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Abstract 

The utilization of sustainable concrete in producing reinforced concrete structures subjected to 

seismic actions is one of the leading research topics of recent years. With the technical exhibition 

that this concrete may be used in conventional reinforced concrete structures, a significant threshold 

for this sustainable material is accomplished. In the scope of this study, the seismic behavior of five 

different reinforced concrete structures under seismic actions, which are considered to be produced 

from sustainable concrete and conventional concrete, was investigated in detail. The geometrical, 

cross-section, and longitudinal section dimensions of these reinforced concrete structures are 

convenient for the equivalent seismic load method to use effectively. Furthermore, the Turkish 

Building Seismic Code limits were considered for the numerical simulation of reinforced concrete 

structures. Based on this detailed seismic simulation, the equivalent seismic load method may be 

used in earthquake simulation of reinforced concrete structures incorporating sustainable concrete. 

Furthermore, the numerical simulation results obtained from the sustainable concrete structures 

were extensively compared with the conventional concrete structures results. It may be concluded 

from these results that there are negligible differences between the seismic performance indicators 

of reinforced sustainable concrete structures and conventional concrete structures. 

Keywords: Equivalent seismic load method, Natural aggregate, Recycled concrete aggregate, 

Reinforced Concrete, Seismic, Sustainable concrete.

 

 

1. Introduction  

 

Reinforced concrete is a structural material that allows concrete and steel to work together under 

external loads without bonding problems. Therefore, reinforced concrete (RC), which has a 

wide utilization area, is used to construct many different types of structures: high-rise buildings 

and factory structural systems, floors, roofs, arches, retaining walls, water reservoirs, silos, and 

various kinds of shell systems, large span bridges, etc. The basic materials of reinforced 

concrete structures are concrete and steel. Steel is a sustainable material. Thanks to these 

extensive numerical and experimental studies, concrete, another important reinforced concrete 

material, is now considered a sustainable product [1-8]. It is well known that most of the 

structures in the world are built from reinforced concrete material. When sustainable concrete 

(SC) is used to produce these structures, the construction sector in developed and developing 

countries obtains significant advantages in both environmental and economic activities. 

Sustainable concrete is defined as concrete containing one recycled waste material. Recycled 
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concrete aggregate (RCA), obtained by recycling waste concrete, is one of the materials used in 

sustainable concrete production. Therefore, many comprehensive experimental and numerical 

studies are carried out to investigate the potential utilization of sustainable concrete in 

producing reinforced concrete structures. Based on these studies, the structural performances 

of reinforced concrete members constructed from sustainable concrete incorporating RCA 

under simulated seismic actions reveal that this concrete is suitable for producing structural 

members and reinforced concrete structures [1-8]. Therefore, the seismic performance of 

sustainable concrete structures is one of the critical research topics of recent years. In addition, 

through the utilization of sustainable concrete in the production of reinforced concrete 

structures, these structures will be designed effectively and efficiently in the scope of the future 

green idea. Thus, the recycling of demolishing old structures (non-code complying or 

inadequate for seismic conditions) and replacing them with new ones is established. 

 

The seismic behavior of a structure depends on the magnitude of an earthquake and the quality 

of the structure. The structure quality may be defined depending on parameters such as choosing 

the structural system, proper cross-section sizing of the structural members, and controlling the 

workmanship [9]. Therefore, a structural system of a building resisting seismic loads and each 

structural member of the system may be provided with sufficient stiffness, stability, and 

strength to ensure an uninterrupted and safe transfer of seismic loads down to the foundation 

soil [9]. In the literature, many detailed experimental and numerical studies on sufficient 

strength, ductility, and stiffness parameters are conducted to ensure effective seismic 

performance in reinforced concrete structures. These studies are generally exhibited on 

structures and structural elements made of conventional concrete (CC). The use of sustainable 

concrete in the production of reinforced concrete structures raises the question of whether the 

existing seismic design and assessment procedures and the concepts of sufficient strength, 

ductility, and stiffness are valid for these reinforced sustainable concrete structures. Therefore, 

experimental and numerical studies on the seismic performance of reinforced sustainable 

concrete structures within the mentioned issues are important research topics. 

 

In the scope of this comprehensive study, the seismic performance of reinforced concrete 

structures, which are considered to be produced from sustainable concrete, has been extensively 

investigated. In the numerical simulation study, the seismic performances of the sustainable 

concrete incorporation of 25%, 50%, 75%, and 100% RCA (SC25, SC50, SC75, and SC100) 

structures were compared with the seismic performance indicators of the reinforced CC 

structure. The obtained results of these detailed comparisons are given in detail in the following 

sections. 

