) data from the Mayo Clinic study in R. Finally, conclusions of the results and
extensions of the proposed method are given in Section 5.

2. Methods
2.1. Cox regression model

Cox regression model is given as

λ(t, X) = λ0(t)exp

( p∑
i=1

βixi

)
, (2.1)

where λ0(t) is unspecified baseline hazard function, X is a vector of covariates and βββ is
the vector of coefficient of the covariates x1, x2, . . . , xp.

βββ vector can be estimated by maximizing the partial likelihood function by using iter-
ative methods like the Newton-Raphson method in the Cox regression model [7, 8].

The likelihood function L(βββ) for the Cox regression model is given by

L(βββ) =
k∏

j=1

exp
(
β′Xβ′Xβ′X(j)

)
∑

l∈Rt(j)
exp (β′Xβ′Xβ′X l)

,
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in which X(j) is the vector of covariates for the individual who fails at the jth ordered
failed time, t(j), k is the number of failed times and Rt(j) is the set of individuals who are
not failed or uncensored at a time just before t(j) [7].

2.2. Additive measurement error model
Assume we have n observation with the data that are given as (Y, Z, X), with Yi denoting

the outcome variable, Xi unobservable true value of covariate with measurement error, Wi

observed value of measurement error covariate, and Zi fully observed covariates without
measurement error.

The additive measurement error model is as follows:

Wij = Xi + εij , j = 1, 2.

εij are error terms with mean zero and constant variance σ2
ε . There is no correlation

between εi1 and εi2. The error term is independent of Xi, Zi, and Yi. We assume the
existence of an internal replication sub-study to be able to calculate the measurement
error variance [6, 17].

2.3. Bayesian approach
2.3.1. Bayesian Cox regression model. With the advancements in statistical soft-
ware, Bayesian analysis started to be used increasingly to perform inferences in the Cox
regression model like other statistical models. Bayesian inference is the process of adapting
a probability model to a data set and summarizing the results of the model parameters
with a probability distribution. The main feature of Bayesian methods is the use of prob-
ability to measure uncertainty in inferences based on statistical data analysis [11]. The
prior knowledge along with a given set of observations is used in Bayesian analysis in order
to make statistical inferences. Operational or observational data and previous experiments
can be the prior information.In Bayesian analysis, the data and parameter vector θ are
considered random variables. In addition to the probabilistic model produced by the data,
a prior distribution p(θ) expressing the prior knowledge is defined. The prior distribution
is combined with the likelihood function L(θ) = L(θ|D) where D shows the data collected.
The posterior distribution of the parameters p(θ|D), according to the Bayes rule, can be
written as follows [19]:

p(θ|D) = L(θ)p(θ)∫
Θ

L(θ)p(θ)dθ
∝ L(θ)p(θ).

The process in the Bayesian Cox regression model generally consists of determining
the prior distribution for regression coefficients and the baseline hazard function or the
baseline cumulative hazard function, generating the likelihood function, obtaining the
posterior distribution, and making inferences [14].

One of the most frequently used processes for the Cox regression model is the Gamma
process. Let us denote the Gamma distribution with G(α, β), α > 0 shape parame-
ter, β > 0 scale parameter, and the cumulative baseline hazard function is given by

H0(t) =
t∫

0
λ0(t)dt. The gamma process is denoted by H0(t) ∼ GP (c0H∗(t), c0). Let

H∗(t), t ≥ 0, be an increasing left continuous function such that H∗(0) = 0. The Gamma
Process is defined as having the following properties:

(i) H0(t) = 0,
(ii) λ0(t) = H0(t) − H0(s) = G(c0(H∗(t) − H∗(s), c0), t > s.

The increments in the cumulative hazard are the hazard function. These increments are
independent and Gamma distributed in the gamma process property. We note here that
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H∗(t) can be viewed as the mean of the process and c0 indicates the weight or confidence
parameter about the mean [14,16].

Counting process that is one of the practical and alternative ways used in the analysis
of complex survival models was used to analyze Bayesian models [18]. The counting
process approach was first developed by [1] as a method that combines the components
of stochastic integration, martingale theorem, and the counting process. Andersen and
Gill [2] extended the counting process for analyzing survival data. Having n subjects in
a study, for subject i, i = 1, 2, . . . , n, Ii(t) is the intensity process for a counting process
given covariate vector (X1, X2, . . . , Xp) and Yi(t) is the at-risk indicator, i.e., the set of
subjects still at risk at the time, Ti, of failure for subject i (i.e., alive and uncensored at a
time point just before time t). Furthermore, the process Ni(t) can be observed to count
the number of failures that occurred in the interval [0,t]. Anderson and Gill [2] show that
under model (2.1), the intensity process for Ni(t) is

Ii(t)dt = Yi(t)exp(βββ′Xi)dΛ0(t),
where dΛ0(t) represents the instantaneous probability that the subject at risk at time t
has an event in the next time interval [t,t+dt).

