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Abstract − In this paper, we obtain certain distribution formulae of the solute
in transport of the typical advection-dispersion of air pollution through separation
in two dimensional space variables by introducing different wind velocities and dis-
persion coefficients. As a consequence, by introducing different values of the solute
velocity and dispersion coefficients, we evaluate the solute distribution formulae of
the air pollution in terms of various known and unknown special functions.
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1. Introduction

The solute transport is described by the advection-dispersion equation (in short ADE) (see for example
[1])

∂C

∂t
+ U ∂C

∂x
= D

∂2C

∂x2
(1)

where, C is solute concentration distribution, the positive constants U represent the average fluid
(wind) velocity; D, the dispersion coefficient; x, the spatial domain and t is time. The ADE is a
deterministic equation describing a probability function for the location of particles in a continuum.
The fundamental solutions of the ADE over time t have studied in the Gaussian densities with means
and variances based on the values of the macroscopic transport coefficients U and D.

The extension of the Eqn. (1) is presented in the typical advection-dispersion vector equation as

∂C

∂t
+ div(CU) = div(D∇C) + F (2)

Here, the Eqn. (2) consists the scalar quantities C,D, and F , such that D ̸= 0 and U , a vector
quantity.

We refer the principles of air pollution meteorology described in the researches [2–5]. Liu et al. [6,7]
presented various computational methods for solute transport in the advection-dispersion problems.
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The study of wind speed conditions is of interest, partly because the simulation of airborne pollutant
dispersion in certain conditions is rather difficult.

In our paper, we determine the distribution formulae of the solute transport by the typical
advection-dispersion of air pollution problem (2) through separation in two dimensional space vari-
ables. We evaluate the solute distribution formulae of the air pollution in terms of Gauss and confluent
hypergeometric functions by introducing different values of the solute velocity and dispersion coeffi-
cients.

2. Theory and Methods of Solute Distribution in Advection-dispersion Equation by
Separate Variables

In this section, we plug the Eqn. (2) via the theory and methods of separation in two dimensional
space variables stated on the basis of the researches done in [8–11].

We suppose that, ∀x, y ∈ R, the solute concentration distribution C = C(x, y, t), the wind velocity
U = u(x, y, t)i + v(x, y, t)j; i and j are unit vectors; u(x, y, t) and v(x, y, t) are scalar quantities; the
dispersion coefficient D = D1(x)D2(y), D1(x) ̸= 0, D2(y) ̸= 0, ∀x ∈ R, y ∈ R, and the scalar quantity

F = F (x, y, t), lim
t→0+

C(x, y, t) = f(x, y), lim
t→∞

C(x, y, t) = h(x, y), ∇ ≡ i
∂

∂x
+ j

∂

∂y

Also, the concentration distribution C(x, y, t) exists and have non - zero values for ∀x ∈ R, y ∈
R, t ≥ 0, and does not exist when t < 0.

By above assumptions, we convert the Eqn. (2) in the typical two variables advection-dispersion
equation given by

∂C(x, y, t)

∂t
+

∂

∂x
(C(x, y, t)u(x, y, t)) +

∂

∂y
(C(x, y, t)v(x, y, t))

= D2(y)
∂

∂x
(D1(x)

∂

∂x
C(x, y, t)) +D1(x)

∂

∂y
(D2(y)

∂

∂y
C(x, y, t)) + F (x, y, t) (3)

Theorem 2.1. If u(x, y, t) and v(x, y, t) are velocity components along unit vectors i and j ∀x ∈
R, y ∈ R, t ≥ 0, and C(x, y, t) = C1(x, t)C2(y, t), where, C1(x, t) ̸= 0, C2(y, t) ̸= 0 and F (x, y, t) =
f1(x, t)C2(y, t) + f2(y, t)C1(x, t), ∀x ∈ R, y ∈ R, t ≥ 0, then by the Eqn. (3), there exists following
separate differential equations with variable coefficients

D2(y)
∂2

∂y2
C2(y, t) +

{
∂

∂y
D2(y)−

v(x, y, t)

D1(x)

}
∂

∂y
C2(y, t) +

f2(y, t)

D1(x)

− 1

D1(x)

∂C2(y, t)

∂t
−

∂
∂yv(x, y, t)

D1(x)
C2(y, t) = 0 (4)

and

D1(x)
∂2

∂x2
C1(x, t) +

{
∂

∂x
D1(x)−

u(x, y, t)

D2(y)

}
∂

∂x
C1(x, t) +

f1(x, t)