 

2. Materials and Method 

 

2.1. Material properties of the numerical simulation study 

 

The seismic numerical simulations were executed on full-scale RC structures, one of the 

representative low-rise structures in real, incorporated SC and CC. Five concrete properties, 

sustainable and conventional concrete, were considered in the numerical simulations. The 

stress-strain relationships of this concrete were obtained using Equations 1-5 with the modified 

Hognestad [10] model proposed by Saribas [11]. The stress-strain relationships obtained for 

sustainable and conventional concrete are given in Figure 1a. It may be noted that these concrete 

properties were used in labeling the structures. For example, in the specimen of CC, CC 

represents the conventional concrete and conventional concrete structure, and SC100 indicates 

sustainable concrete and sustainable concrete structures containing 100% RCA.  
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In these Equations 1-5, fc is the concrete compressive strength, fck is the characteristic concrete 

compressive strength, s is the recycled concrete aggregate coefficient, Ec is the modulus of 

elasticity of concrete, i is the recycled concrete aggregate coefficient, εco is the strain value 

corresponding to the maximum concrete compressive strength, εc is the concrete compressive 

strain, εcu is the ultimate concrete compressive strain, fcu is the ultimate concrete compressive 

strength [11]. 

 

The stress-strain relationship of B420C reinforcing steel considered for longitudinal and 

transverse reinforcement is obtained with Equations 6-8 defined in TSDC-2018 [9]. The stress-

strain relationship of this reinforcing bar is given in Figure 1b. 
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In these Equations 6-8, fs is the tensile strength in reinforcement steel, Es is the elasticity module 

of reinforcement steel, εs is the strain of reinforcement steel, fsy is the yield strength of the 

reinforcement steel, εsy is the yield strain of reinforcement steel, εsh is the strain hardening of 

reinforcement steel, εsu is the ultimate strain of reinforcement steel, fsu is the ultimate strength 

of the reinforcement steel [9]. 

(a) (b)  

Figure 1. Stress-strain relationships (a) concretes, (b) reinforcing bar 
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2.2. Details of numerical simulation  

 

The main factor that causes inertial forces in a structure is earthquakes that occur on the ground 

depending on time. The magnitude of these inertial forces changes depending on the 

characteristics of the structure and structural system, the magnitude of the earthquake, the 

distance of the structure to the fault, and the ground conditions where the structure is located 

[12-15]. Therefore, this is necessary to determine the inertial forces that occur with the 

earthquake to design a structure that meets the effects of the seismic actions. However, since 

each earthquake may cause different acceleration in the same area, a realistic estimation of 

earthquake effects is crucial for structure safety and cost. While there is more than one method 

to calculate the inertial forces that an earthquake creates, the simplest is the equivalent seismic 

load method for low-rise structures. Furthermore, the equivalent seismic load method is used 

to convert the dynamic load effect of a possible earthquake to the static load used in earthquake-

resistant structure design and applied horizontally to each storey level of the structures. In 

addition, this dynamic force applied to the structure as a base shear force is regarded in both 

directions of the structure's plan (x and y-direction). It may be noted that the equivalent seismic 

load method should be implied to low-rise structures, the structure should be as symmetrical as 

possible to avoid torsional irregularity, and the structure should have similar rigidity in both 

directions. The geometrical properties of the structures considered in the scope of the study are 

given in Figure 2. The seismic code limitations that are effective in choosing the design method 

for the structures are shown in Table 1. It should also be highlighted that the dead and live loads 

were considered at 1.5 kN/m2 and 2 kN/m2 at each storey level [9]. Furthermore, the self-weight 

of the structural members was regarded for the simulation of these RC structures. In addition, 

wall loads on the edge beams were considered as 6 kN/m. 
 

Table 1. Structural variables of reinforced conventional and sustainable concrete structures 

 

Structural parameters value Description 
Analysis 
Method 

Ss (Short-period map spectral acceleration coefficient) 0.542 Latitude: 37.039107° 

Longitude: 35.385142° 
E

q
u
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S
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sm

ic
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d
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S1 (1.0 second period map spectral acceleration coefficient) 0.134 

Soil type ZC TSDC-2018 Table 16.1 

Fs (Local Ground Effect Coefficient for a short period) 1.28 TSDC-2018 Table 2.1 

F1 (Local Ground Effect Coefficient for 1.0 second period) 1.50 TSDC-2018 Table 2.2 

Earthquake ground motion level DD-2 TSDC-2018 Table 3.4 

HN (Total heigh of structures) 13 TSDC-2018 Table 3.3 

I (Importance coefficient of structures) 1 TSDC-2018 Table 3.1 

BKS (Building use class) 3 TSDC-2018 Table 3.1 

DTS (Earthquake design class) 2 TSDC-2018 Table 3.2 

BYS (Building height class) 6 TSDC-2018 Table 3.3 

Structural System x and y-direction A.11 TSDC-2018 Table 4.1 

R (Structural behavior factor) 8 TSDC-2018 Table 4.1 

D (Overstrength Factor) 3 TSDC-2018 Table 4.1 

Torsional irregularity No   TSDC-2018 Table 4.4 

Soft Storey No TSDC-2018 Table 4.4 

Modulus of soil reaction (Ks) 50000 kN/m3   

*: Please see the TSDC-2018 for more information.  