D = Ni(t), Yi(t), Xi; i = 1, 2, . . . , n) denote the observed data, according the Cox regres-
sion model, joint distribution can be written as follows:

L(D|βββ, Λ(t)) =
n∏

i=1
Li(D|βββ, Λi(t)),

where the factorizes of the likelihood of the data are

Li(D|βββ, Λi(t)) = exp

−
∫

t≥0

Ii(t)dt

∏
t≥0

(Ii(t))dNi(t), i = 1, 2, . . . , n.

With the Bayesian approach, the joint posterior distribution can be written as [20]
P (βββ, Λ0(t)|D) ∝ L(D|βββ, Λ0(t))P (βββ)P (Λ0(t)).

Here, the primary interest is the regression parameters βββ. For the regression parameters βββ,
a common default prior is normal prior with mean zero. The second interested parameter
is the baseline cumulative hazard function Λ0(t). The Gamma process is used as the prior
distribution for the baseline cumulative hazard function. H0(t) ∼ GP (c0H∗(t), c0) has
Gamma process and H∗(t) is an increasing function where H∗(0) = 0 [14, 16].

2.3.2. Bayesian adjustment for Cox regression model with measurement error
covariate. The joint posterior distribution of the model parameters (Yi, Xi, Wi1, Wi2|Zi)
for adjusting measurement error with the Bayesian approach in the Cox regression model
can be written as follows:

P ((Yi, Xi, Wi1, Wi2|Zi) ∝ P (Yi|Xi, Zi,βββ, Λ0(t))P (Wi|Xi, σ2
ε)P (Xi|Zi, γ).

Yi is the outcome with components of (Ti, δi) and the additional parameters, Λ0(t) denote
the baseline cumulative hazard function. The first component of joint posterior distribu-
tion that is the term for regression model focuses on inference for regression parameters
βββ and baseline cumulative hazard function Λ0(t), the second component is measurement
error model with the assumption of the error measurements Wij follow an additive error
model, with independent normally distributed errors. The final specifies a model for the
unobserved covariate Xi, conditional on Zi.

One of the approaches in the adjusted Bayesian Cox regression model, the Gamma
process is used as a prior for Λ0(t) [3]. The idea of smoothing by determining a prior for
the vector τττ , was first proposed by [10], and then it was developed by [4]. The use of the
polygonal function defined for the baseline hazard function instead of the gamma process
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that assumes the independence of cumulative hazard increases, was used for measurement
error problem in the Cox regression model [15].

We proposed an alternate approach that defines the polygonal function for the baseline
hazard function instead of the gamma process for the Bayesian approach that is used
in handling (by adjusting) the measurement error problem. By using the proposed new
method, as a difference from the existing model using the gamma process, it is aimed to
reflect dependency between time intervals and obtain less biased coefficient estimates for
beta in the Cox regression model with measurement error covariate.

Polygonal prior to the baseline cumulative hazard. Beamonte and Bermúdez [4]
used the non-negative polygonal function with the corner points at times a0 = 0 < a1 <
a2 < . . . < aT max < aT max+1 for the baseline hazard function λ0(t), which is the non-
parametric part of the model. Here it takes its polygonal values τ0 = 0 < τ1 < τ2 <
. . . < τT max < τT max+1, respectively and, when considered to be fixed after the time point
aT max+1, the baseline hazard function can be written as follows:

λ0(t) =

τj + (τj+1 − τj)(t − aj)
aj+1 − aj

, if aj ≤ t ≤ aj+1, j = 1, 2, . . . , Tmax.

τTmax+1, if t ≥ Tmax + 1.

Cumulative hazard increases, assumed to be independent during the gamma process, are
unrealistic in many applications because of not reflect activity between adjacent intervals.
Prior determination for the τττ vector to smoothing, where can be defined as the first-degree
autocorrelation process, was proposed by [10] in a similar study. In [10]], the vector τττ is
defined as

τj+1 = τjexp(ej), j = 1, 2, . . . , Tmax

and
τ1 ∼ Gamma(τ1|aτ , bτ ),

with aτ , bτ = 0.01. It is assumed that the (e1, e2, . . . , eT max) in τττ vector has an independent
log-normal distribution with zero mean and σ2

e variance. Here, the term variance shows
the distribution

σ2
e ∼ Gamma(τ.e|ae, be)

and τ.e is equal to 1/σ2
e .

It shows that getting the ae = be = 0.001 implies that a prior mean 1 and variances 500 for
the parameter τ1 [20]. Parameter estimations can be obtained from the MCMC samples
for this approach.