D2(y)

− 1

D2(y)

∂C1(x, t)

∂t
−

∂
∂xu(x, y, t)

D2(y)
C1(x, t) = 0 (5)

Proof. Consider the Eqn. (3) and set

u(x, y, t) = u1(x, t)u2(y, t), v(x, y, t) = u3(x, t)u4(y, t) (6)
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Then, under the conditions given in the Theorem 2.1 and in Eqn. (6), the Eqn. (3) becomes as

C1(x, t)
∂C2(y, t)

∂t
+ C2(y, t)

∂C1(x, t)

∂t
+ u2(y, t)C2(y, t)

∂

∂x
(C1(x, t)u1(x, t))

+ C1(x, t)u3(x, t)
∂

∂y
(C2(y, t)u4(y, t))

= C2(y, t)D2(y)
∂

∂x
(D1(x)

∂

∂x
C1(x, t)) + C1(x, t)D1(x)

∂

∂y
(D2(y)

∂

∂y
C2(y, t))

+ f1(x, t)C2(y, t) + f2(y, t)C1(x, t) (7)

Again, we write the Eqn. (7) in the form

C1(x, t)

[
∂C2(y, t)

∂t
+ u3(x, t)

∂

∂y
(C2(y, t)u4(y, t))−D1(x)

∂

∂y
(D2(y)

∂

∂y
C2(y, t))− f2(y, t)

]
+

C2(y, t)

[
∂C1(x, t)

∂t
+ u2(y, t)

∂

∂x
(C1(x, t)u1(x, t))−D2(y)

∂

∂x
(D1(x)

∂

∂x
C1(x, t))− f1(x, t)

]
= 0 (8)

Since in Eqn. (8) C1(x, t) ̸= 0 and C2(y, t) ̸= 0, then ∀ x, y ∈ R, t ≥ 0, here the equality holds if
following equations satisfy

∂C2(y, t)

∂t
+ u3(x, t)

∂

∂y
(C2(y, t)u4(y, t))−D1(x)

∂

∂y
(D2(y)

∂

∂y
C2(y, t))− f2(y, t) = 0 (9)

and
∂C1(x, t)

∂t
+ u2(y, t)

∂

∂x
(C1(x, t)u1(x, t))−D2(y)

∂

∂x
(D1(x)

∂

∂x
C1(x, t))− f1(x, t) = 0 (10)

By the Eqn. (9), we obtain

∂C2(y, t)

∂t
+ u3(x, t)

{
C2(y, t)

∂

∂y
u4(y, t) + u4(y, t)

∂

∂y
C2(y, t)

}
−D1(x)

{
D2(y)

∂2

∂y2
C2(y, t) +

∂

∂y
D2(y)

∂

∂y
C2(y, t)

}
− f2(y, t) = 0, x, y ∈ R, t ≥ 0 (11)

Then, for x, y ∈ R, t ≥ 0, by Eqn. (11) we find

∂C2(y, t)

∂t
= D1(x)D2(y)

∂2

∂y2
C2(y, t) +

{
D1(x)

∂

∂y
D2(y)− u3(x, t)u4(y, t)

}
∂

∂y
C2(y, t)

− u3(x, t)
∂

∂y
u4(y, t)C2(y, t) + f2(y, t) (12)

Further in a similar manner, ∀x, y ∈ R, t ≥ 0, by Eqn. (10) we find

∂C1(x, t)

∂t
= D2(y)D1(x)

∂2

∂x2
C1(x, t) +

{
D2(y)

∂

∂x
D1(x)− u1(x, t)u2(y, t)

}
∂

∂x
C1(x, t)

− u2(y, t)
∂

∂x
u1(x, t)C1(x, t) + f1(x, t) (13)

Note that ∀x, y ∈ R, t ≥ 0 the Eqns. (12) and (13) may be written as

1

D1(x)

∂C2(y, t)

∂t
= D2(y)

∂2

∂y2
C2(y, t) +

{
∂

∂y
D2(y)−

v(x, y, t)

D1(x)

}
∂

∂y
C2(y, t)

−
∂
∂yv(x, y, t)

D1(x)
C2(y, t) +

f2(y, t)

D1(x)
(14)
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and

1

D2(y)

∂C1(x, t)

∂t
= D1(x)

∂2

∂x2
C1(x, t) +

{
∂

∂x
D1(x)−

u(x, y, t)

D2(y)

}
∂

∂x
C1(x, t)

−
∂
∂xu(x, y, t)

D2(y)
C1(x, t) +

f1(x, t)

D2(y)
(15)

Finally, by the Eqns. (14) and (15) we obtain the Eqns. (4) and (5), respectively.

