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Abstract
We examine the resulting dynamics when Newton’s method is applied to perturbations on poly-
nomials that have a multiple root. Specifically, we consider the case where Newton’s method is
applied to the polynomial family (z2 + c)(z − 1).
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1. Introduction
Iteration of rational maps in one complex variable has been widely studied in recent decades con-

tinuing the remarkable papers of P.Fatou and G.Julia who introduced normal families and Montel’s
Theorem to the subject at the begin of the twentieth century. Indeed, these maps are the natural
family of functions when iteration of holomorphic maps are on the Riemann sphere C∞. In recent
years, much attention has been paid to families of rational maps that arise as singular perturba-
tions of polynomials. These are families of rational maps that depend on a parameter A and have
the property that, when A = 0, the map involved is a polynomial of degree n, but for all other
parameters, the maps are rational with higher degree. When the parameter A becomes non-zero,
the dynamics of these maps usually go through a substantial transformation. Most of the study
of these singular perturbed rational maps has centered on families of the form FA(z) = zn + A/zd

where A ∈ C, n and d are positive integers.

Our main aim in this paper is to describe what happens when Newton’s method is applied to
the complex polynomial Fc(z) = (z2 + c)(z − 1) when the parameter c is non-zero but quite small.
We shall write Fc(z) = Pc(z)p(z). In this case, the map Fc is called a singular perturbation of
z2p(z). The reason for the interest in such a perturbation arises because the rational map given
by Newton’s method, namely NFc : C∞ → C∞ defined by NFc(z) = z − Fc(z)

F ′
c (z) has a different degree

when c becomes non-zero.
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Complex rational maps are naturally more complicated than polynomials. For simplicity, we shall
consider the simplest possible case where z → z2. For this map, it is well known that the Julia set
is unit circle, but when we perturb that map to one of the form FA(z) = z2 + A/z2 for A 6= 0 the
degree of FA(z) increases from 2 to 4, the origin becomes a pole of order 2 and Julia sets change
dramatically. See Figures 1 and 2 [4, p.14]

Figure 1. A = 0 Figure 2. A = −1/16

In complex dynamics, the object of central interest in the dynamical plane is the Julia set. For
the family Pc there is an open neighborhood of ∞ in the Riemann sphere consisting of points whose
orbits tend to ∞. The set of all points whose orbits tend to ∞ is called the basin of ∞. Then the
Julia set, denoted by J(Pc), is the boundary of this basin. There are other equivalent definitions
of Julia set. For instance, the Julia set is also the closure of the set of repelling periodic points.
Therefore, arbitrarily close to any point in the Julia set, we have both escaping and periodic points,
so the Julia set is the place where chaos occurs for these maps. In fact, via Montel’s Theorem,
given any point in the Julia set, then any open neighborhood of this point, no matter how small,
is eventually mapped over the entire complex plane (minus at most one point). Thus the family
of iterates of Pc on the Julia set is very sensitive to initial conditions. The filled Julia set is, by
definition, the set of all points whose orbits do not tend to ∞. J(Pc) is also the boundary of the
filled Julia set. The Fatou set is then complement of J(Pc) in Riemann sphere. This is where the
dynamical behavior is relatively tame [3, p.269], [4, p.233].

The goal of this paper is to investigate the dynamics and the Julia sets of the Newton iteration func-
tion, NFc(z), applied to the polynomial Fc(z) = (z2 + c)(z − 1). We shall pay specific attention to
one special critical point and see how the orbit of this point affects the dynamics of the rational map.