3. Simulation study
3.1. Study design

Ti, survival time, was generated according to [5] paper with the identified parameters
determined in the Cox regression model under the proportional hazards assumption. The
actual value of the explanatory variable containing the measurement error Xi and the
explanatory variable without measurement error Zi were generated from the multivariate
normal distribution with the mean 0 and the variance 1, the covariance between them is
0.25. The sample sizes were 30, 50, and 100 in scenarios for three different cases. Scenarios
were produced for the low, medium and high censored rates respectively 0.10, 0.30, 0.60
with regression parameters βX , βZ = 0.5, 1.0, 1.5.

20% of the measurements with having the same error variance were obtained as the
second repetitive measurement of the erroneous variable. This error variance was chosen
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such that unconditional reliability ρ = σ2
X/(σ2

X + σ2
U ) and results were obtained for 0.50,

0.70, and 0.90, respectively, to demonstrate low, medium, and high reliability.
In the Bayesian analysis of the Cox regression model, in addition to the determination

of a prior distribution for the regression parameters and some sub-model parameters, it
requires a prior distribution for the baseline cumulative hazard function Λ0(t). The identi-
fied prior distribution for Λ0(t) is assumed to be independent of other prior distributions,
including β. Gamma prior described by [24] was used for Λ0(t) in the predefined Bayesian
Cox regression model adjusted for the measurement error and the Bayesian Cox regres-
sion model ignoring measurement error. We proposed the polygonal function to determine
prior to Λ0(t) as the adjusted Bayesian model for the measurement error in this article.

In the simulation, non-informative priors suggested by [12] were used for all model
parameters. The independent normal prior suggested by [13] was adapted for βX and
βZ . For all variance parameters, the inverse Gamma distribution IG (0.5.0.5) was used.
Failure times were taken as the corner points of polygonal function. All models were
run with five parallel chains for Bayesian models. Gelman-Rubin convergence test was
used as the convergence criterion and it was assumed that the chains were sufficiently
mixed for the value of 1.01 and smaller. In the case of the greater value, the number
of initial iterations has been increased. For all scenarios, the number of iterations where
convergence is provided was run.

We used Gibbs sampling, one of the Monte Carlo Markov Chain (MCMC) techniques
that emerged as a class of sampling algorithms to overcome statistical modeling problems
without analytical solutions in Bayesian models. For Bayesian inferences, 500 repetitions
were taken for each scenario using Just Another Gibbs Sampler (JAGS) in the R package
program.

3.2. Simulation results
In our simulation we used to following four methods to estimate βββ, the proposed ad-

justed Bayesian method used polygonal prior with measurement error accounted for (ABP-
CRM), adjusted Bayesian method used gamma prior with measurement error accounted
for (ABG-CRM), Bayesian method used Gamma prior with Cox regression model ignoring
measurement error (B-CRM) and Naive Cox’s partial likelihood method ignoring measure-
ment error (CRM). The features of the abbreviations of the models are briefly summarized
in Table 1.

Table 1. Used four models to estimate βββ.

Model Prior for Λ0(t) Measurement Error
ABP-CRM Polygonal Yes-Measurement Error
ABG-CRM Gamma Yes-Measurement Error
B-CRM Gamma No
CRM - No

The mean square error (MSE) and coverage probability (CP) are used to compare the
performance of the models. Tables 2-4 show the results of the evaluated methods. Figure
1 shows the visual summary for the high reliability results of the simulations.

Comparing the four models in all scenarios, B-CRM and CRM have approximate results
in terms of MSE and CP. MSE with the CP for the 95% nominal level is shown in Table
2 for the regression parameter 0.5. CP decreased with increasing sample size for B-CRM
and CRM in all reliability levels. B-CRM and CRM have poorer CP results in low and
medium reliability levels. In low reliability, except for 0.10 censored rate of 100 sample
size, ABP-CRM has close or smaller MSE with good CP compared with B-CRM and
CRM. But, ABG-CRM has a closer MSE with good CP compared with B-CRM and
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CRM for 0.10 censored rate of 100 sample size. In the medium reliability, except for 0.30
censored rate of 100 sample size results were similar to low reliability scenarios. In the
high-reliability B-CRM or CRM perform well with smaller MSE and acceptable level of
CP against adjusted models, but also at least one of the adjusted models can be a good
alternative with close MSE.