By the Eqns. (4) and (5), we may obtain various distribution formulae of the solute in the transport
of advection-dispersion of air pollution on setting different wind velocities and dispersion coefficients.

3.Distribution Formulae of the Solute in Transport of Advection-dispersion of Air
Pollution for Different Wind Velocities and Dispersion Coefficients Involving
Special Functions

In this section, we determine the solute distribution formulae in terms of certain special functions
whose contiguity and analytic properties are described in the literature of the authors [12,13]. These
special functions are then applied in computation process of the related formulae. We present following
theorems for evaluation of our results:

Theorem 3.1. If ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , , D1(x) = x(1−x), D2(y) = y(1−y),
v(x, y, t) = [1− c2 + (a2 + b2 − 1)y]{x(1− x)}, and a partial differential equation is satisfied by

1

C2(y, t)

{
f2(y, t)−

∂C2(y, t)

∂t

}
= (a2+b2−1−a2b2){x(1−x)}, u(x, y, t) = [1−c1+(a1+b1−1)x]{y(1−y)}

and another partial differential equation is satisfied by

1

C1(x, t)

{
f1(x, t)−

∂C1(x, t)

∂t

}
= (a1 + b1 − 1− a1b1){y(1− y)}

then, by the Eqns. (4) and (5) of the Theorem 2.1, they also satisfy the simultaneous differential
equations

y(1− y)
∂2

∂y2
C2(y, t) + {c2 − (a2 + b2 + 1)y} ∂

∂y
C2(y, t)− a2b2C2(y, t) = 0 (16)

and

x(1− x)
∂2

∂x2
C1(x, t) + {c1 − (a1 + b1 + 1)x} ∂

∂x
C1(x, t)− a1b1C1(x, t) = 0 (17)

respectively.

Proof. Consider the Eqn. (4) in which by the statement of this Theorem 3.1, put D1(x) = x(1−x),

D2(y) = y(1− y), v(x, y, t) = [1− c2 + (a2 + b2 − 1)y]{x(1− x)} and set 1
C2(y,t)

{f2(y, t)− ∂C2(y,t)
∂t } =

(a2 + b2 − 1− a2b2){x(1− x)}, we get the Eqn. (16).
Similarly, for the particular values u(x, y, t) = [1− c1 + (a1 + b1 − 1)x]{y(1− y)}, 1

C1(x,t)
{f1(x, t)−

∂C1(x,t)
∂t } = (a1 + b1 − 1− a1b1){y(1− y)}, from the Eqn. (5), we obtain the required Eqn. (17).

Theorem 3.2. If ∀x, y ∈ (0, 1), t ≥ 0, in the relation 1
C1(x,t)

{
f1(x, t) − ∂C1(x,t)

∂t

}
= (a1 + b1 − 1 −

a1b1){y(1−y)}, it is assumed that ∀x, y such that 0 < x < 1, 0 < y < 1, C1(x, t) = e−α1tH1(x, y), α1 >
0, then by Eqn. (17) of the Theorem 3.1, there exists a formula

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ + µ1 2F1

[
a1, b1;
c1;

x

]
(18)
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µ1 is an arbitrary constant and 2F1 is Gauss hypergeometric function (see [12,13]). Similarly, for the

relation 1
C2(y,t)

{f2(y, t)− ∂C2(y,t)
∂t } = (a2+b2−1−a2b2){x(1−x)} and C2(y, t) = e−β1tH2(x, y), β1 > 0,

there exists another formula

C2(y, t) = exp

[
− (a2 + b2 − 1− a2b2){x(1− x)}t

]
×
∫ t

0
exp

[
(a2 + b2 − 1− a2b2){x(1− x)}τ ]f2(y, τ)dτ + ν1 2F1

[
a2, b2;
c2;

y

]
(19)

ν1 is an arbitrary constant.