The dynamics of Newton’s method always presents difficult problems, even when applied to poly-
nomials in one variable. Iteration of the Newton’s method function often allows one to find the
roots of the corresponding polynomial, but this is not always the case. Specifically, let Nf (z) be
Newton iteration map corresponding to the function f . By starting with initial seed z0 iteration
gives the sequence z0, z1 = Nf (z0), z2 = Nf (z1) = N2

f (z0), · · · which hopefully converges to a root
ζ of f . That certainly happens most of the time, but other things can happen. For example,
consider f(x) = x1/3, this function is not differentiable at the root x = 0. Note that Nf (x) = −2x

and |N ′
f (0)| > 1 and all sequences tend to ∞. Hence we may have no convergence if there is no

differentiability. Convergence of Newton-iteration towards a fixed point represents the simplest
possible behavior for Nf viewed as a dynamical system. In some cases the convergence of Newton’s
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method is guaranteed, as per Kantorovitch’s theorem [6, p.197, 206, 207], [4, p.173].

We shall think of the Newton’s method function as being defined on the whole Riemann sphere,
i.e., the complex numbers together with the point infinity, C ∪ {∞}. The orbit of a point ξ could
converge to a cycle, or it could wander chaotically about Riemann sphere, or it could behave in
other ways. A point ξ ∈ C is called a periodic point of period n if Nn

f (ξ) = ξ and Nk
f (ξ) 6= ξ for all

k < n, where k, n ∈ N. If n = 1, we say that ξ is a fixed point of Nf and, as is well known, such
points correspond to the roots of f . The derivative of Nf (z) is N

′
f (z) = f(z)f ′′ (z)

[f ′(z)]2 and therefore,
the simple roots of f(z) are super-attracting fixed points of Nf (z), i.e., the derivative of Nf at
this point is 0. Other types of fixed points may arise. For example, the fixed point is attracting if
|N ′

f (ξ)| < 1; it is rationally indifferent(or parabolic, or neutral) if |N ′
f (ξ)| = e2πit with some t ∈ Q;

and it is irrationally indifferent if |N ′
f (ξ)| = e2πit with some t ∈ R \ Q. Using the Taylor’s series

for Nf (z), it can be shown that Nf (z) will be linearly convergent at an attracting fixed point and
at least quadratically convergent at a super-attracting fixed point. The point at ∞ is always a
repelling fixed point with derivative d/(d − 1), where d is the degree of f , so large values of z will
tend to move away from infinity under iteration[4, p.139]. A point is a critical point if the derivative
of the map vanishes at this point. Critical points of Nf are solutions of N

′
f (z) = 0, i.e., zeroes

and inflection points of f . The critical point is non-degenerate if N
′′
f (z) 6= 0 and it is degenerate

if N
′′
f (z) = 0. For example, f(x) = xn has a degenerate critical point at 0 when n > 2, but has

a non-degenerate when n = 2. Note that degenerate critical points may be maxima, minima, or
saddle points as in the case of f(x) = x3 [4, p.92], [3, p.80, 88, 310].

Theorem 1.1. [P.Fatou] Every attracting cycle for a polynomial or a rational function attracts at
least one critical point.

Proof. See [2, p.79]. �

By the Riemann Hurtwitz relation:

Theorem 1.2. A non-constant rational map with degree d has exactly 2d−2 critical points in C∞,
counted with multiplicity [1, p.43].

We are interested in the dynamics of Newton’s method on Riemann sphere. We can always
conjugate Nf (z) by an invertible linear(Möbius) transformation T , so the orbits of Nf (z) will be
essentially the same as the orbits of T ◦ Nf ◦ T −1. On the Riemann sphere, the point at ∞ is like
any other point. We can conjugate Nf by the transformation z → 1/z that interchanges 0 and
∞. Therefore the behavior of Nf (z) at ∞ is the same as the behavior of 1/Nf (1

z ) at 0. The basin
of attraction of a fixed point υ of the map Nf is the set {z| limn→∞ Nn

f (z) = υ}, i.e., the set of
all points whose orbits converge to υ under the iteration of Nf . This basin may have infinitely
many components, and the immediate basin of attraction is the connected component containing
the fixed point υ. The rational map Nf divides the Riemann sphere into two invariant sets, the
Julia set, J(Nf ), and Julia set’s complement. As mentioned earlier, the Julia set consists of points
for which the dynamical behavior under iteration of Nf is complicated. Points in the complement
of the Julia set will normally converge to a fixed point or an attracting cycle. This complement
could also contain a Siegel disk or Herman ring in which the iterations are locally like an irrational
rotation of a disk or an annulus.
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2. The dynamics of the perturbed map
In this section we consider the dynamics of a special class of rational functions, namely those

rational functions that are obtained from Newton’s method as applied to a polynomials of the form
Fc(z) = (z2 + c)(z −1). There are two reasons to be interested in the collection of Newton iteration
maps given by NFc :

1. These form a natural family of non-polynomial examples, and
2. Their dynamical properties are related to the non-degenerate free critical point.