Table 2. MSE and CP of 95 percent credible/confidence interval results for β =
0.5 based on 500 replications per scenario.

n beta censoring reliability MSEABG−CRM CPABG−CRM MSEABP−CRM CPABP−CRM MSEB−CRM CPB−CRM MSECRM CPCRM
30 0.5 0.10 0.5 0.21152 0.976 0.08345 0.986 0.09988 0.646 0.10154 0.648
30 0.5 0.10 0.7 0.20869 0.964 0.06895 0.990 0.07176 0.856 0.07430 0.854
30 0.5 0.10 0.9 0.18572 0.946 0.06030 0.996 0.06296 0.950 0.06899 0.948
30 0.5 0.30 0.5 0.19528 0.992 0.09228 0.990 0.10439 0.676 0.10661 0.668
30 0.5 0.30 0.7 0.19388 0.978 0.07532 0.990 0.07564 0.896 0.07858 0.896
30 0.5 0.30 0.9 0.17812 0.970 0.06752 0.988 0.06675 0.956 0.07388 0.95
30 0.5 0.60 0.5 0.25186 0.970 0.16695 0.988 0.14471 0.778 0.15089 0.788
30 0.5 0.60 0.7 0.24814 0.960 0.15581 0.982 0.13046 0.900 0.14405 0.908
30 0.5 0.60 0.9 0.24009 0.964 0.14659 0.974 0.13233 0.938 0.16037 0.938
50 0.5 0.10 0.5 0.16228 0.976 0.05104 0.992 0.08291 0.430 0.08303 0.43
50 0.5 0.10 0.7 0.14346 0.948 0.04320 0.988 0.04657 0.812 0.04650 0.804
50 0.5 0.10 0.9 0.09786 0.924 0.03954 0.978 0.03362 0.926 0.03468 0.926
50 0.5 0.30 0.5 0.19361 0.974 0.07111 0.982 0.09110 0.512 0.09140 0.514
50 0.5 0.30 0.7 0.16969 0.960 0.06021 0.980 0.05465 0.816 0.05505 0.82
50 0.5 0.30 0.9 0.11245 0.938 0.05001 0.982 0.04181 0.946 0.04374 0.946
50 0.5 0.60 0.5 0.21029 0.960 0.11604 0.964 0.10856 0.672 0.10959 0.670
50 0.5 0.60 0.7 0.19221 0.956 0.10406 0.966 0.07794 0.878 0.08005 0.876
50 0.5 0.60 0.9 0.14790 0.946 0.09268 0.960 0.07277 0.940 0.07878 0.942
100 0.5 0.10 0.5 0.13403 0.964 0.17616 0.974 0.08177 0.130 0.08160 0.130
100 0.5 0.10 0.7 0.07528 0.960 0.02944 0.986 0.03627 0.600 0.03601 0.610
100 0.5 0.10 0.9 0.03060 0.940 0.12817 0.970 0.01780 0.920 0.01784 0.920
100 0.5 0.30 0.5 0.14535 0.960 0.10543 0.990 0.08156 0.208 0.08145 0.198
100 0.5 0.30 0.7 0.08670 0.950 0.09014 0.986 0.04036 0.656 0.04005 0.664
100 0.5 0.30 0.9 0.03491 0.956 0.07775 0.974 0.02005 0.922 0.02021 0.932
100 0.5 0.60 0.5 0.17351 0.960 0.07939 0.974 0.09127 0.388 0.09113 0.386
100 0.5 0.60 0.7 0.11334 0.950 0.06271 0.972 0.05175 0.768 0.05144 0.776
100 0.5 0.60 0.9 0.05609 0.946 0.04431 0.960 0.03376 0.938 0.03440 0.942
ABG-CRM: adjusted Bayesian method with gamma prior, ABP-CRM: adjusted Bayesian method with polygonal prior, B-CRM: Bayesian Cox regression
model, CRM: Cox regression model, MSE: Mean square error, CP: Coverage probability of the 95% credible/confidence interval, n: sample size.

Table 3. MSE and CP of 95 percent credible/confidence interval results for β = 1
based on 500 replications per scenario.