Proof. The relation of the Theorem 3.2 is written by the linear differential equation ∂C1(x,t)
∂t + (a1 +

b1 − 1− a1b1){y(1− y)}C1(x, t) = f1(x, t), so that its solution is found by

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ + λ1(x, y) (20)

Now in Eqn. (17) set C1(x, t) = e−β1tH1(x, y), β1 > 0, so that C1(x, 0) = H1(x, y), and then
λ1(x, y) = H1(x, y) and hence we get

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ +H1(x, y) (21)

Again, by the relation C1(x, t) = e−β1tH1(x, y), β1 > 0 and the Eqn. (17), we get H1(x, y) =

µ1 2F1

[
a1, b1;
c1;

x

]
. Therefore, we obtain

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ + µ1 2F1

[
a1, b1;
c1;

x

]
(22)

Similarly, we have for C2(y, t) = e−α1tH2(x, y), α1 > 0, then by Eqn. (16) we get H2(x, y) =

ν1 2F1

[
a2, b2;
c2;

y

]
and by the relation 1

C2(y,t)

{
f2(y, t)− ∂C2(y,t)

∂t

}
= (a2 + b2 − 1− a2b2){x(1− x)}, we

get

C2(y, t) = exp[−(a2 + b2 − 1− a2b2){x(1− x)}t]

×
∫ t

0
exp[(a2 + b2 − 1− a2b2){x(1− x)}τ ]f2(y, τ)dτ + ν1 2F1

[
a2, b2;
c2;

y

]
(23)

Theorem 3.3. If ∀x, y ∈ (0, 1), t ≥ 0, all conditions of the Theorem 3.2 and 3.3 are satisfied, then
there exists following distribution formula of the solute as

C(x, y, t) = G1(x, y, t)G2(x, y, t) + ν1G1(x, y, t) 2F1

[
a2, b2;
c2;

y

]
+ µ1G2(x, y, t) 2F1

[
a1, b1;
c1;

x

]
+ ν1µ1 2F1

[
a1, b1;
c1;

x

]
2F1

[
a2, b2;
c2;

y

]
(24)
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Here in (24), it is given that

G1(x, y, t) = {exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ (25)

and

G2(x, y, t) = {exp[−(a2 + b2 − 1− a2b2){x(1− x)}t]

×
∫ t

0
exp[(a2 + b2 − 1− a2b2){x(1− x)}τ ]f2(y, τ)dτ (26)

Proof. Apply the results of the Theorems 3.1 and 3.2 in the result C(x, y, t) = C1(x, t)C2(y, t) of
the Theorem 2.1 to find the result (21).

Theorem 3.4. If ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , , D1(x) = x, D2(y) = y

v(x, y, t) = [1− (y − c2)]x,
1

C2(y, t)

{
∂C2(y, t)

∂t
− f2(y, t)

}
= (a2 + 1)x

u(x, y, t) = [1− (x− c1)]y,
1

C1(x, t)

{
∂C1(x, t)

∂t
− f1(x, t)

}
= (a1 + 1)y

then, by the Eqns. (4) and (5) of the Theorem 2.1, they also satisfy following differential equations

y
∂2

∂y2
C2(y, t) + (c2 − y)

∂

∂y
C2(y, t)− a2C2(y, t) = 0 (27)

and

x
∂2

∂x2
C1(x, t) + (c1 − x)

∂

∂x
C1(x, t)− a1C1(x, t) = 0 (28)

respectively.

Proof. Consider the Eqn. (4) in which by the statement of this Theorem, put D1(x) = x, D2(y) = y,

v(x, y, t) = [1− (y− c2)]x, then
∂
∂y

v(x,y,t)

x = −1, and 1
C2(y,t)

{
∂C2(y,t)

∂t − f2(y, t)

}
= (a2 +1)x to get the

Eqn. (27) as

y
∂2

∂y2
C2(y, t) + (c2 − y)

∂

∂y
C2(y, t)− a2C2(y, t) = 0

Similarly, by the Eqn. (5) in which on putting u(x, y, t) = [1 − (x − c1)]y, to get
∂
∂x

u(x,y,t)

y = −1,

1
C1(x,t)

{
∂C1(x,t)

∂t − f1(x, t)

}
= (a1 + 1)y, gives us the Eqn. (28).

Theorem 3.5. If all the conditions of the Theorem 3.4 are satisfied and ∀t ≥ 0, let

C1(x, t) = e−α2tK1(x, y) = e−α2tK1(x)K1(y) = e−α2tK1(x) ( for K1(y) = 1) , α2 > 0;

C2(y, t) = e−β2tK2(x, y) = e−β2tK2(x)K2(y) = e−β2tK2(y) ( for K2(x) = 1) , β2 > 0.