 

On the other hand, the total equivalent seismic load (base shear), VtE, acting on the entire 

structure in the considered earthquake direction may be determined by Equation (9) [9]. 

 

VtE = mtSaR(Tp) ≥ 0.04mt×I×SDS×g                                              (9) 
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The total equivalent seismic load determined by Equation (9) is expressed by Equation (10) as 

the sum of equivalent seismic loads acting at storey levels [9]. 

 

VtE = ΔFNE+∑FiE                                                             (10) 

 

Excluding FNE, the remaining part of the total equivalent seismic load may be distributed to 

storey levels of the structure (including N’th storey) in accordance with Equation (11) [9]. 

 

FiE = [VtE-ΔFNE] [miHi / ∑miHi]                                               (11) 

 

In these Equations 9-11, VtE is the total equivalent seismic load acting on the building (base 

shear) in the earthquake direction considered, mt is the total mass of a building, SaR(Tp) is the 

reduced design spectral acceleration, I is the importance coefficient of structures, SDS is the 

short period design spectral acceleration coefficient, g is the acceleration of gravity, ΔFNE is the 

additional equivalent seismic load acting on the N’th storey (top) of building, FiE is the design 

seismic load acting at i’th storey, mi is the i’th storey mass of a building, Hi is the height of i’th 

storey of a building measured from the top foundation level [9]. 

 

Flat slab type raft foundations are considered in these sustainable and conventional concrete 

reinforced concrete structures (Figure 2). Considering these features of these structures, the 

seismic behavior of these structures may be determined by the equivalent seismic load method 

(Table 1, Figure 2). The seismic numerical simulation of conventional and sustainable 

reinforced concrete structures under seismic loads was carried out through the SAP2000 [16]. 

It is stated in the literature that performance indicators of RC columns, beams, and slab 

members incorporating sustainable concrete proved well accurate with structural counterparts 

containing conventional concrete [1-8]. Therefore, in the numerical simulations, the cross-

section stiffness of the columns, beams, and slab members in the reinforced concrete structures 

was regarded as the effective section stiffness defined in TSDC-2018 [9]. The moment-

curvature relationships of beams, columns, and axial load-bending moment relationships 

diagrams of columns were obtained with XTRACT 3.0.8 [17]. 
 

 
Figure 2. The geometrical properties of reinforced concrete structures 
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3. Numerical simulation results  

 

3.1. Moment-curvature and axial load-bending moment relationship of RC Members 

 

The moment-curvature and axial load-bending moment relationships of the columns and beam 

members in reinforced concrete structures in which seismic simulations were conducted thanks 

to the equivalent seismic load method were obtained through a fiber-analysis approach using 

the XTRACT 3.0.8 [17]. Furthermore, the confined concrete behavior was regarded by the 

Mander Model [18] based on the characteristics of the reinforcing bar, the cross-section 

dimensions, and unconfined concrete properties. The reinforcing bars in tension were assumed 

to behave in an elastic-plastic manner with strain hardening based on the B420C (Fig. 1b). The 

geometric ratio of longitudinal reinforcement is 1.34%. And the thickness of the concrete cover 

is 48 mm. In addition, the number of fibers of RC columns cross-section is about 580. As a 

result of the cross-section analysis, the obtained moment-curvature relationships of RC columns 

are presented in Figure 3. 

 

 
Figure 3. Moment-curvature relationships of reinforced conventional and sustainable concrete columns 
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presented in Figure 5. When the moment-curvature and axial load-bending moment diagrams 

of these columns are evaluated comprehensively, it is seen that the axial load and bending 

moment capacities of columns decrease as the RCA ratio in sustainable concrete increases 

(Figures 3-5). In addition, it was observed from Figure 4 that the moment-curvature capacities 

of beams were not affected by the RCA ratio since the bending reinforcement governs the 

flexural behavior of the members [5]. 