n beta censoring reliability MSEABG−CRM CPABG−CRM MSEABP−CRM CPABP−CRM MSEB−CRM CPB−CRM MSECRM CPCRM
30 1 0.10 0.5 0.13284 0.986 0.26458 0.944 0.37577 0.198 0.37102 0.204
30 1 0.10 0.7 0.13341 0.996 0.15917 0.966 0.20163 0.590 0.19718 0.610
30 1 0.10 0.9 0.15789 0.978 0.09792 0.988 0.09988 0.900 0.11561 0.918
30 1 0.30 0.5 0.14382 0.994 0.28770 0.928 0.39388 0.224 0.38956 0.236
30 1 0.30 0.7 0.13670 0.994 0.17827 0.956 0.21270 0.616 0.20764 0.638
30 1 0.30 0.9 0.15763 0.994 0.10842 0.980 0.09892 0.926 0.11552 0.930
30 1 0.60 0.5 0.23882 0.984 0.40375 0.938 0.41435 0.420 0.41023 0.432
30 1 0.60 0.7 0.20561 0.986 0.30457 0.950 0.26102 0.734 0.26867 0.764
30 1 0.60 0.9 0.20247 0.986 0.23426 0.954 0.16687 0.942 0.23016 0.944
50 1 0.10 0.5 0.10038 0.996 0.16203 0.930 0.36995 0.024 0.36587 0.024
50 1 0.10 0.7 0.11125 0.990 0.09099 0.962 0.17515 0.380 0.16870 0.392
50 1 0.10 0.9 0.11314 0.966 0.05416 0.980 0.05632 0.890 0.05596 0.904
50 1 0.30 0.5 0.11709 0.986 0.17896 0.934 0.37169 0.052 0.36713 0.056
50 1 0.30 0.7 0.12198 0.982 0.10703 0.958 0.18040 0.430 0.17274 0.46
50 1 0.30 0.9 0.11932 0.968 0.07050 0.970 0.06584 0.902 0.06538 0.912
50 1 0.60 0.5 0.15744 0.984 0.24733 0.944 0.38022 0.194 0.37310 0.194
50 1 0.60 0.7 0.14078 0.978 0.16746 0.956 0.20374 0.608 0.19417 0.64
50 1 0.60 0.9 0.13055 0.968 0.12177 0.952 0.09877 0.922 0.10737 0.926
100 1 0.10 0.5 0.10162 0.982 0.11653 0.930 0.37770 0.000 0.37534 0.000
100 1 0.10 0.7 0.08195 0.978 0.19606 0.944 0.17792 0.070 0.17418 0.074
100 1 0.10 0.9 0.05213 0.944 0.04765 0.972 0.03992 0.788 0.03746 0.802
100 1 0.30 0.5 0.11388 0.980 0.21527 0.928 0.37981 0.000 0.37695 0.000
100 1 0.30 0.7 0.09226 0.972 0.13662 0.938 0.17861 0.128 0.17380 0.148
100 1 0.30 0.9 0.05419 0.958 0.11255 0.944 0.04706 0.812 0.04432 0.826
100 1 0.60 0.5 0.15078 0.978 0.15043 0.916 0.39246 0.028 0.38801 0.030
100 1 0.60 0.7 0.13310 0.968 0.10971 0.902 0.19872 0.298 0.19197 0.322
100 1 0.60 0.9 0.08653 0.946 0.08036 0.910 0.07274 0.828 0.07032 0.860
ABG-CRM: adjusted Bayesian method with gamma prior, ABP-CRM: adjusted Bayesian method with polygonal prior, B-CRM: Bayesian Cox regression
model, CRM: Cox regression model, MSE: Mean square error, CP: Coverage probability of the 95% credible/confidence interval, n: sample size.
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Table 4. MSE and CP of 95 percent credible/confidence interval results for β =
1.5 based on 500 replications per scenario.