Proposition 2.1. Infinity is a repelling fixed point for the Newton’s method applied to Fc(z) =
(z2 + c)p(z), where p(z) = z − 1 and c is any constant.

Proof. The Newton’s method function is the rational map:

NFc(z) =z − Pc(z)p(z)
P ′

c(z)p(z) + Pc(z)p′(z) = (z2 − c)p(z) + z(z2 + c)p′(z)
2zp(z) + (z2 + c)p′(z) = 2z3 − z2 + c

3z2 − 2z + c

∞ is a fixed point, since limz→∞ NFc(z) = ∞.

N
′
Fc

(z) = Fc(z)F ′′
c (z)

[F ′
c(z)]2 = [(z2 + c)p(z)][2p(z) + 4zp

′(z) + (z2 + c)p′′(z)]
[2zp(z) + (z2 + c)p′(z)]2

To determine its nature, we map ∞ to 0 via g(z) = 1
z (= v) and get the conjugate function,

G(v) = g(NFc( 1
v )) = 1

NFc ( 1
v

) = 3v−2v2+cv3

2−v+cv2 . ∞ is a repelling fixed point, since G(0) = 0 and

G
′(0) = 3

2 . �

We will first consider the dynamics of F0(z) = z2(z − 1), before the examining the dynamics of
Fc when c is small.

2.1. The dynamics of F0(z) = z2(z − 1) for the case c = 0
Newton’s method applied to the polynomial function F0(z) = z2(z − 1) yields the rational map

NF0(z) = 2z3 − z2

3z2 − 2z
.

The finite fixed points for NF0(z) are 0 and 1 which are an attracting fixed point and a super-
attracting fixed point, respectively. In addition, ∞ is a repelling fixed point. In Figures 3 and
4, the computer graphics pictures illustrate of NF0(z) on the dynamical plane. Each color in the
picture belongs to a finite root of NF0(z). In Figure 3, the red area is the basin of attraction for
the attracting fixed point 0 and the blue area is the attracting basin for the super-attracting fixed
point 1 of NF0(z). In Figure 4, the same basins are shown when viewed from infinity. It is the
simple case c = 0 for Newton iteration that has no decorations on the Julia set on the boundary of
basin; rather this boundary is a simple closed curve passing through ∞.

The points 0, 1 and 1/3 are the critical points for NF0 . The orbits of these points are called
the critical orbits and they play a dominant role in determining the structure of the Julia set of
NF0 . The goal in this paper is to consider the case where the value of the parameter c becomes
non-zero. When this occurs, the dynamical behavior changes dramatically. We will next describe
those changes.
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0 1

Figure 3

∞

Figure 4
Dynamical plane pictures when c = 0.

2.2. The dynamics of Fc(z) = (z2 + c)(z − 1) for the case c 6= 0
We will now consider the case where c is different from 0 but quite small. Newton’s method

applied to this polynomial Fc(z) = (z2 + c)(z − 1) where the parameter c = 0.01 yields the rational
map,

NF (z) = NF0.01(z) = 2z3 − z2 + 0.01
3z2 − 2z + 0.01 .

The finite roots of F (z) are 1, ±0.1i and the real root 1 is a super-attracting fixed point of NF .
∞ is a repelling fixed point of NF . The points 1, 1/3, and ±0.1i are critical points for NF . The
critical points 1, 1/3 are the common critical points for the functions NF0 and NF with different
critical values and also they are non-degenerate critical points. In addition, the common critical
point 1 is a super-attracting fixed point for the Newton’s maps NF0 and NF .