 

 
Figure 4. Moment-curvature relationships of reinforced conventional and sustainable concrete beams 

 

 

 

  
Figure 5. Axial load-bending moment relationships of reinforced conventional and sustainable concrete columns 
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3.2. Seismic simulation results of reinforced sustainable concrete structures  

 

The equivalent seismic load method is a simple earthquake simulation procedure. In this 

method, the seismic behavior of a structure may be simulated considering the dominant natural 

vibration period, where the mass participation rate is the highest [9, 12-15]. Therefore, storey 

weights or masses are essential parameters in the dynamic behavior of structures. The storey 

weights of the reinforced concrete structures, whose numerical simulation was performed 

according to the equivalent earthquake load method, are given in Figure 6. While the storey 

weights are similar for the basement, first, and second storeys, the weight of the top storey is 

less than that of these storeys. The stiffness of the columns plays a critical role in the seismic 

behavior of reinforced concrete structures. 

 

The simulation results of reinforced concrete structures with sustainable concrete under 

earthquake loads are presented in Figures 7-10. When the numerical simulation results are 

evaluated comprehensively, the natural vibration period of the reinforced sustainable concrete 

structures is higher than that of the natural vibration period of the reinforced conventional 

concrete structure. For example, the natural vibration period of the CC structure is 0.79s, while 

the natural vibration period of the SC100 structure is 0.99s (Figure 7). 

 

 
Figure 6. Storey weights of conventional and sustainable concrete structures 
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modulus of elasticity of SC (Figure 1a) since the low modulus of elasticity causes the lower 
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moment carrying capacity of the RC columns (Figures 3, 5). In addition, the reduction in the 

stiffness of reinforced concrete structures causes the natural vibration periods of the structures 

to increase (Figure 7). 

 
Figure 7. Natural vibration period in x and y-direction of conventional and sustainable concrete structures 
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Furthermore, the reduction in the stiffnesses of the main load-bearing structural members 

(columns) causes an increase in the storey and top displacements of the reinforced concrete 

structures (Figure 8). It should also be noted that as the RCA ratio in sustainable concrete 

increases, both the storey shear forces and the basement shear forces of the structures decrease 

in x and y-direction (Figure 9). 

 
Figure 8. Storey displacement in the x and y-direction of conventional and sustainable concrete structures 

 

The interaction results of the flat slab type raft foundation and the superstructure in reinforced 

concrete structures under seismic actions are provided in Figure 10. This figure shows that 

different deflection values were obtained in raft foundations where different concrete properties 

were regarded. It is worth noting that the main factor causing the difference in deflection is the 

RCA ratio in sustainable concrete (Figure 10). 

 

 
Figure 9. Storey Shear force in x and y-direction of conventional and sustainable concrete structures 
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reinforced concrete structures incorporating sustainable concrete are evaluated in general, the 

dynamic behavior of reinforced concrete structures is significantly affected by the RCA ratio. 

The natural vibration periods, storey displacement, top displacements, storey shear forces, 

basement shear forces, and deflections in raft foundation of the reinforced concrete structures 

with sustainable concrete under earthquake loads were negligible differences from reinforced 

conventional concrete structures. The main parameter that causes this difference is the RCA 

ratio and sustainable concrete properties (Figure 1a). 

 

 

  

 
Figure 10. Deflection in flat slab raft foundation of conventional and sustainable concrete structures 
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on full-scale low-rise reinforced concrete structures incorporating sustainable concrete. And 

particular attention was paid to comparing the conventional concrete simulation results with the 

sustainable concrete results. The main conclusions can be derived from the global performance 

of the reinforced concrete structures:  

• The equivalent seismic load method may reasonably simulate the seismic behavior of 

reinforced sustainable concrete low-rise structures. 

• The numerical simulation highlighted that the RCA ratio is the dominant effective 

parameter for the seismic performance indicators of the reinforced sustainable concrete 

structures. 

• The seismic simulation results revealed that the optimal RCA ratio in sustainable concrete 

might be between 25-50 % to make a proper seismic design in reinforced sustainable 

concrete structures. 

• The modulus elasticity of sustainable concrete is the governing variable that affects the 

stiffness of reinforced sustainable concrete columns under seismic loading. Furthermore, a 

significant harmony is provided between the stress-strain behavior of sustainable concrete 

and storey shear force, storey displacement, base shear force, and roof displacement of 

these reinforced concrete structures. 

• The seismic indicators of sustainable concrete reinforced concrete structures proved 

enough accuracy with the reinforced conventional concrete structures. This result mentions 

that the equivalent seismic load method is also valid for structures incorporating sustainable 

concrete. 

 

Although this seismic simulation study contains enough research variables, there is an obvious 

need for further studies to obtain more applicable results on using sustainable concrete in 

constructing reinforced concrete structures. 
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