n beta censoring reliability MSEABG−CRM CPABG−CRM MSEABP−CRM CPABP−CRM MSEB−CRM CPB−CRM MSECRM CPCRM
30 1.5 0.10 0.5 0.25293 0.974 0.79215 0.572 1.00356 0.024 0.96974 0.040
30 1.5 0.10 0.7 0.13339 0.986 0.50993 0.758 0.55324 0.236 0.50112 0.320
30 1.5 0.10 0.9 0.09199 0.996 0.29215 0.898 0.20309 0.756 0.19211 0.832
30 1.5 0.30 0.5 0.25948 0.972 0.80467 0.672 0.99641 0.040 0.95983 0.054
30 1.5 0.30 0.7 0.14210 0.998 0.53196 0.800 0.55439 0.298 0.49537 0.382
30 1.5 0.30 0.9 0.09812 0.992 0.31627 0.920 0.20681 0.840 0.19038 0.898
30 1.5 0.60 0.5 0.41268 0.968 0.98420 0.756 1.00062 0.152 1.09426 0.210
30 1.5 0.60 0.7 0.25756 0.980 0.73055 0.824 0.26374 0.446 0.55016 0.590
30 1.5 0.60 0.9 0.17592 0.988 0.51830 0.884 0.29123 0.852 0.37833 0.890
50 1.5 0.10 0.5 0.14608 0.984 0.56098 0.556 0.98885 0.000 0.97182 0.000
50 1.5 0.10 0.7 0.08522 0.988 0.32578 0.746 0.51263 0.056 0.47932 0.092
50 1.5 0.10 0.9 0.06998 0.998 0.15621 0.882 0.13834 0.684 0.11314 0.772
50 1.5 0.30 0.5 0.16921 0.970 0.58102 0.670 1.00969 0.004 0.98667 0.004
50 1.5 0.30 0.7 0.10089 0.992 0.35408 0.784 0.53608 0.094 0.49505 0.158
50 1.5 0.30 0.9 0.08454 0.992 0.18803 0.876 0.16414 0.724 0.13724 0.808
50 1.5 0.60 0.5 0.25812 0.970 0.70363 0.766 1.01566 0.020 0.98261 0.034
50 1.5 0.60 0.7 0.16129 0.984 0.48350 0.808 0.56902 0.238 0.51320 0.294
50 1.5 0.60 0.9 0.11476 0.986 0.31738 0.838 0.21641 0.794 0.19081 0.858
100 1.5 0.10 0.5 0.11526 0.956 0.81564 0.616 1.03230 0.000 1.02393 0.000
100 1.5 0.10 0.7 0.07216 0.980 0.51111 0.698 0.53771 0.000 0.51992 0.000
100 1.5 0.10 0.9 0.03998 0.994 0.31449 0.862 0.12958 0.392 0.10926 0.480
100 1.5 0.30 0.5 0.11055 0.972 0.58544 0.668 1.01643 0.000 1.00579 0.000
100 1.5 0.30 0.7 0.07722 0.974 0.35858 0.764 0.52822 0.000 0.50707 0.000
100 1.5 0.30 0.9 0.05295 0.986 0.20407 0.844 0.12964 0.498 0.10675 0.618
100 1.5 0.60 0.5 0.16500 0.964 0.46575 0.766 1.04010 0.000 1.02290 0.000
100 1.5 0.60 0.7 0.12501 0.954 0.31382 0.754 0.56659 0.040 0.53415 0.064
100 1.5 0.60 0.9 0.08740 0.968 0.19414 0.758 0.17423 0.628 0.14393 0.712
ABG-CRM: adjusted Bayesian method with gamma prior, ABP-CRM: adjusted Bayesian method with polygonal prior, B-CRM: Bayesian Cox regression
model, CRM: Cox regression model, MSE: Mean square error, CP: Coverage probability of the 95% credible/confidence interval, n: sample size.

MSE with the CP for the 95% nominal level is shown in Table 3 for the regression
parameter 1.0. In the low and medium reliability levels, B-CRM and CRM were biased
with larger MSE and smaller coverage probability compared with adjusted models. Except
for 0.60 and 0.10 censored rate of 100 sample size ABG-CRM has smaller MSE in all
scenarios. MSE results were obtained close in ABG-CRM and ABP-CRM for 0.60 and
0.10 censored rate of 100 sample size but poorer CP in ABP-CRM for 0.60 censored rate.
In the high reliability except for 0.60 censored rate of 30 sample size and 0.30 censored
rate of 100 sample size B-CRM, CRM, and proposed method have similar results in terms
of MSE but CP decreased under of nominal level with increasing sample size in B-CRM
and CRM.

MSE with the CP for the 95% nominal level is shown in Table 4 for the regression
parameter 1.5. ABG-CRM performs well with smaller MSE and the coverage probability
was maintained at or above the nominal level under all the scenarios considered. The
coverage probability was mostly far below the nominal level in all other considered models.
In particular, the estimated 95% confidence intervals for the low and medium reliability
with 50 and 100 sample size rarely or never contained the true coefficient in B-CRM and
CRM.

4. Application to PBC data
To illustrate the applicability of the analyses, we analyze a set of real data which is

known as the Primary Biliary Cirrhosis (PBC) data obtained from the Mayo Clinic study
between 1974 and 1984. During this ten-year interval, a total of 424 PBC patients who
were referred to Mayo Clinic who met the criteria for a randomized placebo-controlled
study of D-penicillin were enrolled in the study, but 312 cases including complete data
were included in the randomized trial due to loss of follow-up. This clinical study aims to
examine the effect of the D-penicillin drug on time to death or liver transplantation. In
the study, 154 patients were taken as placebo group to see the effect of the D-penicillin
drug on the disease, and the remaining 158 patients were given the drug. Besides, the
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serum bilirubin levels of the patients were recorded at the entry of the study, at the end
of the first 6 months, and annually thereafter throughout the study [9, 23].

(a) MSE for β = 0.5. (b) CP for β = 0.5.

(c) MSE for β = 1.0. (d) CP for β = 1.0.

(e) MSE for β = 1.5. (f) CP for β = 1.5.

Figure 1. Mean square error (MSE) and coverage probability (CP) for relia-
bility=0.9 according to each regression coefficient (β) using four methods with
related sample size (n) and censoring rate (c).

In our study, the log-serum bilirubin level was considered as an explanatory variable
with measurement error. The measurement recorded six months later was taken as the
second repeated measure of the explanatory variable with the measurement error. Our
study aimed to examine the effects of the drug (variable without measurement error) and
log-serum bilirubin (measurement error variable) on the survival time of PBC patients.