Figure 5

The Newton map for the polyno-
mial F : z → z3 − z2 + (0.01)z −
0.01 has only one real root. Left:
the graph of NF on the interval
[−2, 2] with the super-attracting
fixed point of the Newton map in-
dicated. In Figure 6 the behavior
of this Newton map in the com-
plex plane is displayed.

In Figure 6, the computer graphics picture illustrates how points behave under iteration of NF (z)
in dynamical plane. First, we will make clear the fact that we are dealing with the complex plane,
the x-axis is the real direction and y-axis is the imaginary direction. The Newton map, NF , for
the polynomial F : z → z3 − z2 + (0.01)z − 0.01 has degree 3. Since the function has three roots,
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Figure 6

the graph of the complex plane is divided into three parts, each of which is a basin of attraction
for a root. Colors indicate to which of the three roots a given starting point converges. These are
finite roots of Newton’s iteration which are contained in the Fatou set. The blue area is the basin
of super-attracting fixed point for the map NF , ANF

(1) = {z ∈ C : Nn
F (z) → 1, n → ∞}. The

shading of the colors indicates the speed of convergence to the roots. The boundary of Newton
basin is the Julia set on which NF is chaotic. ANF

(1) = C \ KNF
, K = {z ∈ C : Nn

F (z) 9 1, n →
∞}, ∂K = ∂ANF

(1) = J(NF ). In addition, the free critical point 1/3 is lies on the real axis and
in a pre-image of the immediate basin of 1. Every root can be connected to ∞ within its basin
of attraction. Note that there are no black regions in the basins, so Newton’s map does not fail
anywhere on that basin. Boundaries of basins will usually be complicated fractals - the decorations
on the boundary of the three immediate basins correspond to their pre-images. Notice that the
immediate basin of attraction is a connected component containing the fixed points of NF . It is no
longer just a simple closed curve as in the case c = 0.

One of the most important goals of Newton’s method is to approximate the roots of a function for
which initial values will this method converge? Will it converge to a root, and if so, to which root?
In Figure 6, the speed of convergence for Newton’s map of the function (z2 + 0.01)(z − 1) is clearly
observed.

Theorem 2.2. The immediate basin of an attracting fixed point or cycle of NF contains at least
one critical point of NF [7, p.66], [5, p.296].

Remember that the point 1/3 is the free critical point for the Newton’s map. That is the point
whose fate essentially determines everything in complex dynamical behavior of NF . How is this?
The key to the answer is the parameter c after changing the parameter from 0 to any constant on
a circle in complex plane we see the periodic channels leading to ∞. In order to explain this we
change the parameter c from real to complex. For example, in Figures 7−8, the value of parameter
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•1/3

Figure 7

•1/3

Figure 8

is c1 = 0.1 − 0.1i, c2 = 0.1 + 0.1i, respectively. In Figure 7, the three roots of the function
Fc1(z) = z3 − z2 + (0.1 − 0.1i)z − (0.1 − 0.1i) are ±0.143912 ± 0.347434i, 1, and in Figure 8, the
three roots of the function Fc2(z) = z3 −z2 +(0.1+0.1i)z−(0.1+0.1i) are ±0.143912±0.347434i, 1.
These are finite fixed points of Newton’s iteration which are contained in the Fatou set. Since the
function has three roots, the graph of the complex plane is divided three parts, each of which is a
basin for a root. The boundary of the basin is the fractal which is the Julia set. By the definition
of Julia set, Newton’s method does not converge on the boundary points, but it is chaotic. The
Newton iteration functions for both values c1 andc2 have critical points 1 and 1/3. In Figures 7,
the yellow area and in Figures 8, the red area goes to infinity and contains the free critical point.

Corollary 2.3. The non-degenerate free critical point plays vital role in determining the dynamics
of the rational map which arising in complex Newton’s method is applied to polynomial family
Fc(z) = (z2 + c)(z − 1), where c is a complex (or non-complex) parameter.
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