Then, there exists the formulae

C1(x, t) = exp [(a1 + 1) yt]

∫ t

0
exp [− (a1 + 1) yτ ] f1(x, τ)dτ + µ2 1F1

[
a1;
c1;

x

]
(29)

and

C2(y, t) = exp [(a2 + 1)xt]

∫ t

0
exp [− (a2 + 1)xτ ] f2(y, τ)dτ + v2 1F1

[
a2;
c2;

y

]
(30)
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Proof. Consider the assumptions of the Theorem 3.5 and make an appeal to the Eqns. (27) and
(28) to get the confluent differential equations (see [12,13])

x
d2

dx2
K1(x) + (c1 − x)

d

dx
K1(x)− a1K1(x) = 0 and y

d2

dy2
K2(y) + (c2 − y)

d

dy
K2(y)− a2K2(y) = 0

respectively. Then we have their respective solutions

K1(x) = µ2 1F1

[
a1;
c1;

x

]
and K2(y) = v2 1F1

[
a2;
c2;

y

]
Again due to the conditions of the Theorem 3.4, we get the linear partial differential equations

∂C1(x, t)

∂t
− (a1 + 1) yC1(x, t) = f1(x, t) and

∂C2(y, t)

∂t
− (a2 + 1)xC2(y, t) = f2(y, t),

respectively. We obtain the solutions of these linear partial differential equations

C1(x, t) = exp [(a1 + 1) yt]

∫ t

0
exp [− (a1 + 1) yτ ] f1(x, τ)dτ +K1(x, y)

= exp [(a1 + 1) yt]

∫ t

0
exp [− (a1 + 1) yτ ] f1(x, τ)dτ +K1(x)

and

C2(y, t) = exp [(a2 + 1)xt]

∫ t

0
exp [− (a2 + 1)xτ ] f2(y, τ)dτ +K2(x, y)

= exp [(a2 + 1)xt]

∫ t

0
exp [− (a2 + 1)xτ ] f2(y, τ)dτ +K2(y)

respectively.
Finally introduce the values ofK1(x) andK2(y) in above solutions, we evaluate the required results

(29) and (30).

Theorem 3.6. If ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , all conditions of the Theorems 3.4
and 3.5 are satisfied. Then, by the relation of the Theorem 3.4 there exists then solute distribution in
the form

C(x, y, t) = G
′
1(x, y, t)G

′
2(x, y, t) + ν2G

′
1(x, y, t) 1F1

[
a2;
c2;

y

]
+ µ2G

′
2(x, y, t) 1F1

[
a1;
c1;

x

]
+ ν2µ2 1F1

[
a1;
c1;

x

]
1F1

[
a2;
c2;

y

]
(31)

where

G′
1(x, y, t) = exp[(a1 + 1)yt]

∫ t

0
exp[−(a1 + 1)yτ ]f1(x, τ)dτ + µ2 1F1

[
a1;
c1;

x

]
and

G′
2(x, y, t) = exp[(a2 + 1)xt]

∫ t

0
exp[−(a2 + 1)xτ ]f2(y, τ)dτ + ν2 1F1

[
a2;
c2;

y

]
Proof. Consider the relation of the Theorem 2.1 that C(x, y, t) = C1(x, t)C2(y, t), in which by making
an appeal to the Theorems 3.4 and 3.5, we find the results of the Theorem 3.6.
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4. Special Cases

Example 4.1. In the Theorem 3.3, ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , set f1(x, τ) = eσ1xτ

and f2(y, τ) = eσ2yτ , σ1 < 0, σ2 < 0, a1 + b1 > (1 + a1b1). Thus we get

C(x, y, t) = G1(x, y, t)G2(x, y, t) + ν1G1(x, y, t) 2F1

[
a2, b2;
c2;

y

]
+ µ1G2(x, y, t) 2F1

[
a1, b1;
c1;

x

]
+ ν1µ1 2F1

[
a1, b1;
c1;

x

]
2F1

[
a2, b2;
c2;

y

]
. (32)

Here in (32), it is given that

G1(x, y, t) =
1

{(a1 + b1 − 1− a1b1){y(1− y)}+ σ1x}
× {exp[σ1xt]− exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]} (33)

and

G2(x, y, t) =
1

{(a2 + b2 − 1− a2b2){x(1− x)}+ σ2y}
× {exp[σ2yt]− exp[−(a2 + b2 − 1− a2b2){x(1− x)}t]} (34)

On making an application of the results (32)-(34), and by conditions of Example 4.1, we find that