We estimated the regression coefficients using the naive, Bayesian methods without ad-
justing for measurement error and adjusting measurement error using gamma and polyg-
onal priors with Bayesian approaches. We performed a global test of the proportional
hazards assumption using the Schoenfeld residuals following fitting the Cox model. The
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test indicated no evidence to reject an assumption of proportional hazards (p=0.730). Due
to the lack of prior information for the Bayesian approaches, all hyperparameters were cho-
sen to reflect noninformative priors. The standardized values of the log-serum bilirubin
variable were used in the analysis to achieve faster convergence in Bayesian models. For
regression coefficients, the hyperparameters of the multivariate Normal priors were set and
we set the prior distributions for variance parameters similar to the simulation. The num-
ber of iterations at which convergence was achieved was determined and three chains were
run for all Bayesian models. All the hyperparameters of the model showed an acceptable
convergence to the stationary distribution both with the graphical method and statistical
tests, Gelman- Rubin and Heidelberger-Welch convergence diagnostics. Regression coeffi-
cient and standard error with 95% confidence intervals for the Cox regression model and
posterior mean estimates and standard deviations with 95% credible intervals and DIC
for Bayesian models were presented in Table 5.

Table 5. Regression parameter estimates and 95% credible/confidence intervals
for the PBC data.

Model Covariate Estimate (SD)

95%
Credible/Confidence

Intervals DIC
Lower Limit Upper Limit

ABG-CRM Log-serum bilirubin 1.3594 (0.1264) 1.1191 1.6149 2108Drug -0.2147 (0.1825) -0.5737 0.1415
ABP-CRM Log-serum bilirubin 1.3149 (0.1228) 1.0807 1.5620 1949Drug -0.1857 (0.1797) -0.5399 0.1650
B-CRM Log-serum bilirubin 1.0901 (0.0948) 0.9053 1.2770 1760Drug -0.1004 (0.1694) -0.4324 0.2316
CRM Log-serum bilirubin 1.0966 (0.0949) 0.9105 1.2828 -Drug -0.1032 (0.1708) -0.4380 0.2316

It is seen in Table 5 that the effect of log-serum bilirubin variable on death risk is high
for all models. Regarding the results of the simulation scenarios, it was concluded that
adjusted models also gave close MSE in large samples, although the minimum MSE was
achieved for CRM only at reliability 0.90 for regression parameter 1 and 0.60 censoring
rate. Since the real values of the log-serum bilirubin variable, which is the measurement
error variable, can not be observed, information about its reliability can not be obtained.
Therefore, it is more reliable to compare and interpret the adjusted models. So, the
naive method and the Bayesian method ignoring measurement error are not taken into
consideration for the comments. Comparing the adjusted models, it was concluded that
ABP-CRM is a better model with a smaller DIC. Only just log-serum bilirubin effect is
significant on survival time. It can be said that as the log-serum bilirubin value increases,
the risk of death increases. Given the observed data, the effect of log-serum bilirubin has
95% probability of falling within the range 1.0807-1.5620.

5. Conclusions
In this paper, we have proposed a new alternative Bayesian method for adjusting mea-

surement error covariate that reflecting also activity between adjacent intervals in cumu-
lative hazard increases. We also compare the Bayesian adjusted models for measurement
error and classic known method according to different sample sizes, censoring rates, relia-
bility, and risk levels in order to reveal in detail the magnitude of the bias that is created
by the estimation of the regression coefficient.
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Especially in large samples or in cases where the risk is high, the use of classical analyses
ignoring measurement error will lead the researcher to wrong conclusions while interpreting
the effect of the covariate on the output variable. In cases where the reliability is low and
medium, it can be said that the classical model and its Bayesian approach have low
performance in terms of CP compared to the adjusted methods. Also, ABP-CRM is
preferred to all other methods in terms of CP in low and medium reliability scenarios
except for large sample, low censoring, and low reliability. In cases where the reliability is
high, at least one of the adjusted models has been an alternative method with close MSE,
although smaller MSE has been obtained for classical models. In real data analysis, the
reliability of the variable containing measurement error is mostly unknown, so its reliability
can not be obtained. As can be seen in the simulation study, the use of adjusted models in
analysis for high reliability as well as low and medium reliability will provide more reliable
results compared to classical models. The limitation of this study is that the computation
time for adjusting Bayesian methods is long because of the complex structure of the
Cox regression model and determines the corner points of polygonal function. Different
determinations on corner points of polygonal functions that reflect accurately the activity
between adjacent intervals in cumulative hazard increases can provide better results. Also,
we believe better predictions can be obtained with informative prior.