G1(x, y, 0) = 0 = G2(x, y, 0) and lim
t→∞

G1(x, y, t) = lim
t→∞

G2(x, y, t) = 0,

hence by Section 2 we get

lim
t→0+

C(x, y, t) = lim
t→∞

C(x, y, t) = f(x, y) = h(x, y) = ν1µ1 2F1

[
a1, b1;
c1;

x

]
2F1

[
a2, b2;
c2;

y

]
(35)

Example 4.2. In the Theorem 3.6, ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , set f1(x, τ) =
e−ρ1xτ and f2(y, τ) = e−ρ2yτ , ρ1 > 0, ρ2 > 0, (a1 + 1) < 0 and get

C(x, y, t) = G′
1(x, y, t)G

′
2(x, y, t) + ν2G

′
1(x, y, t) 1F1

[
a2;
c2;

y

]
+ µ2G

′
2(x, y, t) 1F1

[
a1;
c1;

x

]
+ ν2µ2 1F1

[
a1;
c1;

x

]
1F1

[
a2;
c2;

y

]
(36)

Here in (36), it is given that

G′
1(x, y, t) =

1

{(a1 + 1)y + ρ1x}
{exp[(a1 + 1)yt]− exp[−ρ1xt]} (37)

and

G′
2(x, y, t) =

1

{(a2 + 1)x+ ρ2y}
{exp[(a2 + 1)xt]− exp[−ρ2yt]} (38)

On applying the results (36)-(39), and by conditions of the Example 4.2, we find that G′
1(x, y, 0) =

0 = G′
2(x, y, 0), and limt→∞G′

1(x, y, t) = limt→∞G′
2(x, y, t) = 0 and hence by Section 2 we get

lim
t→0+

C(x, y, t) = lim
t→∞

C(x, y, t) = f(x, y) = h(x, y) = ν2µ2 1F1

[
a1;
c1;

x

]
1F1

[
a2;
c2;

y

]
(39)

Remark 4.3. Various elementary functions for example (1 − z)−a = 2F1(a, b; b; z), ln(1 + z) =
z 2F1(1, 1; 2;−z), Legendre functions of the first and second kinds, incomplete Beta function, complete
elliptic integrals of the first and second kinds, Jacobi polynomials, Gegenbauer polynomials, Legendre
polynomials, Tchebycheff polynomials of the first and second kinds are generally represented in terms
of the hypergeometric function 2F1(.). By the Theorem 3.3 and Example 4.1, the solute distribution
may be expressed in the form of these known hypergeometric functions,(also see [8, 10,14]).



Journal of New Theory 39 (2022) 84-93 / Distribution Formulae of the Solute in Transport ... 92

Remark 4.4. Various special functions like Bessel functions, Whittaker functions, incomplete Gamma
functions, Hermite polynomials and Leguerre functions etc. are represented in terms of the confluent
hypergeometric function 1F1(.). By the Theorem 3.6 and Example 4.2, the solute distribution may
be expressed in the form of these known hypergeometric functions,(also see [9, 15,16]).

5. Conclusion and Discussion

Air pollution meteorology, atmospheric diffusion models for regulatory applications, volume method for
transient simulation of time- and scale-dependent transport in heterogeneous aquifer systems are other
related topics which can be connected with our present study. A recent work [10,14-16] on obtaining
Voigt functions via Quadrature formula for the fractional in time diffusion and wave problem, on
a bi-dimensional basis involving Special Functions for partial in space and the time fractional wave
mechanical problems and approximation, are such examples. The study of wind speed conditions
is of interest, partly because the simulation of airborne pollutant dispersion in certain conditions is
rather difficult. We have determined the distribution formulae of the solute transport by the typical
advection-dispersion of air pollution problem through separation in two dimensional space variables.
Several other methods are available. We have evaluated the solute distribution formulae of the air
pollution in terms of Gauss and confluent hypergeometric functions by introducing different values of
the solute velocity and dispersion coefficients.

We can determine the solute distribution formulae in terms of certain special functions whose con-
tiguity and analytic properties are described in the literature of the authors [12, 13].The equation (2)
via the theory and methods of separation in two dimensional space variables stated on the basis of the
researches done in [8-11] may be useful by simply connecting relevant special functions in computation
process of the related formulae. By the Theorem 3.6 and Example 4.2, the solute distribution may
be expressed in the form of known special functions,(also see [9, 15, 16]). As a consequence, by in-
troducing different values of the solute velocity and dispersion coefficients, we can evaluate the solute
distribution formulae of the air pollution in terms of various known and unknown special functions.
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