While the measurement error variable, which is frequently encountered in epidemiologi-
cal studies, is used in studies that require sensitive interpretation such as survival analysis,
it is necessary to carefully decide on parameter estimation methods.

References
[1] O.O. Aalen, Statistical inference for a family of counting processes, PhD thesis, Uni-

versity of California, 1975
[2] P.K. Andersen and R.D. Gill, Cox’s regression model for counting processes: A large

sample study, Ann. Statist. 10 (4), 1100-1120, 1982.
[3] J.W. Bartlett and R.H. Keogh, Bayesian correction for covariate measurement error:

A frequentist evaluation and comparison with regression calibration, Stat. Methods
Med. Res. 27 (6), 1695-1708, 2018.

[4] E. Beamonte and J.D. Bermúdez, A Bayesian semiparametric analysis for additive
hazard models with censored observations, Test 12 (2), 347-363, 2003.

[5] R. Bender, T. Augustin and M. Blettner, Generating survival times to simulate Cox
proportional hazards models, Stat. Med. 24 (11), 1713-1723, 2005.

[6] R.J. Carroll, D. Ruppert, L.A. Stefanski and C.M. Crainiceanu, Measurement Error
in Nonlinear Models: A Modern Perspective, 2nd ed., CRC Press, 2015.

[7] D. Collett, Modelling Survival Data in Medical Research, CRC Press, 2015.
[8] D.R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B. Stat. Methodol.

34 (2), 187-202, 1972.
[9] T.R. Fleming and D.P. Harrington, Counting Processes and Survival Analysis, John

Wiley and Sons, 1991.
[10] D. Gamerman, Dynamic Bayesian models for survival data, J. R. Stat. Soc. Ser. C.

Appl. Stat. 40 (1), 63-79, 1991.
[11] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari and D.B. Rubin,

Bayesian Data Analysis, CRC Press, 2013.
[12] P. Gustafson, Measurement Error and Misclassification in Statistics and Epidemiol-

ogy: Impacts and Bayesian Adjustments, CRC Press, 2003.
[13] G.B. Hamra, R.F. MacLehose and S.R. Cole, Sensitivity analyses for sparse-data

problems - Using weakly informative Bayesian priors, Epidemiology 24 (2), 233-239,
2013.

[14] J.G. Ibrahim, M.H. Chen and D. Sinha, Bayesian Survival Analysis, Springer, 2005.



1378 H. Işık, D. Karasoy, U. Karabey

[15] H. Isik, Bayesian approach to Cox regression model with covariate subject to measure-
ment error, PhD thesis, Hacettepe University, 2020.

[16] J.D. Kalbfleisch, Nonparametric Bayesian analysis of survival time data, J. R. Stat.
Soc. Ser. B. Stat. Methodol. 40 (2), 214-221, 1978.

[17] R.H. Keogh and I.R. White, A toolkit for measurement error correction, with a focus
on nutritional epidemiology, Stat. Med. 33 (12), 2137-2155, 2014.

[18] D.G. Kleinbaum and M. Klein, Survival Analysis, 3rd ed., Springer, 2010.
[19] E. Lesaffre and A.B. Lawson, Bayesian Biostatistics, Wiley, 2012.
[20] A.A. Mostafa and A. Ghorbal, Using WinBUGS to Cox model with changing from

the baseline hazard function, Appl. Math. Sci. 5 (45), 2217-2240, 2011.
[21] S. Muff, A. Riebler, L. Held, H. Rue and P. Saner, Bayesian analysis of measurement

error models using integrated nested Laplace approximations, J. R. Stat. Soc. Ser. C.
Appl. Stat. 64 (2), 231-252, 2015.

[22] T. Nakamura, Proportional hazards model with covariates subject to measurement
error, Biometrics 48 (3), 829-838, 1992.

[23] A. Ray, Primary biliary cirrhosis, https://Rstudio-Pubs-Static.S3.Amazonaws.
com/159812_042b6e22b9cf44639fb26ae8b2df0a98.html, 2016.

[24] D. Sinha, J. G. Ibrahim and M. H. Chen, A Bayesian justification of Cox’s partial
likelihood, Biometrika 90 (3), 629-641, 2003.

[25] G.Y. Yi and J.F. Lawless, A corrected likelihood method for the proportional hazards
model with covariates subject to measurement error, J. Statist. Plann. Inference 137
(6), 1816-1828, 2007.

https://Rstudio-Pubs-Static.S3.Amazonaws.com/159812_042b6e22b9cf44639fb26ae8b2df0a98.html
https://Rstudio-Pubs-Static.S3.Amazonaws.com/159812_042b6e22b9cf44639fb26ae8b2df0a98.html

